AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Maize cryptochromes 1a1 and 1a2 promote seedling photomorphogenesis and shade resistance in Zea mays and Arabidopsis

Xiaocong Fana,1Shizhan Chena,1Wenjing WuaMeifang SongbGuanghua SunaShuaitao YaoaWeimin ZhanaLei YancHongdan LidYanpei ZhangaLijian WangaKang ZhangeLiangliang Jianga,f( )Jianping Yanga( )Qinghua Yanga( )
College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, Henan, China
Institute of Radiation Technology, Beijing Academy of Science and Technology, Beijing 100875, China
Institute of Crops, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, Jiangxi, China
Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Genovo Biotechnology Co., Ltd., Tianjin 301700, China
Henan Institute of Science and Technology, Xinxiang 453003, Henan, China

1 These authors contributed equally to this article.

Show Author Information

Abstract

Maize growth and development are regulated by light quality, intensity and photoperiod. Cryptochromes are blue/ultraviolet-A light receptors involved in stem elongation, shade avoidance, and photoperiodic flowering. To investigate the function of cryptochrome 1 (CRY1) in maize, where it is encoded by ZmCRY1, we obtained two ZmCRY1a genes (ZmCRY1a1 and ZmCRY1a2), both of which share the highest similarity with other gramineous plants, in particular rice CRY1a by phylogenetic analysis. In Arabidopsis, overexpression of ZmCRY1a genes promoted seedling de-etiolation under blue and white light, resulting in dwarfing of mature plants. In seedlings of the maize inbred line Zong 31 (ZmCRY1a-OE), overexpression of ZmCRY1a genes caused a reduction in the mesocotyl and first leaf sheath lengths due to down-regulation of genes influencing cell elongation. In mature transgenic maize plants, plant height, ear height, and internode length decreased in response to overexpression of ZmCRY1a genes. Expression of ZmCRY1a were insensitive to low blue light (LBL)-induced shade avoidance syndrome (SAS) in Arabidopsis and maize. This prompted us to investigate the regulatory role of the gibberellin and auxin metabolic pathways in the response of ZmCRY1a genes to LBL treatment. We confirmed a link between ZmCRY1a expression and hormonal influence on the growth and development of maize under LBL-induced SAS. These results reveal that ZmCRY1a has a relatively conservative function in regulating maize photomorphogenesis and may guide new strategies for breeding high density-tolerant maize cultivars.

References

[1]

T. Mockler, H. Yang, X. Yu, D. Parikh, Y.C. Cheng, S. Dolan, C. Lin, Regulation of photoperiodic flowering by Arabidopsis photoreceptors, Proc. Natl. Acad. Sci. U. S. A. 100 (2003) 2140–2145.

[2]

H. Smith, Light quality, photoperception, and plant strategy, Annu. Rev. Plant Phys. 33 (1982) 481–518.

[3]

C.L. Ballare, R. Pierik, The shade-avoidance syndrome: multiple signals and ecological consequences, Plant Cell Environ. 40 (2017) 2530–2543.

[4]

D.P. Fraser, S. Hayes, K.A. Franklin, Photoreceptor crosstalk in shade avoidance, Curr. Opin. Plant Biol. 33 (2016) 1–7.

[5]

C.L. Ballare, Light regulation of plant defense, Annu. Rev. Plant Phys. 65 (2014) 335–363.

[6]

K.A. Franklin, Shade avoidance, New Phytol. 179 (2008) 930–944.

[7]

J.J. Casal, Photoreceptor signaling networks in plant responses to shade, Annu. Rev. Plant Phys. 64 (2013) 403–427.

[8]

A.S. Fiorucci, C. Fankhauser, Plant strategies for enhancing access to sunlight, Curr Biol. 27 (2017) R931-R940.

[9]

C.L. Ballare, Keeping up with the neighbours: phytochrome sensing and other signalling mechanisms, Trends Plant Sci. 4 (1999) 97–102.

[10]

S.A. Finlayson, S.R. Krishnareddy, T.H. Kebrom, J.J. Casal, Phytochrome regulation of branching in Arabidopsis, Plant Physiol. 152 (2010) 1914–1927.

[11]

B. Al-Sady, W.M. Ni, S. Kircher, E. Schafer, P.H. Quail, Photoactivated phytochrome induces rapid PIF3 phosphorylation prior to proteasorne-mediated degradation, Mol. Cell 23 (2006) 439–446.

[12]

Y. Shen, R. Khanna, C.M. Carle, P.H. Quail, Phytochrome induces rapid PIF5 phosphorylation and degradation in response to red-light activation, Plant Physiol. 145 (2007) 1043–1051.

[13]

Y. Liu, F. Jafari, H. Wang, Integration of light and hormone signaling pathways in the regulation of plant shade avoidance syndrome, aBIOTECH 2 (2021) 131–145.

[14]

L. Li, K. Ljung, G. Breton, R.J. Schmitz, J. Pruneda-Paz, C. Cowing-Zitron, B.J. Cole, L.J. Ivans, U.V. Pedmale, H.S. Jung, J.R. Ecker, S.A. Kay, J. Chory, Linking photoreceptor excitation to changes in plant architecture, Gene Dev. 26 (2012) 785–790.

[15]

P. Leivar, E. Monte, B. Al-Sady, C. Carle, A. Storer, J.M. Alonso, J.R. Ecker, P.H. Quail, The Arabidopsis phytochrome-interacting factor PIF7, together with PIF3 and PIF4, regulates responses to prolonged red light by modulating phyB levels, Plant Cell 20 (2008) 337–352.

[16]

X. Huang, Q. Zhang, Y.P. Jiang, C.W. Yang, Q.Y. Wang, L. Li, Shade-induced nuclear localization of PIF7 is regulated by phosphorylation and 14-3-3 proteins in Arabidopsis, Elife 7 (2018) e31636.

[17]

B. Song, H.L. Zhao, K.M. Dong, M.L. Wang, S.J. Wu, S. Li, Y.X. Wang, P.R. Chen, L.R. Jiang, Y. Tao, Phytochrome A inhibits shade avoidance responses under strong shade through repressing the brassinosteroid pathway in Arabidopsis, Plant J. 104 (2020) 1520–1534.

[18]

M.M. Keller, Y. Jaillais, U.V. Pedmale, J.E. Moreno, J. Chory, C.L. Ballare, Cryptochrome 1 and phytochrome B control shade-avoidance responses in Arabidopsis via partially independent hormonal cascades, Plant J. 67 (2011) 195–207.

[19]

H.T. Liu, B. Liu, C.X. Zhao, M. Pepper, C.T. Lin, The action mechanisms of plant cryptochromes, Trends Plant Sci. 16 (2011) 684–691.

[20]

M. Ahmad, A.R. Cashmore, Hy4 Gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor, Nature 366 (1993) 162–166.

[21]

Q. Wang, C.T. Lin, Mechanisms of Cryptochrome-Mediated Photoresponses in Plants, Annu. Rev. Plant Phys. 71 (2020) 103–129.

[22]

H.W. Guo, W.Y. Yang, T.C. Mockler, C.T. Lin, Regulations of flowering time by Arabidopsis photoreceptors, Science 279 (1998) 1360–1363.

[23]

M. Ahmad, A.R. Cashmore, Seeing blue: the discovery of cryptochrome, Plant Mol. Biol. 30 (1996) 851–861.

[24]

D.J. Bagnall, R.W. King, R.P. Hangarter, Blue-light promotion of flowering is absent in hy4 mutants of Arabidopsis, Planta 200 (1996) 278–280.

[25]

M. Ahmad, J.A. Jarillo, A.R. Cashmore, Chimeric proteins between cry1 and cry2 Arabidopsis blue light photoreceptors indicate overlapping functions and varying protein stability, Plant Cell 10 (1998) 197–207.

[26]

V. Exner, C. Alexandre, G. Rosenfeldt, P. Alfarano, M. Nater, A. Caflisch, W. Gruissem, A. Batschauer, L. Hennig, A gain-of-function mutation of Arabidopsis cryptochrome1 promotes flowering, Plant Physiol. 154 (2010) 1633–1645.

[27]

H. Guo, H. Duong, N. Ma, C. Lin, The Arabidopsis blue light receptor cryptochrome 2 is a nuclear protein regulated by a blue light-dependent post-transcriptional mechanism, Plant J. 19 (1999) 279–287.

[28]

H. Liu, X. Yu, K. Li, J. Klejnot, H. Yang, D. Lisiero, C. Lin, Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis, Science 322 (2008) 1535–1539.

[29]

T.C. Mockler, H.W. Guo, H.Y. Yang, H. Duong, C.T. Lin, Antagonistic actions of Arabidopsis cryptochromes and phytochrome B in the regulation of floral induction, Development 126 (1999) 2073-2082.

[30]

C. Lin, H. Yang, H. Guo, T. Mockler, J. Chen, A.R. Cashmore, Enhancement of blue-light sensitivity of Arabidopsis seedlings by a blue light receptor cryptochrome 2, Proc. Natl. Acad. Sci. U. S. A. 95 (1998) 2686–2690.

[31]

D. Shalitin, H. Yang, T.C. Mockler, M. Maymon, H. Guo, G.C. Whitelam, C. Lin, Regulation of Arabidopsis cryptochrome 2 by blue-light-dependent phosphorylation, Nature 417 (2002) 763–767.

[32]

G. Wu, E.P. Spalding, Separate functions for nuclear and cytoplasmic cryptochrome 1 during photomorphogenesis of Arabidopsis seedlings, Proc. Natl. Acad. Sci. U. S. A. 104 (2007) 18813–18818.

[33]

X. Yu, J. Klejnot, X. Zhao, D. Shalitin, M. Maymon, H. Yang, J. Lee, X. Liu, J. Lopez, C. Lin, Arabidopsis cryptochrome 2 completes its posttranslational life cycle in the nucleus, Plant Cell 19 (2007) 3146–3156.

[34]

N. Matsumoto, T. Hirano, T. Iwasaki, N. Yamamoto, Functional analysis and intracellular localization of rice cryptochromes, Plant Physiol. 133 (2003) 1494–1503.

[35]

Y.C. Zhang, S.F. Gong, Q.H. Li, Y. Sang, H.Q. Yang, Functional and signaling mechanism analysis of rice CRYPTOCHROME 1, Plant J. 46 (2006) 971–983.

[36]

F. Hirose, T. Shinomura, T. Tanabata, H. Shimada, M. Takano, Involvement of rice cryptochromes in de-etiolation responses and flowering, Plant Cell Physiol. 47 (2006) 915–925.

[37]

J.M. Barrero, A.B. Downie, Q. Xu, F. Gubler, A role for barley CRYPTOCHROME1 in light regulation of grain dormancy and germination, Plant Cell 26 (2014) 1094–1104.

[38]

J.L. Weller, G. Perrotta, M.E.L. Schreuder, A. van Tuinen, M. Koornneef, G. Giuliano, R.E. Kendrick, Genetic dissection of blue-light sensing in tomato using mutants deficient in cryptochrome 1 and phytochromes A, B1 and B2, Plant J. 25 (2001) 427–440.

[39]

C.C. Liu, G.J. Ahammed, G.T. Wang, C.J. Xu, K.S. Chen, Y.H. Zhou, J.Q. Yu, Tomato CRY1a plays a critical role in the regulation of phytohormone homeostasis, plant development, and carotenoid metabolism in fruits, Plant Cell Environ. 41 (2018) 354–366.

[40]

L. Giliberto, G. Perrotta, P. Pallara, J.L. Weller, P.D. Fraser, P.M. Bramley, A. Fiore, M. Tavazza, G. Giuliano, Manipulation of the blue light photoreceptor cryptochrome 2 in tomato affects vegetative development, flowering time, and fruit antioxidant content, Plant Physiol. 137 (2005) 199–208.

[41]

U.V. Pedmale, S.S.C. Huang, M. Zander, B.J. Cole, J. Hetzel, K. Ljung, P.A.B. Reis, P. Sridevi, K. Nito, J.R. Nery, J.R. Ecker, J. Chory, Cryptochromes interact directly with PIFs to control plant growth in limiting blue light, Cell 164 (2016) 233–245.

[42]

M. de Wit, D.H. Keuskamp, F.J. Bongers, P. Hornitschek, C.M.M. Gommers, E. Reinen, C. Martinez-Ceron, C. Fankhauser, R. Pierik, Integration of phytochrome and cryptochrome signals determines plant growth during competition for light, Curr. Biol. 26 (2016) 3320–3326.

[43]

F. Xu, S. He, J. Zhang, Z. Mao, W. Wang, T. Li, J. Hua, S. Du, P. Xu, L. Li, H. Lian, H.Q. Yang, Photoactivated CRY1 and phyB interact directly with AUX/IAA proteins to inhibit Auxin signaling in Arabidopsis, Mol Plant. 11 (2018) 523–541.

[44]

B. Yan, Z. Yang, G. He, Y. Jing, H. Dong, L. Ju, Y. Zhang, Y. Zhu, Y. Zhou, J. Sun, The blue light receptor CRY1 interacts with GID1 and DELLA proteins to repress gibberellin signaling and plant growth, Plant Commun. 2 (2021) 100245.

[45]

X. Zhao, X. Yu, E. Foo, G.M. Symons, J. Lopez, K.T. Bendehakkalu, J. Xiang, J.L. Weller, X. Liu, J.B. Reid, C. Lin, A study of gibberellin homeostasis and cryptochrome-mediated blue light inhibition of hypocotyl elongation, Plant Physiol. 145 (2007) 106–118.

[46]

K.M. Folta, M.A. Pontin, G. Karlin-Neumann, R. Bottini, E.P. Spalding, Genomic and physiological studies of early cryptochrome 1 action demonstrate roles for auxin and gibberellin in the control of hypocotyl growth by blue light, Plant J. 36 (2003) 203–214.

[47]

X.G. Lyu, Q.C. Cheng, C. Qin, Y.H. Li, X.Y. Xu, R.H. Ji, R.L. Mu, H.Y. Li, T. Zhao, J. Liu, Y.G. Zhou, H.Y. Li, G.D. Yang, Q.S. Chen, B. Liu, GmCRY1s modulate gibberellin metabolism to regulate soybean shade avoidance in response to reduced blue light, Mol Plant. 14 (2021) 298–314.

[48]

J. Gao, X. Wang, M. Zhang, M. Bian, W. Deng, Z. Zuo, Z. Yang, D. Zhong, C. Lin, Trp triad-dependent rapid photoreduction is not required for the function of Arabidopsis CRY1, Proc. Natl. Acad. Sci. U. S. A. 112 (2015) 9135–9140.

[49]

X. Zheng, S.W. Wu, H.Q. Zhai, P. Zhou, M.F. Song, L. Su, Y.L. Xi, Z.Y. Li, Y.F. Cai, F.H. Meng, L. Yang, H.Y. Wang, J.P. Yang, Arabidopsis Phytochrome B promotes SPA1 nuclear accumulation to repress photomorphogenesis under Far-Red light, Plant Cell. 25 (2013) 115–133.

[50]

J.P. Yang, R.C. Lin, S. James, U. Hoecker, B.L. Liu, L. Xu, X.W. Deng, H.Y. Wang, Light regulates COP1-mediated degradation of HFR1, a transcription factor essential for light signaling in Arabidopsis, Plant Cell 17 (2005) 804–821.

[51]

M. Liu, Z. Ma, T. Zheng, W. Sun, Y. Zhang, W. Jin, J. Zhan, Y. Cai, Y. Tang, Q. Wu, Z. Tang, T. Bu, C. Li, H. Chen, Insights into the correlation between physiological changes in and seed development of tartary buckwheat (Fagopyrum tataricum Gaertn.), BMC Genomics 19 (2018) 648.

[52]

M.I. Love, W. Huber, S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol. 15 (2014) 550.

[53]

M.D. Young, M.J. Wakefield, G.K. Smyth, A. Oshlack, Gene ontology analysis for RNA-seq: accounting for selection bias, Genome Biol. 11 (2010) R14.

[54]

S.B. Chen, P. Songkumarn, J.L. Liu, G.L. Wang, A Versatile zero background T-Vector system for gene cloning and functional genomics, Plant Physiol. 150 (2009) 1111–1121.

[55]

K.B. Li, ClustalW-MPI: ClustalW analysis using distributed and parallel computing, Bioinformatics 19 (2003) 1585–1586.

[56]

S. Kumar, G. Stecher, K. Tamura, MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets, Mol. Biol. Evol. 33 (2016) 1870–1874.

[57]

S.J. Clough, A.F. Bent, Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana, Plant J. 16 (1998) 735–743.

[58]

M. Kang, K. Lee, T. Finley, H. Chappell, V. Veena, K. Wang, An improved Agrobacterium-mediated transformation and genome-editing method for maize inbred B104 using a ternary vector system and immature embryos, Front. Plant Sci. 13 (2022) 860971.

[59]

Y. Lu, F. Yan, W. Guo, H. Zheng, L. Lin, J. Peng, M.J. Adams, J. Chen, Garlic virus X 11-kDa protein granules move within the cytoplasm and traffic a host protein normally found in the nucleolus, Mol. Plant Pathol. 12 (2011) 666–676.

[60]

F. Yan, Y. Lu, L. Lin, H. Zheng, J. Chen, The ability of PVX p25 to form RL structures in plant cells is necessary for its function in movement, but not for its suppression of RNA silencing, PLoS ONE 7 (2012) e43242.

[61]

C. Fankhauser, J.J. Casal, Phenotypic characterization of a photomorphogenic mutant, Plant J. 39 (2004) 747–760.

[62]

S.N. Lu, J.Y. Wang, F. Chitsaz, M.K. Derbyshire, R.C. Geer, N.R. Gonzales, M. Gwadz, D.I. Hurwitz, G.H. Marchler, J.S. Song, N. Thanki, R.A. Yamashita, M.Z. Yang, D.C. Zhang, C.J. Zheng, C.J. Lanczycki, A. Marchler-Bauer, CDD/SPARCLE: the conserved domain database in 2020, Nucleic Acids Res. 48 (2020) D265-D268.

[63]

D.B. Ma, X. Li, Y.X. Guo, J.F. Chu, S. Fang, C.Y. Yan, J.P. Noel, H.T. Liu, Cryptochrome 1 interacts with PIF4 to regulate high temperature-mediated hypocotyl elongation in response to blue light, Proc. Natl. Acad. Sci. U. S. A. 113 (2016) 224–229.

[65]

D.H. Keuskamp, R. Sasidharan, I. Vos, A.J. Peeters, L.A. Voesenek, R. Pierik, Blue-light-mediated shade avoidance requires combined auxin and brassinosteroid action in Arabidopsis seedlings, Plant J. 67 (2011) 208–217.

[66]

X. Yu, H. Liu, J. Klejnot, C. Lin, The cryptochrome blue light receptors, Arabidopsis Book 8 (2010) e0135.

[67]

J.D. Platten, E. Foo, F. Foucher, V. Hecht, J.B. Reid, J.L. Weller, The cryptochrome gene family in pea includes two differentially expressed CRY2 genes, Plant Mol Biol. 59 (2005) 683–696.

[68]

J.W. Walley, R.C. Sartor, Z. Shen, R.J. Schmitz, K.J. Wu, M.A. Urich, J.R. Nery, L.G. Smith, J.C. Schnable, J.R. Ecker, S.P. Briggs, Integration of omic networks in a developmental atlas of maize, Science 353 (2016) 814–818.

[69]

S. Liu, L. Zhang, L. Gao, Z. Chen, Y. Bie, Q. Zhao, S. Zhang, X. Hu, Q. Liu, X. Wang, Q. Wang, Differential photoregulation of the nuclear and cytoplasmic CRY1 in Arabidopsis, New Phytol. 234 (2022) 1332–1346.

[70]

T. Zhou, L. Meng, Y. Ma, Q. Liu, Y. Zhang, Z. Yang, D. Yang, M. Bian, Overexpression of sweet sorghum cryptochrome 1a confers hypersensitivity to blue light, abscisic acid and salinity in Arabidopsis, Plant Cell Rep. 37 (2018) 251–264.

[71]

C. Lin, M. Ahmad, D. Gordon, A.R. Cashmore, Expression of an Arabidopsis cryptochrome gene in transgenic tobacco results in hypersensitivity to blue, UV-A, and green light, Proc. Natl. Acad. Sci. U. S. A. 92 (1995) 8423–8427.

[72]

M. Chatterjee, P. Sharma, J.P. Khurana, Cryptochrome 1 from Brassica napus is up-regulated by blue light and controls hypocotyl/stem growth and anthocyanin accumulation, Plant Physiol. 141 (2006) 61–74.

[73]

L. Ninu, M. Ahmad, C. Miarelli, A.R. Cashmore, G. Giuliano, Cryptochrome 1 controls tomato development in response to blue light, Plant J. 18 (1999) 551–556.

[74]

H. Jiang, Z. Shui, L. Xu, Y. Yang, Y. Li, X. Yuan, J. Shang, M.A. Asghar, X. Wu, L. Yu, C. Liu, W. Yang, X. Sun, J. Du, Gibberellins modulate shade-induced soybean hypocotyl elongation downstream of the mutual promotion of auxin and brassinosteroids, Plant Physiol. Biochem. 150 (2020) 209–221.

[75]

D.N. Duvick, The contribution of breeding to yield advances in maize (Zea mays L.), Adv. Agron. 86 (2005) 83–145.

[76]

M. Gonzalo, J.B. Holland, T.J. Vyn, L.M. McIntyre, Direct mapping of density response in a population of B73 x Mo17 recombinant inbred lines of maize (Zea Mays L.), Heredity 104 (2010) 583–599.

[77]

P. Hedden, The genes of the green revolution, Trends Genet. 19 (2003) 5–9.

[78]

J.F. Weng, C.X. Xie, Z.F. Hao, J.J. Wang, C.L. Liu, M.S. Li, D.G. Zhang, L. Bai, S.H. Zhang, X.H. Li, Genome-wide association study identifies candidate genes that affect plant height in Chinese elite maize (Zea mays L.) inbred lines, PLoS ONE 6 (2011) e29229.

[79]

M.J. Sheehan, L.M. Kennedy, D.E. Costich, T.P. Brutnell, Subfunctionalization of PhyB1 and PhyB2 in the control of seedling and mature plant traits in maize, Plant J. 49 (2007) 338–353.

[80]

Q.Q. Li, G.X. Wu, Y.P. Zhao, B.B. Wang, B.B. Zhao, D.X. Kong, H.B. Wei, C.X. Chen, H.Y. Wang, CRISPR/Cas9-mediated knockout and overexpression studies reveal a role of maize phytochrome C in regulating flowering time and plant height, Plant Biotechnol. J. 18 (2020) 2520–2532.

[81]

Y.P. Zhao, B.B. Zhao, G.X. Wu, X.J. Ma, B.B. Wang, D.X. Kong, H.B. Wei, H.Y. Wang, Creation of two hyperactive variants of phytochrome B1 for attenuating shade avoidance syndrome in maize, J. Integr. Agric. 21 (2022) 1253–1265.

[82]

G.X. Wu, Y.P. Zhao, R.X. Shen, B.B. Wang, Y.R. Xie, X.J. Ma, Z.G. Zheng, H.Y. Wang, Characterization of maize phytochrome-interacting factors in light signaling and photomorphogenesis, Plant Physiol. 181 (2019) 789–803.

[83]

J. Peng, D.E. Richards, N.M. Hartley, G.P. Murphy, K.M. Devos, J.E. Flintham, J. Beales, L.J. Fish, A.J. Worland, F. Pelica, D. Sudhakar, P. Christou, J.W. Snape, M.D. Gale, N.P. Harberd, 'Green revolution' genes encode mutant gibberellin response modulators, Nature 400 (1999) 256–261.

[84]

K. Hirano, R.L. Ordonio, M. Matsuoka, Engineering the lodging resistance mechanism of post-Green Revolution rice to meet future demands, Proc. Jpn. Acad. Ser. B-Phys. Biol. Sci. 93 (2017) 220–233.

[85]

A. Sasaki, M. Ashikari, M. Ueguchi-Tanaka, H. Itoh, A. Nishimura, D. Swapan, K. Ishiyama, T. Saito, M. Kobayashi, G.S. Khush, H. Kitano, M. Matsuoka, Green revolution: a mutant gibberellin-synthesis gene in rice - new insight into the rice variant that helped to avert famine over thirty years ago, Nature 416 (2002) 701–702.

The Crop Journal
Pages 1192-1203
Cite this article:
Fan X, Chen S, Wu W, et al. Maize cryptochromes 1a1 and 1a2 promote seedling photomorphogenesis and shade resistance in Zea mays and Arabidopsis. The Crop Journal, 2023, 11(4): 1192-1203. https://doi.org/10.1016/j.cj.2023.03.011

306

Views

1

Downloads

6

Crossref

4

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 18 September 2022
Revised: 23 March 2023
Accepted: 28 March 2023
Published: 26 April 2023
© 2023 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return