AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Down-regulation of MeMYB2 leads to anthocyanin accumulation and increases chilling tolerance in cassava (Manihot esculenta Crantz)

Xin Guoa,b,c,dXiaohui YueChenyu LinePingjuan Zhaoc,dBin Wangc,dLiangping Zouc,dShuxia Lib,c,d,fXiaoling Yub,cYinhua ChenePeng ZhanggMing Pengb,f( )Mengbin Ruanb,c,d,f( )
College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
National Key Laboratory for Tropical Crop Breeding, Sanya 572025, Hainan, China
Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan, China
Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, Hainan, China
College of Tropical Crops, Hainan University, Haikou 570228, Hainan, China
Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572025, Hainan, China
National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
Show Author Information

Abstract

Chilling-induced accumulation of reactive oxygen species (ROS) is harmful to plants, which usually produce anthocyanins to scavenge ROS as protection from chilling stress. As a tropical crop, cassava is hypersensitive to chilling, but the biochemical basis of this hypersensitivity remains unclear. We previously generated MeMYB2-RNAi transgenic cassava with increased chilling tolerance. Here we report that MeMYB2-RNAi transgenic cassava accumulated less ROS but more cyanidin-3-O-glucoside than the wild type under early chilling stress. Under this stress, the anthocyanin biosynthesis pathway was more active in MeMYB2-RNAi lines than in the wild type, and several genes involved in the pathway, including MeTT8, were up-regulated by MeMYB2-RNAi in the transgenic cassava. MeMYB2 bound to the MeTT8 promoter and blocked its expression under both normal and chilling conditions, thereby inhibiting anthocyanin accumulation. MeTT8 was shown to bind to the promoter of Dihydroflavonol 4-reductase (MeDFR-2) and increased MeDFR-2 expression. MeMYB2 appears to act as an inhibitor of chilling-induced anthocyanin accumulation during the rapid response of cassava to chilling stress.

References

[1]

G. Bao, C. Zhuo, C. Qian, T. Xiao, Z. Guo, S. Lu, Co-expression of NCED and ALO improves vitamin C level and tolerance to drought and chilling in transgenic tobacco and stylo plants, Plant Biotechnol. J. 14 (2016) 206–214.

[2]

Y. Ding, Y. Shi, S. Yang, Molecular regulation of plant responses to environmental temperatures, Mol. Plant 13 (2020) 544–564.

[3]

M. Zhao, N. Zhang, T. Gao, J. Jin, T. Jing, J. Wang, Y. Wu, X. Wan, W. Schwab, C. Song, Sesquiterpene glucosylation mediated by glucosyltransferase UGT91Q2 is involved in the modulation of cold stress tolerance in tea plants, New Phytol. 226 (2020) 362–372.

[4]

N. Zhang, H.Y. Zhao, J.W. Shi, Y.Y. Wu, J. Jiang, Functional characterization of class I SlHSP17.7 gene responsible for tomato cold-stress tolerance, Plant Sci. 298 (2020) 110568.

[5]

X. Sun, J.T. Matus, D.C.J. Wong, Z. Wang, F. Chai, L. Zhang, T. Fang, L. Zhao, Y. Wang, Y. Han, Q. Wang, S. Li, Z. Liang, H. Xin, The GARP/MYB-related grape transcription factor AQUILO improves cold tolerance and promotes the accumulation of raffinose family oligosaccharides, J. Exp. Bot. 69 (2018) 1749–1764.

[6]

A.R. Devireddy, S.I. Zandalinas, Y. Fichman, R. Mittler, Integration of reactive oxygen species and hormone signaling during abiotic stress, Plant J. 105 (2021) 459–476.

[7]

S. Farahani, A.R. Bandani, H. Alizadeh, S.H. Goldansaz, S. Whyard, M. HermesLima, Differential expression of heat shock proteins and antioxidant enzymes in response to temperature, starvation, and parasitism in the Carob moth larvae, Ectomyelois ceratoniae (Lepidoptera: Pyralidae), PLoS ONE 15 (2020) e0228104.

[8]

J. You, Z. Chan, ROS regulation during abiotic stress responses in crop plants, Front. Plant Sci. 6 (2015) 1092.

[9]

N. Dubey, M. Trivedi, S. Varsani, V. Vyas, M. Farsodia, S.K. Singh, Genome-wide characterization, molecular evolution and expression profiling of the metacaspases in potato (Solanum tuberosum L.), Heliyon 5 (2019) e01162.

[10]

Y. Meyer, C. Belin, V. Delorme-Hinoux, J.P. Reichheld, C. Riondet, Thioredoxin and glutaredoxin systems in plants: molecular mechanisms, crosstalks, and functional significance, Antioxid. Redox Signal. 17 (2012) 1124–1160.

[11]

Z. Li, R. Peng, Y. Tian, H. Han, J. Xu, Q. Yao, Genome-wide identification and analysis of the MYB transcription factor superfamily in Solanum lycopersicum, Plant Cell Physiol. 57 (2016) 1657–1677.

[12]

S.S. Gill, N. Tuteja, Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants, Plant Physiol. Biochem. 48 (2010) 909–930.

[13]

S.J. Sun, S.Q. Guo, X. Yang, Y.M. Bao, H.J. Tang, H. Sun, J. Huang, H.S. Zhang, Functional analysis of a novel Cys2/His2-type zinc finger protein involved in salt tolerance in rice, J. Exp. Bot. 61 (2010) 2807–2818.

[14]

J. Xu, J. Yang, X. Duan, Y. Jiang, P. Zhang, Increased expression of native cytosolic Cu/Zn superoxide dismutase and ascorbate peroxidase improves tolerance to oxidative and chilling stresses in cassava (Manihot esculenta Crantz), BMC Plant Biol. 14 (2014) 14.

[15]

A.H. Naing, T.N. Ai, K.B. Lim, I.J. Lee, C.K. Kim, Overexpression of Rosea1 from snapdragon enhances anthocyanin accumulation and abiotic stress tolerance in transgenic tobacco, Front. Plant Sci. 9 (2018) 1070.

[16]

C.N. Blesso, Dietary anthocyanins and human health, Nutrients 11 (2019) 2107.

[17]

L. Li, Z.J. Ban, X.H. Li, M.Y. Wu, A.L. Wang, Y.Q. Jiang, Y.H. Jiang, Differential expression of anthocyanin biosynthetic genes and transcription factor PcMYB10 in pears (Pyrus communis L.), PLoS ONE 7 (2012) e46070.

[18]

Q. Lou, Y. Liu, Y. Qi, S. Jiao, F. Tian, L. Jiang, Y. Wang, Transcriptome sequencing and metabolite analysis reveals the role of delphinidin metabolism in flower colour in grape hyacinth, J. Exp. Bot. 65 (2014) 3157–3164.

[19]

W. Li, Y. Liu, S. Zeng, G. Xiao, G. Wang, Y. Wang, M. Peng, H. Huang, Gene expression profiling of development and anthocyanin accumulation in kiwifruit (Actinidia chinensis) based on transcriptome sequencing, PLoS ONE 10 (2015) e0136439.

[20]

P.K. Sudheeran, N. Sela, M. Carmeli-Weissberg, R. Ovadia, S. Panda, O. Feygenberg, D. Maurer, M. Oren-Shamir, A. Aharoni, N. Alkan, Induced defense response in red mango fruit against Colletotrichum gloeosporioides, Hortic. Res. 8 (2021) 17.

[21]

Q. Zhang, M. Liu, J. Ruan, Metabolomics analysis reveals the metabolic and functional roles of flavonoids in light-sensitive tea leaves, BMC Plant Biol. 17 (2017) 64.

[22]

S.J. Li, Y.C. Bai, C.L. Li, H.P. Yao, H. Chen, H.X. Zhao, Q. Wu, Anthocyanins accumulate in tartary buckwheat (Fagopyrum tataricum) sprout in response to cold stress, ACTA Physiol. Plant. 37 (2015) 159.

[23]

P. Luo, Y.X. Shen, S.X. Jin, S.S. Huang, X. Cheng, Z. Wang, P.H. Li, J. Zhao, M.Z. Bao, G.G. Ning, Overexpression of Rosa rugosa anthocyanidin reductase enhances tobacco tolerance to abiotic stress through increased ROS scavenging and modulation of ABA signaling, Plant Sci. 245 (2016) 35–49.

[24]

N.U. Ahmed, J.I. Park, H.J. Jung, Y. Hur, I.S. Nou, Anthocyanin biosynthesis for cold and freezing stress tolerance and desirable color in Brassica rapa, Funct. Integr. Genomics 15 (2015) 383–394.

[25]

L. Wang, W. Lu, L. Ran, L. Dou, S. Yao, J. Hu, D. Fan, C. Li, K. Luo, R2R3‐ MYB transcription factor MYB 6 promotes anthocyanin and proanthocyanidin biosynthesis but inhibits secondary cell wall formation in Populus tomentosa, Plant J. 99 (2019) 733–751.

[26]

K. Feng, Z.S. Xu, F. Que, J.X. Liu, F. Wang, A.S. Xiong, An R2R3-MYB transcription factor, OjMYB1, functions in anthocyanin biosynthesis in Oenanthe javanica, Planta 247 (2018) 301–315.

[27]

Y. Xie, P. Chen, Y. Yan, C. Bao, X. Li, L. Wang, X. Shen, H. Li, X. Liu, C. Niu, C. Zhu, N. Fang, Y. Shao, T. Zhao, J. Yu, J. Zhu, L. Xu, S. van Nocker, F. Ma, Q. Guan, An atypical R2R3 MYB transcription factor increases cold hardiness by CBF-dependent and CBF-independent pathways in apple, New Phytol. 218 (2018) 201–218.

[28]

M.B. Ruan, X. Guo, B. Wang, Y.L. Yang, W.Q. Li, X.L. Yu, P. Zhang, M. Peng, Genome-wide characterization and expression analysis enables identification of abiotic stress-responsive MYB transcription factors in cassava (Manihot esculenta), J. Exp. Bot. 68 (2017) 3657–3672.

[29]

R.N. Kaplan-Levy, P.B. Brewer, T. Quon, D.R. Smyth, The trihelix family of transcription factors–light, stress and development, Trends Plant Sci. 17 (2012) 163–171.

[30]

A. Daudi, J.A. O’Brien, Detection of hydrogen peroxide by DAB staining in Arabidopsis leaves, Bio- protocol 2 (2012) e263.

[31]

M.C. Romero-Puertas, M. Perazzolli, E.D. Zago, M. Delledonne, Nitric oxide signalling functions in plant-pathogen interactions, Cell. Microbiol. 6 (2004) 795–803.

[32]

A.R.S. Ross, S.J. Ambrose, A.J. Cutler, J. Allan Feurtado, A.R. Kermode, K. Nelson, R. Zhou, S.R. Abrams, Determination of endogenous and supplied deuterated abscisic acid in plant tissues by high-performance liquid chromatography-electrospray ionization tandem mass spectrometry with multiple reaction monitoring, Anal. Biochem. 329 (2004) 324–333.

[33]

Z. Lei, B.W. Sumner, A. Bhatia, S.J. Sarma, L.W. Sumner, UHPLC-MS analyses of plant flavonoids, Curr. Protoc. Plant Biol. 4 (2019) e20085.

[34]

D. Kim, B. Langmead, S.L. Salzberg, HISAT: a fast spliced aligner with low memory requirements, Nat. Methods 12 (2015) 357–360.

[35]

L. Wang, Z. Feng, X. Wang, X. Wang, X. Zhang, DEGseq: an R package for identifying differentially expressed genes from RNA-seq data, Bioinformatics 26 (2010) 136–138.

[36]

K. Stamm, A. Tomita-Mitchell, S. Bozdag, GSEPD: a Bioconductor package for RNA-seq gene set enrichment and projection display, BMC Bioinformatics 20 (2019) 115.

[37]

D. Bu, H. Luo, P. Huo, Z. Wang, S. Zhang, Z. He, Y. Wu, L. Zhao, J. Liu, J. Guo, S. Fang, W. Cao, L. Yi, Y. Zhao, L. Kong, KOBAS-i: intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis, Nucleic Acids Res. 49 (2021) W317–W325.

[38]

M.B. Ruan, Y.L. Yang, K.M. Li, X. Guo, B. Wang, X.L. Yu, M. Peng, Identification and characterization of drought-responsive CC-type glutaredoxins from cassava cultivars reveals their involvement in ABA signalling, BMC Plant Biol. 18 (2018) 329.

[39]

D. Tuo, P. Zhou, P. Yan, H. Cui, Y. Liu, H. Wang, X. Yang, W. Liao, D. Sun, X. Li, W. Shen, A cassava common mosaic virus vector for virus-induced gene silencing in cassava, Plant Methods 17 (2021) 74.

[40]

L. Zhang, W.Q. Liu, J. Li, Establishing a eukaryotic Pichia pastoris cell-free protein synthesis system, Front. Bioeng. Biotechnol. 8 (2020) 536.

[41]

Y. Zhao, J. Zhou, Luciferase complementation assay for detecting protein interactions, Chinese Bull. Bot. 55 (2020) 7 (in Chinese with English abstract).

[42]

Y.J. Ye, Y.Y. Xiao, Y.C. Han, W. Shan, Z.Q. Fan, Q.G. Xu, J.F. Kuang, W.J. Lu, P. Lakshmanan, J.Y. Chen, Banana fruit VQ motif-containing protein5 represses cold-responsive transcription factor MaWRKY26 involved in the regulation of JA biosynthetic genes, Sci. Rep. 6 (2016) 23632.

[43]

X. Huang, H. Shi, Z. Hu, A. Liu, E. Amombo, L. Chen, J. Fu, ABA is involved in regulation of cold stress response in bermudagrass, Front. Plant Sci. 8 (2017) 1613.

[44]

Y. Hu, Y. Jiang, X. Han, H. Wang, J. Pan, D. Yu, Jasmonate regulates leaf senescence and tolerance to cold stress: crosstalk with other phytohormones, J. Exp. Bot. 68 (2017) 1361–1369.

[45]

Y. Hu, L. Jiang, F. Wang, D. Yu, Jasmonate regulates the inducer of cbf expression-C-repeat binding factor/DRE binding factor1 cascade and freezing tolerance in Arabidopsis, Plant Cell 25 (2013) 2907–2924.

[46]

F. Wang, Z. Guo, H. Li, M. Wang, E. Onac, J. Zhou, X. Xia, K. Shi, J. Yu, Y. Zhou, Phytochrome A and B function antagonistically to regulate cold tolerance via abscisic acid-dependent jasmonate signaling, Plant Physiol. 170 (2016) 459–471.

[47]

J. Seo, G. Yi, J.G. Lee, J.H. Choi, E.J. Lee, Seed browning in pepper (Capsicum annuum L.) fruit during cold storage is inhibited by methyl jasmonate or induced by methyl salicylate, Postharvest Biol. Technol. 166 (2020) 111210.

[48]

F.K. Choudhury, R.M. Rivero, E. Blumwald, R. Mittler, Reactive oxygen species, abiotic stress and stress combination, Plant J. 90 (2017) 856–867.

[49]

Z. Cheng, N. Lei, S. Li, W. Liao, J. Shen, M. Peng, The regulatory effects of MeTCP4 on cold stress tolerance in Arabidopsis thaliana: A transcriptome analysis, Plant Physiol. Biochem. 138 (2019) 9–16.

[50]

Z. Xu, K. Mahmood, S.J. Rothstein, ROS induces anthocyanin production via late biosynthetic genes and anthocyanin deficiency confers the hypersensitivity to ros-generating stresses in Arabidopsis, Plant Cell Physiol. 58 (2017) 1364–1377.

[51]

M. Landi, M. Tattini, K.S. Gould, Multiple functional roles of anthocyanins in plant-environment interactions, Environ. Exp. Bot. 119 (2015) 4–17.

[52]

G. Lagana, D. Barreca, A. Smeriglio, M.P. Germano, V. D’Angelo, A. Calderaro, E. Bellocco, D. Trombetta, Evaluation of anthocyanin profile, antioxidant, cytoprotective, and anti-angiogenic properties of Callistemon citrinus flowers, Plants (Basel) 9 (2020) 1045.

[53]

N. Nesi, C. Jond, I. Debeaujon, M. Caboche, L. Lepiniec, The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed, Plant Cell 13 (2001) 2099–2114.

[54]

F. Mehrtens, H. Kranz, P. Bednarek, B. Weisshaar, The Arabidopsis transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynthesis, Plant Physiol. 138 (2005) 1083–1096.

[55]

J.S. Park, J.B. Kim, K.J. Cho, C.I. Cheon, M.K. Sung, M.G. Choung, K.H. Roh, Arabidopsis R2R3-MYB transcription factor AtMYB60 functions as a transcriptional repressor of anthocyanin biosynthesis in lettuce (Lactuca sativa), Plant Cell Rep. 27 (2008) 985–994.

[56]

A. Petridis, S. Doll, L. Nichelmann, W. Bilger, H.P. Mock, Arabidopsis thaliana G2-LIKE FLAVONOID REGULATOR and BRASSINOSTEROID ENHANCED EXPRESSION1 are low-temperature regulators of flavonoid accumulation, New Phytol. 211 (2016) 912–925.

[57]

N. Nesi, I, Debeaujon, C. Jond, G. Pelletier, M. Caboche, L. Lepiniec, The TT8 gene encodes a asic helix-loop-helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques, Plant Cell 12 (2000) 16.

[58]

W. Xu, D. Grain, J. Le Gourrierec, E. Harscoet, A. Berger, V. Jauvion, A. Scagnelli, N. Berger, P. Bidzinski, Z. Kelemen, F. Salsac, A. Baudry, J.M. Routaboul, L. Lepiniec, C. Dubos, Regulation of flavonoid biosynthesis involves an unexpected complex transcriptional regulation of TT8 expression, in Arabidopsis, New Phytol. 198 (2013) 59–70.

[59]

W. Xu, D. Grain, S. Bobet, J. Le Gourrierec, J. Thevenin, Z. Kelemen, L. Lepiniec, C. Dubos, Complexity and robustness of the flavonoid transcriptional regulatory network revealed by comprehensive analyses of MYB-bHLH-WDR complexes and their targets in Arabidopsis seed, New Phytol. 202 (2014) 132–144.

[60]

Y. Xie, H. Tan, Z. Ma, J. Huang, DELLA proteins promote anthocyanin biosynthesis via sequestering MYBL2 and JAZ suppressors of the MYB/bHLH/WD40 complex in Arabidopsis thaliana, Mol. Plant 9 (2016) 711–721.

The Crop Journal
Pages 1181-1191
Cite this article:
Guo X, Yu X, Lin C, et al. Down-regulation of MeMYB2 leads to anthocyanin accumulation and increases chilling tolerance in cassava (Manihot esculenta Crantz). The Crop Journal, 2023, 11(4): 1181-1191. https://doi.org/10.1016/j.cj.2023.03.009

209

Views

3

Downloads

2

Crossref

2

Web of Science

1

Scopus

1

CSCD

Altmetrics

Received: 22 April 2022
Revised: 25 March 2023
Accepted: 28 March 2023
Published: 26 April 2023
© 2023 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return