AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

The photosensory function of Zmphot1 differs from that of Atphot1 due to the C-terminus of Zmphot1 during phototropic response

Jindong Zhu1Fangyuan Zhou1Yuxi Wang1Yuping LiangQingping ZhaoYuanji HanXiang Zhao( )
State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, Henan, China

1 These authors contributed equally to this work.

Show Author Information

Abstract

The role of phot1 in triggering hypocotyl phototropism and optimizing growth orientation has been well-characterized in Arabidopsis, whereas the role of Zmphot1 in maize remains largely unclear. Here, we show that Zmphot1 is involved in blue light-induced phototropism. Compared with Atphot1, Zmphot1 exhibited a weaker phototropic response to very low-fluence rates of blue light (< 0.01 μmol m-2 s-1), but stronger phototropic response to high-fluence rates of blue light (> 10 μmol m-2 s-1) than Atphot1. Notably, blue light exposure induced Zmphot1-green fluorescent protein (GFP), but not Atphot1-GFP, to form the aggregates in the cytoplasm of Nicotiana benthamiana cells. Furthermore, by generating the chimeric phot1 proteins, we found that the serine-threonine kinase (STK) domain at the C-terminus is responsible for a more volatile membrane association of Zmphot1. Consistently, the chimeric phot1 protein fusing the STK domain of Zmphot1 with other domains of Atphot1 responded similarly as Zmphot1 to both low and high fluence rates of blue light. Interestingly, although both Zmphot1 and Atphot1 interact with AtNPH3, Zmphot1 induced weaker dephosphorylation of NON-PHOTOTROPIC HYPOCOTYL 3 (NPH3) than Atphot1. Together, our findings indicate that Zmphot1 and Atphot1 exhibit different photosensory function during phototropic response and that the STK domain may play a key role in determining their properties.

References

[1]

T. Sakai, T. Kagawa, M. Kasahara, T.E. Swartz, J.M. Christie, W.R. Briggs, M. Wada, K. Okada, Arabidopsis nph1 and npl1: blue light receptors that mediate both phototropism and chloroplast relocation, Proc. Natl. Acad. Sci. U. S. A. 98 (2001) 6969–6974.

[2]

X. Zhao, Y.L. Wang, X.R. Qiao, J. Wang, L.D. Wang, C.S. Xu, X. Zhang, Phototropins function in high-intensity blue light-induced hypocotyl phototropism in Arabidopsis by altering cytosolic calcium, Plant Physiol. 162 (2013) 1539–1551.

[3]

W.R. Briggs, Phototropism: some history, some puzzles, and a look ahead, Plant Physiol. 164 (2014) 13–23.

[4]

E. Huala, P.W. Oeller, E. Liscum, I.S. Han, E. Larsen, W.R. Briggs, Arabidopsis NPH1: a protein kinase with a putative redox-sensing domain, Science 278 (1997) 2120–2123.

[5]

T. Kagawa, T. Sakai, N. Suetsugu, K. Oikawa, S. Ishiguro, T. Kato, S. Tabata, K. Okada, M. Wada, Arabidopsis NPL1: a phototropin homolog controlling the chloroplast high-light avoidance response, Science 291 (2001) 2138–2141.

[6]

P. Lariguet, I. Schepens, D. Hodgson, U.V. Pedmale, M. Trevisan, C. Kami, M. de Carbonnel, J.M. Alonso, J.R. Ecker, E. Liscum, C. Fankhauser, Phytochrome kinase substrate 1 is a phototropin 1 binding protein required for phototropism, Proc. Natl. Acad. Sci. U. S. A. 103 (2006) 10134–10139.

[7]

J.M. Christie, L. Blackwood, J. Petersen, S. Sullivan, Plant flavoprotein photoreceptors, Plant Cell Physiol. 56 (2015) 401–413.

[8]

X. Zhao, Q. Zhao, C. Xu, J. Wang, J. Zhu, B. Shang, X. Zhang, Phot2-regulated relocation of NPH3 mediates phototropic response to high-intensity blue light in Arabidopsis thaliana, J. Integr. Plant Biol. 60 (2018) 562–577.

[9]

T. Kinoshita, M. Doi, N. Suetsugu, T. Kagawa, M. Wada, K.I. Shimazaki, Phot1 and phot2 mediate blue light regulation of stomatal opening, Nature 414 (2001) 656–660.

[10]

M. de Carbonnel, P. Davis, M.R. Roelfsema, S. Inoue, I. Schepens, P. Lariguet, M. Geisler, K. Shimazaki, R. Hangarter, C. Fankhauser, The Arabidopsis PHYTOCHROME KINASE SUBSTRATE2 protein is a phototropin signaling element that regulates leaf flattening and leaf positioning, Plant Physiol. 152 (2010) 1391–1405.

[11]

S.I. Inoue, T. Kinoshita, A. Takemiya, M. Doi, K.I. Shimazaki, Leaf positioning of Arabidopsis in response to blue light, Mol. Plant 1 (2008) 15–26.

[12]

Q.P. Zhao, X.N. Wang, N.N. Li, Z.Y. Zhu, S.C. Mu, X. Zhao, X. Zhang, Functional analysis of MAX2 in phototropins-mediated cotyledon flattening in Arabidopsis, Front. Plant Sci. 9 (2018) 1507.

[13]

Y. Aihara, R. Tabata, T. Suzuki, K. Shimazaki, A. Nagatani, Molecular basis of the functional specificities of phototropin 1 and 2, Plant J. 56 (2008) 364–375.

[14]

Y. Aihara, T. Yamamoto, K. Okajima, K. Yamamoto, T. Suzuki, S. Tokutomi, K. Tanaka, A. Nagatani, Mutations in N-terminal flanking region of blue light-sensing light-oxygen and voltage 2 (LOV2) domain disrupt its repressive activity on kinase domain in the Chlamy-domonas phototropin, J. Biol. Chem. 287 (2012) 9901–9909.

[15]

S.G. Kong, T. Suzuki, K. Tamura, N. Mochizuki, I. Hara-Nishimura, A. Nagatani, Blue light-induced association of phototropin 2 with the Golgi apparatus, Plant J. 45 (2006) 994–1005.

[16]

Y.L. Wan, W. Eisinger, D. Ehrhardt, U. Kubitscheck, F. Baluska, W. Briggs, The subcellular localization and blue-light-induced movement of phototropin1-GFP in etiolated seedlings of Arabidopsis thaliana, Mol. Plant 1 (2008) 103–117.

[17]

E. Kaiserli, S. Sullivan, M.A. Jones, K.A. Feeney, J.M. Christie, Domain swapping to assess the mechanistic basis of Arabidopsis phototropin 1 receptor kinase activation and endocytosis by blue light, Plant Cell 21 (2009) 3226–3244.

[18]

S. Sullivan, E. Kaiserli, T.S. Tseng, J.M. Christie, Subcellular localization and turnover of Arabidopsis phototropin 1, Plant Signal. Behav. 5 (2010) 184–186.

[19]

K. Sakamoto, W.R. Briggs, Cellular and subcellular localization of phototropin 1, Plant Cell 14 (2002) 1723–1735.

[20]

S. Inada, M. Ohgishi, T. Mayama, K. Okada, T. Sakai, RPT2 is a signal transducer involved in phototropic response and stomatal opening by association with phototropin 1 in Arabidopsis thaliana, Plant Cell 16 (2004) 887–896.

[21]

S.I. Inoue, T. Kinoshita, M. Matsumoto, K.I. Nakayama, M. Doi, K.I. Shimazaki, Blue light-induced autophosphorylation of phototropin is a primary step for signaling, Proc. Natl. Acad. Sci. U. S. A. 105 (2008) 5626–5631.

[22]

A. Motchoulski, E. Liscum, Arabidopsis NPH3: A NPH1 photoreceptor-interacting protein essential for phototropism, Science 286 (1999) 961–964.

[23]

R.B. Celaya, E. Liscum, Phototropins and associated signaling: providing the power of movement in higher plants, Photochem. Photobiol. 81 (2005) 73–80.

[24]

K. Haga, T. Tsuchida-Mayama, M. Yamada, T. Sakai, Arabidopsis ROOT PHOTOTROPISM2 contributes to the adaptation to high-intensity light in phototropic responses, Plant Cell 27 (2015) 1098–1112.

[25]

S. Sullivan, E. Kharshiing, J. Laird, T. Sakai, J.M. Christie, Deetiolation enhances phototropism by modulating NONPHOTOTROPIC HYPOCOTYL3 phosphorylation status, Plant Physiol. 180 (2019) 1119–1131.

[26]

L. Reuter, T. Schmidt, P. Manishankar, C. Throm, J. Keicher, A. Bock, I. Droste-Borel, C. Oecking, Light-triggered and phosphorylation-dependent 14-3-3 association with NON-PHOTOTROPIC HYPOCOTYL 3 is required for hypocotyl phototropism, Nat. Commun. 12 (2021) 6128.

[27]

S. Sullivan, T. Waksman, D. Paliogianni, L. Henderson, M. Lütkemeyer, N. Suetsugu, J.M. Christie, Regulation of plant phototropic growth by NPH3/RPT2-like substrate phosphorylation and 14-3-3 binding, Nat. Commun. 12 (2021) 6129.

[28]

T. Sakai, T. Wada, S. Ishiguro, K. Okada, RPT2. A signal transducer of the phototropic response in Arabidopsis, Plant Cell 12 (2000) 225–236.

[29]

A. Harada, A. Takemiya, S. Inoue, T. Sakai, K. Shimazaki, Role of RPT2 in leaf positioning and flattening and a possible inhibition of phot2 signaling by phot1, Plant Cell Physiol. 54 (2013) 36–47.

[30]

J. Wang, Y.P. Liang, J.D. Zhu, Y.X. Wang, M.Y. Yang, H.R. Yan, Q.Y. Lv, K. Cheng, X. Zhao, X. Zhang, Phototropin 1 mediates high-intensity blue light-induced chloroplast accumulation response in a root phototropism 2-dependent manner in phot2 mutant plants, Front. Plant Sci. 12 (2021) 704618.

[31]

T. Kimura, T. Tsuchida-Mayama, H. Imai, K. Okajima, K. Ito, T. Sakai, Arabidopsis ROOT PHOTOTROPISM2 is a light-dependent dynamic modulator of phototropin1, Plant Cell 32 (2020) 2004–2019.

[32]

J.D. Zhu, J. Wang, Y.Y. Sheng, Y. Tian, Y.Y. Zhang, C.J. Zhou, X. Zhao, X. Zhang, Phototropin2-mediated hypocotyl phototropism is negatively regulated by JAC1 and RPT2 in Arabidopsis, Plant Physiol. Biochem. 164 (2021) 289–298.

[33]

M. Iino, Pulse-induced phototropisms in oat and maize coleoptiles, Plant Physiol. 88 (1988) 823–828.

[34]

C.W. Whippo, R.P. Hangarter, Phototropism: bending towards enlightenment, Plant Cell 18 (2006) 1110–1119.

[35]

Y. Matsuoka, Y. Vigouroux, M.M. Goodman, J. Sanchez G., E. Buckler, J. Doebley, A single domestication for maize shown by multilocus microsatellite genotyping, Proc. Natl. Acad. Sci. U. S. A. 99 (2002) 6080–6084.

[36]

H. Suzuki, T. Koshiba, C. Fujita, Y. Yamauchi, T. Kimura, T. Isobe, T. Sakai, M. Taoka, T. Okamoto, Low-fluence blue light-induced phosphorylation of Zmphot1 mediates the first positive phototropism, J. Exp. Bot. 70 (2019) 5929–5941.

[37]

R. Konjevic, B. Steinitz, K.L. Poff, Dependence of the phototropic response of Arabidopsis thaliana on fluence rate and wavelength, Proc. Natl. Acad. Sci. U. S. A. 86 (1989) 9876–9880.

[38]

T. Sakai, K. Haga, Molecular genetic analysis of phototropism in Arabidopsis, Plant Cell Physiol. 53 (2012) 1517–1534.

[39]

Q.P. Zhao, J.D. Zhu, N.N. Li, X.N. Wang, X. Zhao, X. Zhang, Cryptochrome-mediated hypocotyl phototropism was regulated antagonistically by gibberellic acid and sucrose in Arabidopsis, J. Integr. Plant Biol. 62 (2020) 614–630.

[40]

W. Wang, X. Lu, L. Li, H. Lian, Z. Mao, P. Xu, T. Guo, F. Xu, S. Du, X. Cao, S. Wang, H. Shen, H.Q. Yang, Photoexcited CRYPTOCHROME1 interacts with dephosphorylated BES1 to regulate brassinosteroid signaling and photomorphogenesis in Arabidopsis, Plant Cell 30 (2018) 1989–2005.

[41]

S.G. Kong, T. Kagawa, M. Wada, A. Nagatani, A C-terminal membrane association domain of phototropin 2 is necessary for chloroplast movement, Plant Cell Physiol. 54 (2013) 57–68.

[42]

T. Kimura, K. Haga, Y. Nomura, T. Higaki, H. Nakagami, T. Sakai, Phosphorylation of NONPHOTOTROPIC HYPOCOTYL3 affects photosensory adaptation during the phototropic response, Plant Physiol. 187 (2021) 981–995.

[43]

T. Kimura, K. Haga, T. Sakai, The phosphorylation status of NONPHOTOTROPIC HYPOCOTYL3 affects phot2-dependent phototropism in Arabidopsis, Plant Signal. Behav. 17 (2022) 2027138.

[44]

T. Yoshihara, M. Iino, Circumnutation of rice coleoptiles: its relationships with gravitropism and absence in lazy mutants, Plant Cell Environ. 29 (2006) 778–792.

[45]

S. Vitha, L. Zhao, F.D. Sack, Interaction of root gravitropism and phototropism in Arabidopsis wild-type and starchless mutants, Plant Physiol. 122 (2000) 453–461.

The Crop Journal
Pages 1331-1340
Cite this article:
Zhu J, Zhou F, Wang Y, et al. The photosensory function of Zmphot1 differs from that of Atphot1 due to the C-terminus of Zmphot1 during phototropic response. The Crop Journal, 2023, 11(5): 1331-1340. https://doi.org/10.1016/j.cj.2023.04.007

244

Views

3

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 14 December 2022
Revised: 16 January 2023
Accepted: 16 May 2023
Published: 27 May 2023
© 2023 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return