AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Fine mapping and validation of a stable QTL for thousand-kernel weight in wheat (Triticum aestivum L.)

Deyuan Menga,g,1Aamana Batoola,g,1Yazhou XuanbRuiqing PanaNa ZhangaWei ZhangaLiya Zhia,gXiaoli RenaWenqing LibJijie LibYanxiao NiubShuzhi Zhengb,fJun Jia,dXiaoli ShidLei Wanga,d,fHongqing Lingd,gChunhua ZhaoeFa Cuie( )Xigang Liub,fJunming Lia,b,f( )Liqiang Songc,f( )
Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Shijiazhuang 050022, Hebei, China
Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding 071000, Hebei, China
State Key Laboratory of Plant Cell and Chromosome Engineering, Chinese Academy of Sciences, Beijing 100101, China
Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, School of Agriculture, Ludong University, Yantai 264025, Shandong, China
Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang 050024, Hebei, China
College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China

1 These authors contributed equally to this work.

Show Author Information

Abstract

Thousand-kernel weight (TKW) is a measure of grain weight, a target of wheat breeding. The object of this study was to fine-map a stable quantitative trait loci (QTL) for TKW and identify its candidate gene in a recombinant inbred line (RIL) population derived from the cross of Kenong 9204 (KN9204) and Jing 411 (J411). On a high-density genetic linkage map, 24, 26 and 25 QTL were associated with TKW, kernel length (KL), and kernel width (KW), respectively. A major and stable QTL, QTkw-2D, was mapped to an 8.3 cM interval on chromosome arm 2DL. By saturation of polymorphic markers in its target region, QTkw-2D was confined to a 9.13 Mb physical interval using a secondary mapping population derived from a residually heterozygous line (F6:7). This interval was further narrowed to 2.52 Mb using QTkw-2D near-isogenic lines (NILs). NILsKN9204 had higher fresh and dry weights than NILsJ411 at various grain-filling stages. The TKW and KW of NILsKN9204 were much higher than those of NILsJ411 in field trials. By comparison of both DNA sequence and expression between KN9204 and J411, TraesCS2D02G460300.1 (TraesKN2D01HG49350) was assigned as a candidate gene for QTkw-2D. This was confirmed by RNA sequencing (RNA-seq) of QTkw-2D NILs. These results provide the basis of map-based cloning of QTkw-2D, and DNA markers linked to the candidate gene may be used in marker-assisted selection.

References

[1]

T. Curtis, N.G. Halford, Food security: the challenge of increasing wheat yield and the importance of not compromising food safety, Ann. Appl. Biol. 164 (2014) 354–372.

[2]

P. Juliana, J. Poland, J. Huerta-Espino, S. Shrestha, J. Crossa, L. Crespo-Herrera, F. H. Toledo, V. Govindan, S. Mondal, U. Kumar, S. Bhavani, P.K. Singh, M.S. Randhawa, X. He, C. Guzman, S. Dreisigacker, M.N. Rouse, Y. Jin, P. PérezRodríguez, O.A. Montesinos-López, D. Singh, M. Mokhlesur Rahman, F. Marza, R.P. Singh, Improving grain yield, stress resilience and quality of bread wheat using large-scale genomics, Nat. Genet. 51 (2019) 1530–1539.

[3]

W.L. Alexander, E.L. Smith, C. Dhanasobhan, A comparison of yield and yield component selection in winter wheat, Euphytica 33 (1984) 953–961.

[4]

J. Simmonds, P. Scott, M. Leverington-Waite, A.S. Turner, J. Brinton, V. Korzun, J. Snape, C. Uauy, Identification and independent validation of a stable yield and thousand grain weight QTL on chromosome 6A of hexaploid wheat (Triticum aestivum L.), BMC Plant Biol. 14 (2014) 191.

[5]

H. Kuchel, K.J. Williams, P. Langridge, H.A. Eagles, S.P. Jefferies, Genetic dissection of grain yield in bread wheat. Ⅰ. QTL analysis, Theor. Appl. Genet. 115 (2007) 1029–1041.

[6]

F. Breseghello, M.E. Sorrells, QTL analysis of kernel size and shape in two hexaploid wheat mapping populations, Field Crops Res. 101 (2007) 172–179.

[7]

F.A. Cui, C. Zhao, A. Ding, J. Li, L. Wang, X. Li, Y. Bao, J. Li, H. Wang, Construction of an integrative linkage map and QTL mapping of grain yield-related traits using three related wheat RIL populations, Theor. Appl. Genet. 127 (2014) 659–675.

[8]

Q. Su, X. Zhang, W. Zhang, N. Zhang, L. Song, L. Liu, X. Xue, G. Liu, J. Liu, D. Meng, L. Zhi, J. Ji, X. Zhao, C. Yang, Y. Tong, Z. Liu, J. Li, QTL detection for kernel size and weight in bread wheat (Triticum aestivum L.) using a high-density SNP and SSR-based linkage map, Front. Plant Sci. 9 (2018) 1484.

[9]

Q. Xie, S. Mayes, D.L. Sparkes, Carpel size, grain filling, and morphology determine individual grain weight in wheat, J. Exp. Bot. 66 (2015) 6715–6730.

[10]

Y. Pang, C. Liu, D. Wang, P.S. Amand, A. Bernardo, W. Li, F. He, L. Li, L. Wang, X. Yuan, L. Dong, Y.U. Su, H. Zhang, M. Zhao, Y. Liang, H. Jia, X. Shen, Y. Lu, H. Jiang, Y. Wu, A. Li, H. Wang, L. Kong, G. Bai, S. Liu, High-resolution genome-wide association study identifies genomic regions and candidate genes for important agronomic traits in wheat, Mol. Plant 13 (2020) 1311–1327.

[11]

S. Sukumaran, M. Lopes, S. Dreisigacker, M. Reynolds, Genetic analysis of multi-environmental spring wheat trials identifies genomic regions for locus-specific trade-offs for grain weight and grain number, Theor. Appl. Genet. 131 (2018) 985–998.

[12]

C. Sun, F. Zhang, X. Yan, X. Zhang, Z. Dong, D. Cui, F. Chen, Genome-wide association study for 13 agronomic traits reveals distribution of superior alleles in bread wheat from the Yellow and Huai Valley of China, Plant Biotech. J. 15 (2017) 953–969.

[13]

X. Wang, P. Guan, M. Xin, Y. Wang, X. Chen, A. Zhao, M. Liu, H. Li, M. Zhang, L. Lu, J. Zhang, Z. Ni, Y. Yao, Z. Hu, H. Peng, Q. Sun, Genome-wide association study identifies QTL for thousand grain weight in winter wheat under normal- and late-sown stressed environments, Theor. Appl. Genet. 134 (2021) 143–157.

[14]

C.D. Zanke, J. Ling, J. Plieske, S. Kollers, E. Ebmeyer, V. Korzun, O. Argillier, G. Stiewe, M. Hinze, F. Neumann, A. Eichhorn, A. Polley, C. Jaenecke, M.W. Ganal, M.S. Röder, Analysis of main effect QTL for thousand grain weight in European winter wheat (Triticum aestivum L.) by genome-wide association mapping, Front. Plant Sci. 6 (2015) 644.

[15]

F. Li, W. Wen, Z. He, J. Liu, H. Jin, S. Cao, H. Geng, J. Yan, P. Zhang, Y. Wan, X. Xia, Genome-wide linkage mapping of yield-related traits in three Chinese bread wheat populations using high-density SNP markers, Theor. Appl. Genet. 131 (2018) 1903–1924.

[16]

P. Ramya, A. Chaubal, K. Kulkarni, L. Gupta, N. Kadoo, H.S. Dhaliwal, P. Chhuneja, M. Lagu, V. Gupt, QTL mapping of 1000-kernel weight, kernel length, and kernel width in bread wheat (Triticum aestivum L.), J. Appl. Genet. 51 (2010) 421–429.

[17]

J. Brinton, J. Simmonds, F. Minter, M. Leverington-Waite, J. Snape, C. Uauy, Increased pericarp cell length underlies a major quantitative trait locus for grain weight in hexaploid wheat, New Phytol. 215 (2017) 1026–1038.

[18]

S. Cao, D. Xu, M. Hanif, X. Xia, Z. He, Genetic architecture underpinning yield component traits in wheat, Theor. Appl. Genet. 133 (2020) 1811–1823.

[19]

D. Zhao, L.I. Yang, D. Liu, J. Zeng, S. Cao, X. Xia, J. Yan, X. Song, Z. He, Y. Zhang, Fine mapping and validation of a major QTL for grain weight on chromosome 5B in bread wheat, Theor. Appl. Genet. 134 (2021) 3731–3741.

[20]

F. Cui, N. Zhang, X.L. Fan, W. Zhang, C.H. Zhao, L.J. Yang, R.Q. Pan, M. Chen, J. Han, X.Q. Zhao, J. Ji, Y.P. Tong, H.X. Zhang, J.Z. Jia, G.Y. Zhao, J.M. Li, Utilization of a Wheat 660K SNP array-derived high-density genetic map for high-resolution mapping of a major QTL for kernel number, Sci. Rep. 7 (2017) 3788.

[21]

S. Wang, D. Wong, K. Forrest, A. Allen, S. Chao, B.E. Huang, M. Maccaferri, S. Salvi, S.G. Milner, L. Cattivelli, A.M. Mastrangelo, A. Whan, S. Stephen, G. Barker, R. Wieseke, J. Plieske, M. Lillemo, D. Mather, R. Appels, R. Dolferus, G. Brown-Guedira, A. Korol, A.R. Akhunova, C. Feuillet, J. Salse, M. Morgante, C. Pozniak, M.C. Luo, J. Dvorak, M. Morell, J. Dubcovsky, M. Ganal, R. Tuberosa, C. Lawley, I. Mikoulitch, C. Cavanagh, K.J. Edwards, M. Hayden, E. Akhunov, Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array, Plant Biotechnol. J. 12 (2014) 787–796.

[22]

M.O. Winfield, A.M. Allen, A.J. Burridge, G.L.A. Barker, H.R. Benbow, P.A. Wilkinson, J. Coghill, C. Waterfall, A. Davassi, G. Scopes, A. Pirani, T. Webster, F. Brew, C. Bloor, J. King, C. West, S. Griffiths, I. King, A.R. Bentley, K.J. Edwards, High-density SNP genotyping array for hexaploid wheat and its secondary and tertiary gene pool, Plant Biotechnol. J. 14 (2016) 1195–1206.

[23]

IWGSC. Shifting the limits in wheat research and breeding using a fully annotated reference genome, Science 361 (2018) 6403.

[24]

T. Zhu, L.E. Wang, H. Rimbert, J.C. Rodriguez, K.R. Deal, R. de Oliveira, F. Choulet, G. Keeble-Gagnère, J. Tibbits, J. Rogers, K. Eversole, R. Appels, Y.Q. Gu, M. Mascher, J. Dvorak, M.C. Luo, Optical maps refine the bread wheat Triticum aestivum cv. Chinese Spring genome assembly, Plant J. 107 (2021) 303–314.

[25]

H. Tura, J. Edwards, V. Gahlaut, M. Garcia, B. Sznajder, U. Baumann, F. Shahinnia, M. Reynolds, P. Langridge, H.S. Balyan, P.K. Gupta, T. Schnurbusch, D. Fleury, QTL analysis and fine mapping of a QTL for yield-related traits in wheat grown in dry and hot environments, Theor. Appl. Genet. 133 (2020) 239–257.

[26]

J. Song, D. Xu, Y. Dong, F. Li, Y. Bian, L. Li, X. Luo, S. Fei, L. Li, C. Zhao, Y. Zhang, X. Xia, Z. Ni, Z. He, S. Cao, Fine mapping and characterization of a major QTL for grain weight on wheat chromosome arm 5DL, Theor. Appl. Genet. 135 (2022) 3237–3246.

[27]

W. Li, B. Yang, Translational genomics of grain size regulation in wheat, Theor. Appl. Genet. 130 (2017) 1765–1771.

[28]

H. Cheng, J. Liu, J. Wen, X. Nie, L. Xu, N. Chen, Z. Li, Q. Wang, Z. Zheng, M. Li, L. Cui, Z. Liu, J. Bian, Z. Wang, S. Xu, Q. Yang, R. Appels, D. Han, W. Song, Q Sun, Y. Jiang, Frequent intra- and inter-species introgression shapes the landscape of genetic variation in bread wheat, Genome Biol. 20 (2019) 136.

[29]

M. Niaz, L. Zhang, G. Lv, H. Hu, X. Yang, Y. Cheng, Y. Zheng, B. Zhang, X. Yan, A. A. Htun, L. Zhao, C. Sun, N. Zhang, Y. Ren, F. Chen, Identification of TaGL1-B1 gene controlling grain length through regulation of jasmonic acid in common wheat, Plant Biotechnol. J. 21 (2023) 979–989.

[30]

W. Guo, M. Xin, Z. Wang, Y. Yao, Z. Hu, W. Song, K. Yu, Y. Chen, X. Wang, P. Guan, R. Appels, H. Peng, Z. Ni, Q. Sun, Origin and adaptation to high altitude of Tibetan semi-wild wheat, Nat. Commun. 11 (2020) 5085.

[31]

X. Shi, F.a. Cui, X. Han, Y. He, L. Zhao, N.a. Zhang, H. Zhang, H. Zhu, Z. Liu, B. Ma, S. Zheng, W. Zhang, J. Liu, X. Fan, Y. Si, S. Tian, J. Niu, H. Wu, X. Liu, Z. Chen, D. Meng, X. Wang, L. Song, L. Sun, J. Han, H. Zhao, J. Ji, Z. Wang, X. He, R. Li, X. Chi, C. Liang, B. Niu, J. Xiao, J. Li, H.Q. Ling, Comparative genomic and transcriptomic analyses uncover the molecular basis of high nitrogen-use efficiency in the wheat cultivar Kenong 9204, Mol. Plant 15 (2022) 1440–1456.

[32]

C. Hao, C. Jiao, J. Hou, T. Li, H. Liu, Y. Wang, J. Zheng, H. Liu, Z. Bi, F. Xu, J. Zhao, L. Ma, Y. Wang, U. Majeed, X.U. Liu, R. Appels, M. Maccaferri, R. Tuberosa, H. Lu, X. Zhang, Resequencing of 145 landmark cultivars reveals asymmetric subgenome selection and strong founder genotype effects on wheat breeding in China, Mol. Plant 13 (2020) 1733–1751.

[33]

A. Habib, J.J. Powell, J. Stiller, M. Liu, S. Shabala, M. Zhou, D.M. Gardiner, C. Liu, A multiple near isogenic line (multi-NIL) RNA-seq approach to identify candidate genes underpinning QTL, Theor. Appl. Genet. 131 (2018) 613–624.

[34]

X. Cheng, M. Xin, R. Xu, Z. Chen, W. Cai, L. Chai, H. Xu, L. Jia, Z. Feng, Z. Wang, H. Peng, Y. Yao, Z. Hu, W. Guo, Z. Ni, Q. Sun, A single amino acid substitution in STKc_GSK3 kinase conferring semispherical grains and its implications for the origin of Triticum sphaerococcum, Plant Cell 32 (2020) 923–934.

[35]

F.A. Cui, X. Fan, M. Chen, N.A. Zhang, C. Zhao, W. Zhang, J. Han, J. Ji, X. Zhao, L. Yang, Z. Zhao, Y. Tong, T. Wang, J. Li, QTL detection for wheat kernel size and quality and the responses of these traits to low nitrogen stress, Theor. Appl. Genet. 129 (2016) 469–484.

[36]

F. Cui, X. Fan, C. Zhao, W. Zhang, M. Chen, J. Ji. J. Li, A novel genetic map of wheat: utility for mapping QTL for yield under different nitrogen treatments, BMC Genet. 15 (2014) 57.

[37]

X. Fan, F. Cui, C. Zhao, W. Zhang, L. Yang, X. Zhao, J. Han, Q. Su, J. Ji, Z. Zhao, Y. Tong, J. Li, QTLs for flag leaf size and their influence on yield-related traits in wheat (Triticum aestivum L.), Mol. Breed. 35 (2015) 24.

[38]

L. Meng, H. Li, L. Zhang, J. Wang, QTL IciMapping, integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations, Crop J. 3 (2015) 269–283.

[39]

C.N.J. Stewart, L.E. Via, A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications, Biotechniques 14 (1993) 748–750.

[40]

Y. Hao, A. Liu, Y. Wang, D. Feng, J. Gao, X. Li, S. Liu, H. Wang, Pm23: a new allele of Pm4 located on chromosome 2AL in wheat, Theor. Appl. Genet. 117 (2008) 1205–1212.

[41]

N.K. Singh, K.W. Shepherd, G.B. Cornish, A simplified SDS-PAGE procedure for separating LMW subunits of glutenin, J. Cereal Sci. 14 (1991) 203–208.

[42]

Y. Jiang, Q. Jiang, C. Hao, J. Hou, L. Wang, H. Zhang, S. Zhang, X. Chen, X. Zhang, A yield-associated gene TaCWI, in wheat: its function, selection and evolution in global breeding revealed by haplotype analysis, Theor. Appl. Genet. 128 (2015) 131–143.

[43]

P. Guan, L. Lu, L. Jia, M.R. Kabir, J. Zhang, T. Lan, Y. Zhao, M. Xin, Z. Hu, Y. Yao, Z. Ni, Q. Sun, H. Peng, Global QTL analysis identifies genomic regions on chromosomes 4A and 4B harboring stable loci for yield-related traits across different environments in wheat (Triticum aestivum L.), Front. Plant Sci. 9 (2018) 529.

[44]

S. Li, J. Jia, X. Wei, X. Zhang, L. Li, H. Chen, Y. Fan, H. Sun, X. Zhao, T. Lei, Y. Xu, F. Jiang, H. Wang, L. Li, A intervarietal genetic map and QTL analysis for yield traits in wheat, Mol. Breed. 20 (2007) 167–178.

[45]

Q.H. Wu, Y.X. Chen, S.H. Zhou, L. Fu, J.J. Chen, Y. Xiao, D. Zhang, S.H. Ouyang, X. J. Zhao, Y.U. Cui, D.Y. Zhang, Y. Liang, Z.Z. Wang, J.Z. Xie, J.X. Qin, G.X. Wang, D. L. Li, Y.L. Huang, M.H. Yu, P. Lu, L.L. Wang, L. Wang, H. Wang, C. Dang, J. Li, Y. Zhang, H.R. Peng, C.G. Yuan, M.S. You, Q.X. Sun, J.R. Wang, L.X. Wang, M.C. Luo, J. Han, Z.Y. Liu, T. Yin, High-density genetic linkage map construction and QTL mapping of grain shape and size in the wheat population Yanda 1817 × Beinong 6, PLoS ONE 10 (2015) e0118144.

[46]

Y. Liu, R. Wang, Y. Hu, J. Chen, Genome-wide linkage mapping of quantitative trait loci for late-season physiological and agronomic traits in spring wheat under irrigated conditions, Agronomy 8 (2018) 60.

[47]

H. Zhai, Z. Feng, J. Li, X. Liu, S. Xiao, Z. Ni, Q. Sun, QTL analysis of spike morphological traits and plant height in winter Wheat (Triticum aestivum L.) Using a high-density SNP and SSR-based linkage map, Front. Plant Sci. 7 (2016) 1617.

[48]

Q.H. Muqaddasi, J. Brassac, R. Koppolu, J. Plieske, M.W. Ganal, M.S. Röder, TaAPO-A1, an ortholog of rice ABERRANT PANICLE ORGANIZATION 1, is associated with total spikelet number per spike in elite European hexaploid winter wheat (Triticum aestivum L.) varieties, Sci. Rep. 9 (2019) 13853.

[49]

V. Hyne, M.J. Kearsey, O. Martìnez, W. Gang, J.W. Snape, A partial genome assay for quantitative trait loci in wheat (Triticum aestivum) using different analytical techniques, Theor. Appl. Genet. 89 (1994) 735–741.

[50]

A Kumar, E.E. Mantovani, R. Seetan, A. Soltani, M. Echeverry-Solarte, S. Jain, S Simsek, D. Doehlert, M.S. Alamri, E.M. Elias, S.F. Kianian, M. Mergoum, Dissection of genetic factors underlying wheat kernel shape and size in an Elite × Nonadapted cross using a high density SNP linkage map, Plant Genome 9 (2016) doi: 10.3835/plantgenome2015.09.0081.

[51]

F. Breseghello, M.E. Sorrells, Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars, Genetics 172 (2006) 1165–1177.

[52]

K.G. Campbell, C.J. Bergman, D.G. Gualberto, J.A. Anderson, M.J. Giroux, G. Hareland, R.G. Fulcher, M.E. Sorrells, P.L. Finney, Quantitative trait loci associated with kernel traits in a Soft × Hard wheat cross, Crop Sci. 39 (1999) 1275–1285.

[53]

F. Cui, A. Ding, J. Li, C. Zhao, X. Li, D. Feng, X. Wang, L. Wang, J. Gao, H. Wang, Wheat kernel dimensions: how do they contribute to kernel weight at an individual QTL level? J. Genet. 90 (2011) 409–425.

[54]

X. Wu, R. Cheng, S. Xue, Z. Kong, H. Wan, G. Li, Y. Huang, H. Jia, J. Jia, L. Zhang, Z. Ma, Precise mapping of a quantitative trait locus interval for spike length and grain weight in bread wheat (Triticum aestivum L.), Mol. Breed. 33 (2014) 129–138.

[55]

G. Zhang, Y. Wang, Y. Guo, Y. Zhao, F. Kong, S. Li, Characterization and mapping of QTLs on chromosome 2D for grain size and yield traits using a mutant line induced by EMS in wheat, Crop J. 3 (2015) 135–144.

[56]

H. Liu, H. Li, C. Hao, K.E. Wang, Y. Wang, L. Qin, D. An, T. Li, X. Zhang, TaDA1, a conserved negative regulator of kernel size, has an additive effect with TaGW2 in common wheat (Triticum aestivum L.), Plant Biotechnol. J. 18 (2020) 1330–1342.

[57]

M. Sajjad, X. Ma, S. Habibullah, M. Shoaib, Y. Song, W. Yang, A. Zhang, D. Liu, TaFlo2-A1, an ortholog of rice Flo2, is associated with thousand grain weight in bread wheat (Triticum aestivum L.), BMC Plant Biol. 17 (2017) 164.

[58]

Q. Jiang, J. Hou, C. Hao, L. Wang, H. Ge, Y. Dong, X. Zhang, The wheat (Triticum aestivum) sucrose synthase 2 gene (TaSus2) active in endosperm development is associated with yield traits, Funct. Integr. Genomics 11 (2011) 49–61.

[59]

S. Li, F.R. Ge, M. Xu, X.Y. Zhao, G.Q. Huang, L.Z. Zhou, J.G. Wang, A. Kombrink, S. McCormick, X.S. Zhang, Y. Zhang, Arabidopsis COBRA-LIKE 10, a GPI-anchored protein, mediates directional growth of pollen tubes, Plant J. 74 (2013) 486–497.

[60]

A. Kouidri, U. Baumann, T. Okada, M. Baes, E.J. Tucker, R. Whitford, Wheat TaMs1 is a glycosylphosphatidylinositol-anchored lipid transfer protein necessary for pollen development, BMC Plant Biol. 18 (2018) 332.

[61]

F. Hochholdinger, T.J. Wen, R. Zimmermann, P. Chimot-Marolle, O. da Costa e Silva, W. Bruce, K.R. Lamkey, U. Wienand, P.S. Schnable, The maize (Zea mays L.) roothairless3 gene encodes a putative GPI-anchored, monocot-specific, COBRA-like protein that significantly affects grain yield, Plant J. 54 (2008) 888–898.

The Crop Journal
Pages 1491-1500
Cite this article:
Meng D, Batool A, Xuan Y, et al. Fine mapping and validation of a stable QTL for thousand-kernel weight in wheat (Triticum aestivum L.). The Crop Journal, 2023, 11(5): 1491-1500. https://doi.org/10.1016/j.cj.2023.03.007

289

Views

3

Downloads

2

Crossref

2

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 14 December 2022
Revised: 16 February 2023
Accepted: 09 March 2023
Published: 11 April 2023
© 2023 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return