AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (4.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

OsTHA8 encodes a pentatricopeptide repeat protein required for RNA editing and splicing during rice chloroplast development

Yanwei Wang,1Yu Duan,1Pengfei Ai( )
College of Food and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, Hebei, China

1 These authors contributed equally to this work.

Show Author Information

Abstract

In higher plants, the chloroplast is the most important organelle for photosynthesis and for numerous essential metabolic processes in the cell. Although many genes involved in chloroplast development have been identified, the mechanisms underlying such development are not fully understood. In this study, a rice (Oryza sativa) mutant exhibiting pale green color and seedling lethality was isolated from a mutant library. The mutated gene was identified as an ortholog of THA8 (thylakoid assembly 8) in Arabidopsis and maize. This gene is designated as OsTHA8 hereafter. OsTHA8 showed a typical pentatricopeptide repeat (PPR) characteristic of only four PPR motifs. Inactivation of OsTHA8 led to a deficiency in chloroplast development in the rice seedling stage. OsTHA8 was expressed mainly in young leaves and leaf sheaths. The OsTHA8 protein was localized to the chloroplast. Loss of function of OsTHA8 weakened the editing efficiency of ndhB-611/737 and rps8-182 transcripts under normal conditions. Y2H and BiFC indicated that OsTHA8 facilitates RNA editing by forming an editosome with multiple organellar RNA editing factor (OsMORF8) and thioredoxin z (OsTRXz), which function in RNA editing in rice chloroplasts. Defective OsTHA8 impaired chloroplast ribosome assembly and resulted in reduced expression of PEP-dependent genes and photosynthesis-related genes. Abnormal splicing of the chloroplast gene ycf3 was detected in ostha8. These findings reveal a synergistic regulatory mechanism of chloroplast biogenesis mediated by RNA, broaden the function of the PPR family, and shed light on the RNA editing complex in rice.

References

[1]

P. Jarvis, E. López-Juez, Biogenesis and homeostasis of chloroplasts and other plastids, Nat. Rev. Mol. Cell Biol. 14 (2013) 787–802.

[2]

Q.B. Yu, C. Huang, Z.N. Yang, Nuclear-encoded factors associated with the chloroplast transcription machinery of higher plants, Front. Plant Sci. 5 (2014) 316.

[3]

P. Zhelyazkova, C.M. Sharma, K.U. Forstner, K. Liere, J. Vogel, T. Börner, The primary transcriptome of barley chloroplasts: numerous noncoding RNAs and the dominating role of the plastid-encoded RNA polymerase, Plant Cell 24 (2012) 123–136.

[4]

R. Williams-Carrier, R. Zoschke, S. Belche, J. Pfalz, A. Barkan, A major role for the plastid-encoded RNA polymerase complex in the expression of plastid transfer RNAs, Plant Physiol. 164 (2014) 239–248.

[5]

T. Börner, A.Y. Aleynikova, Y.O. Zubo, V.V. Kusnetsov, Chloroplast RNA polymerases: role in chloroplast biogenesis, BBA 1847 (2015) 761–769.

[6]

J.D. Woodson, J.M. Perez-Ruiz, R.J. Schmitz, J.R. Ecker, J. Chory, Sigma factor-mediated plastid retrograde signals control nuclear gene expression, Plant J. 73 (2013) 1–13.

[7]

J. Pfalz, T. Pfannschmidt, Essential nucleoid proteins in early chloroplast development, Trends Plant Sci. 18 (2013) 186–194.

[8]

J. Song, X. Wei, G. Shao, Z. Sheng, D. Chen, C. Liu, G. Jiao, L. Xie, S. Tang, P. Hu, The rice nuclear gene WLP1 encoding a chloroplast ribosome L13 protein is needed for chloroplast development in rice grown under low temperature conditions, Plant Mol. Biol. 84 (2014) 301–314.

[9]

R. McDowell, I. Small, C.S. Bond, Synthetic PPR proteins as tools for sequence-specific targeting of RNA, Methods 208 (2022) 19–26.

[10]

J. Yan, Q. Zhang, P. Yin, RNA editing machinery in plant organelles, Sci. China Life Sci. 61 (2018) 162–169.

[11]

A. Barkan, M. Rojas, S. Fujii, A. Yap, Y.S. Chong, C.S. Bond, I. Small, D. Voytas, A combinatorial amino acid code for RNA recognition by pentatricopeptide repeat proteins, PLoS Genet. 8 (2012) e1002910.

[12]

R. Zoschke, K.P. Watkins, R.G. Miranda, A. Barkan, The PPR-SMR protein PPR53 enhances the stability and translation of specific chloroplast RNA s in maize, Plant J. 85 (2016) 594–606.

[13]

F. Sun, X. Zhang, Y. Shen, H. Wang, R. Liu, X. Wang, D. Gao, Y.Z. Yang, Y. Liu, B.C. Tan, The pentatricopeptide repeat protein EMPTY PERICARP 8 is required for the splicing of three mitochondrial introns and seed development in maize, Plant J. 95 (2018) 919–932.

[14]

G.Z. Wu, E.H. Meyer, S.I. Wu, R. Bock, Extensive posttranscriptional regulation of nuclear gene expression by plastid retrograde signals, Plant Physiol. 180 (2019) 2034–2048.

[15]

W. Zhou, Q. Lu, Q. Li, L. Wang, S. Ding, A. Zhang, X. Wen, L. Zhang, C. Lu, PPR-SMR protein SOT1 has RNA endonuclease activity, Proc. Natl. Acad. Sci. U. S. A. 114 (2017) 1554–1563.

[16]

K. Hammani, M. Takenaka, R. Miranda, A. Barkan, A PPR protein in the PLS subfamily stabilizes the 50-end of processed rpl16 mRNAs in maize chloroplasts, Nucleic Acids Res. 44 (2016) 4278–4288.

[17]

G. Chen, Y. Zou, J. Hu, Y. Ding, Genome-wide analysis of the rice PPR gene family and their expression profiles under different stress treatments, BMC Genomics 19 (2018) 720.

[18]

L. Chen, Y.X. Li, C. Li, Y. Shi, Y. Song, D. Zhang, Y. Li, T.Y. Wang, Genome-wide analysis of the pentatricopeptide repeat gene family in different maize genomes and its important role in kernel development, BMC Plant Biol. 18 (2018) 366.

[19]

Y. Wang, Y. Ren, K. Zhou, L. Liu, J. Wang, Y. Xu, H. Zhang, L. Zhang, Z. Feng, L. Wang, W. Ma, Y. Wang, X. Guo, X. Zhang, C. Lei, Z. Cheng, J. Wan, WHITE STRIPE LEAF4 encodes a novel P-type PPR protein required for chloroplast biogenesis during early leaf development, Front. Plant Sci. 8 (2017) 1116.

[20]

S.R. Kim, J.I. Yang, S. Moon, C.H. Ryu, K. An, K.M. Kim, J. Yim, G. An, Rice OGR1 encodes a pentatricopeptide repeat-DYW protein and is essential for RNA editing in mitochondria, Plant J. 59 (2009) 738–749.

[21]

R.C. Ren, X. Lu, Y.J. Zhao, Y.M. Wei, L.L. Wang, L. Zhang, W. Zhang, C. Zhang, X. Zhang, X. Zhao, Pentatricopeptide repeat protein DEK40 is required for mitochondrial function and kernel development in maize, J. Exp. Bot. 70 (2019) 6163–6179.

[22]

X. Shi, A. Germain, M.R. Hanson, S. Bentolila, RNA recognition motif-containing protein ORRM4 broadly affects mitochondrial RNA editing and impacts plant development and flowering, Plant Physiol. 170 (2015) 294.

[23]

Y. Jiang, S.L. Fan, M.Z. Song, J.N. Yu, S.X. Yu, Identification of RNA editing sites in cotton (Gossypium hirsutum) chloroplasts and editing events that affect secondary and three-dimensional protein structures, Genet. Mol. Res. 11 (2012) 987–1001.

[24]

M. Takenaka, A. Zehrmann, D. Verbitskiy, B. Härtel, A. Brennicke, RNA editing in plants and its evolution, Annu. Rev. Genet. 47 (2013) 335–352.

[25]

A.L. Chateigner-Boutin, I. Small, A rapid high-throughput method for the detection and quantification of RNA editing based on high-resolution melting of amplicons, Nucleic Acids Res. 35 (2007) 114.

[26]

W. Huang, Y. Zhang, L. Shen, Q. Fang, Q. Liu, C. Gong, C. Zhang, Y. Zhou, C. Mao, Y. Zhu, J. Zhang, H. Chen, Y.u. Zhang, Y. Lin, R. Bock, F. Zhou, Accumulation of the RNA polymerase subunit RpoB depends on RNA editing by OsPPR16 and affects chloroplast development during early leaf development in rice, New Phytol. 228 (2020) 1401–1416.

[27]

T. Asano, A. Miyao, H. Hirochika, S. Kikuchi, K.I. Kadowaki, Apentatricopeptide repeat gene of rice is required for splicing of chloroplast transcripts and RNA editing of ndhA, Plant Biotechnol. 30 (2013) 57–64.

[28]

J. Tang, W. Zhang, K. Wen, G. Chen, J. Sun, Y. Tian, W. Tang, J. Yu, H. An, T. Wu, F. Kong, W. Terzaghi, C. Wang, J. Wan, OsPPR6, a pentatricopeptide repeat protein involved in editing andsplicing chloroplast RNA, is required for chloroplast biogenesis in rice, Plant Mol. Biol. 95 (2017) 345–357.

[29]

X. Cui, Y. Wang, J. Wu, X. Han, X. Gu, T. Lu, Z. Zhang, The RNA editingfactor DUA1 is crucial to chloroplast development at low temperature in rice, New Phytol. 221 (2018) 834–849.

[30]

X. Liu, J. Lan, Y. Huang, P. Cao, C. Zhou, Y. Ren, N. He, S. Liu, Y. Tian, T. Nguyen, L. Jiang, J. Wan, WSL5, a pentatricopeptide repeat protein, is essential forchloroplast biogenesis in rice under cold stress, J. Exp. Bot. 69 (2018) 3949–3961.

[31]

H. Xiao, Y. Xu, C. Ni, Q. Zhang, F. Zhong, J. Huang, W. Liu, L. Peng, Y. Zhu, J. Hu, A rice dual-localized pentatricopeptide repeat protein is involved in organellar RNA editing together with OsMORFs, J. Exp. Bot. 69 (2018) 2923–2936.

[32]

J. Zhang, Y. Guo, Q. Fang, Y. Zhu, Y. Zhang, X. Liu, Y. Lin, A. Barkan, F. Zhou, The PPR-SMR Protein ATP4 Is Required for Editing the Chloroplast rps8 mRNA in Rice and Maize, Plant Physiol. 184 (2020) 2011–2021.

[33]

S. Bentolila, W.P. Heller, T. Sun, A.M. Babina, G. Friso, K.J. van Wijk, M.R. Hanson, RIP1, a member of an Arabidopsis protein family, interacts with the protein RARE1 and broadly affects RNA editing, Proc. Natl. Acad. Sci. U. S. A. 109 (2012) 8372–8373.

[34]

M. Ramos-Vega, A. Guevara-Garcia, E. Llamas, N. Sanchez-Leon, V. Olmedo-Monfil, J.P. Vielle-Calzada, P. Leon, Functional analysis of the Arabidopsis thaliana CHLOROPLAST BIOGENESIS 19 pentatricopeptide repeat editing protein, New Phytol. 208 (2015) 430–441.

[35]

F.V. Loiacono, W. Thiele, M.A. Schöttler, M. Tillich, R. Bock, Establishment of a heterologous RNA editing event in chloroplasts, Plant Physiol. 181 (2019) 891–900.

[36]

L. Bonen, Cis- and trans-splicing of group Ⅱ introns in plant mitochondria, Mitochondrion 8 (2008) 26–34.

[37]

A. Khrouchtchova, R.A. Monde, A. Barkan, A short PPR protein required for the splicing of specific group Ⅱ introns in angiosperm chloroplasts, RNA 18 (2012) 1197–1209.

[38]

A.F. de Longevialle, L. Hendrickson, N.L. Taylor, E. Delannoy, C. Lurin, M. Badger, A.H. Millar, I. Small, The pentatricopeptide repeat gene OTP51 with two LAGLIDADG motifs is required for the cis-splicing of plastid ycf3 intro-2 in Arabidopsis thaliana, Plant J. 56 (2008) 157–168.

[39]

A.L. Chateigner-Boutin, C.C. des Francs-Small, E. Delannoy, S. Kahlau, S.K. Tanz, A.F. de Longevialle, S. Fujii, I. Small, OTP70 is a pentatricopeptide repeat protein of the E subgroup involved in splicing of the plastid transcript rpoC1, Plant J. 65 (2011) 532–542.

[40]

L. Wang, C. Wang, Y. Wang, M. Niu, Y. Ren, K. Zhou, H. Zhang, Q. Lin, F. Wu, Z. Cheng, J. Wang, X. Zhang, X. Guo, L. Jiang, C. Lei, J. Wang, S. Zhu, Z. Zhao, J. Wan, WSL3, a component of the plastid-encoded plastid RNA polymerase, is essential for early chloroplast development in rice, Plant Mol. Biol. 92 (2016) 581–595.

[41]

X. Liu, X. Zhang, R. Cao, G. Jiao, S. Hu, G. Shao, Z. Sheng, L. Xie, S. Tang, X. Wei, P. Hu, CDE4 encodes a pentatricopeptide repeat protein involved in chloroplast RNA splicing and affects chloroplast development under low-temperature conditions in rice, J. Integr. Plant Biol. 63 (2021) 1724–1739.

[42]

Y. Wang, Z. Yang, M. Zhang, P. Ai, A chloroplast-localized pentatricopeptide repeat protein involved in RNA editing and splicing and its effects on chloroplast development in rice, BMC Plant Biol. 13 (2022) 437.

[43]

L. Chen, L. Huang, L. Dai, Y. Gao, W. Zou, X. Lu, C. Wang, G. Zhang, D. Ren, J. Hu, L. Shen, G. Dong, Z. Gao, G. Chen, D. Xue, L. Guo, Y. Xing, Q. Qian, L. Zhu, D. Zeng, PALE-GREEN LEAF12 encodes a novel pentatricopeptide repeat protein required for chloroplast development and 16S rRNA processing in rice, Plant Cell Physiol. 60 (2019) 587–598.

[44]

X. Ma, Q. Zhang, Q. Zhu, W. Liu, Y. Chen, R. Qiu, B. Wang, Z. Yang, H. Li, Y. Lin, Y. Xie, R. Shen, S. Chen, Z. Wang, Y. Chen, J. Guo, L. Chen, X. Zhao, Z. Dong, Y.G. Liu, A Robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants, Mol. Plant 8 (2015) 1274–1284.

[45]

L.B.B. Martin, P. Romero, E.A. Fich, D.S. Domozych, J.K.C. Rose, Cuticle biosynthesis in tomato leaves is developmentally regulated by abscisic acid, Plant Physiol. 174 (2017) 1384–1398.

[46]

K.J. Livak, T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2 method, Methods 25 (2001) 402–408.

[47]

W. Zheng, C. Zhang, Y. Li, R. Pearce, E.W. Bell, Y. Zhang, Folding non-homologous proteins by coupling deep-learning contact maps with I-TASSER assembly simulations, Cell Rep. Methods 26 (2021) 100014.

[48]

D. Mao, H. Yu, T. Liu, G. Yang, Y. Xing, Two complementary recessive genes in duplicated segments control etiolation in rice, Theor. Appl. Genet. 122 (2011) 373–383.

[49]

S. Cheng, B. Gutmann, X. Zhong, Y. Ye, M.F. Fisher, F. Bai, I. Castleden, Y. Song, B. Song, J. Huang, X. Liu, X. Xu, B.L. Lim, C.S. Bond, S.M. Yiu, I. Small, Redefining the structural motifs that determine RNA binding and RNA editing by pentatricopeptide repeat proteins in land plants, Plant J. 85 (2016) 532–547.

[50]

S. Kumar, G. Stecher, K. Tamura, MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets, Mol. Biol. Evol. 33 (2016) 1870–1874.

[51]

A.I. Schein, J.C. Kissinger, L.H. Ungar, Chloroplast transit peptide prediction: a peek inside the black box, Nucleic Acids Res. 29 (2001) 82.

[52]

E. Rivals, C. Bruyère, C. Toffano-Nioche, A. Lecharny, Formation of the Arabidopsis pentatricopeptide repeat family, Plant Physiol. 141 (2006) 825–839.

[53]

N. Sugiyama, T. Izawa, T. Oikawa, K. Shimamoto, Light regulation of circadian clock-controlled gene expression in rice, Plant J. 26 (2001) 607–615.

[54]

K. Ito, D. Ito, M. Goto, S. Suzuki, S. Masuda, K. Iba, K. Kusumi, Regulation of ppGpp synthesis and its impact on chloroplast biogenesis during early leaf development in rice, Plant Cell Physiol. 63 (2022) 919–931.

[55]

S.C. Yoo, S.H. Cho, H. Sugimoto, J. Li, K. Kusumi, H.J. Koh, K. Iba, N.C. Paek, Rice virescent3 and stripe1 encoding the large and small subunits of ribonucleotide reductase are required for chloroplast biogenesis during early leaf development, Plant Physiol. 150 (2009) 388–401.

[56]

K. Kusumi, A. Yara, N. Mitsui, Y. Tozawa, K. Iba, Characterization of a rice nuclear-encoded plastid RNA polymerase gene OsRpoTp, Plant Cell Physiol. 45 (2004) 1194–1201.

[57]

Y. Zhang, Y.L. Cui, X.L. Zhang, Q.B. Yu, X. Wang, X.B. Yuan, X.M. Qin, X.F. He, C. Huang, Z.N. Yang, A nuclear-encoded protein, mTERF6, mediates transcription termination of rpoA polycistron for plastid-encoded RNA polymerase-dependent chloroplast gene expression and chloroplast development, Sci. Rep. 8 (2018) 11929.

[58]

A.L. Chateigner-Boutin, M. Ramos-Vega, A. Guevara-García, C. Andrés, M.D.L.L. Gutiérrez-Nava, A. Cantero, E. Delannoy, L.F. Jiménez, C. Lurin, I. Small, P. León, CLB19, a pentatricopeptide repeat protein required for editing of rpoA and clpP chloroplast transcripts, Plant J. 56 (2008) 590–602.

[59]

N. Takahiro, Y. Yusuke, K. Keiko, Mechanistic insight into pentatricopeptide repeat proteins as sequence-specific RNA-binding proteins for organellar RNAs in plants, Plant Cell Physiol. 53 (2012) 1171–1179.

[60]

A. Barkan, I. Small, Pentatricopeptide repeat proteins in plants, Annu. Rev. Plant Biol. 65 (2014) 415–442.

[61]

H.D. Zhang, Y.L. Cui, C. Huang, Q.Q. Yin, X.M. Qin, T.E. Xu, X.F. He, Y.I. Zhang, Z.R. Li, Z.N. Yang, PPR protein PDM1/SEL1 is involved in RNA editing and splicing of plastid genes in Arabidopsis thaliana, Photosynth. Res. 126 (2015) 311–321.

[62]

M. Takenaka, A. Zehrmann, D. Verbitskiy, M. Kugelmann, B. Härtel, A. Brennicke, Multiple organellar RNA editing factor (MORF) family proteins are required for RNA editing in mitochondria and plastids of plants, Proc. Natl. Acad. Sci. U. S. A. 109 (2012) 5104–5109.

[63]

Y. Wang, Y. Wang, Y. Ren, E. Duan, X. Zhu, Y. Hao, J. Zhu, R. Chen, J. Lei, X. Teng, Y. Zhang, D.I. Wang, X. Zhang, X. Guo, L. Jiang, S. Liu, Y. Tian, X.I. Liu, L. Chen, H. Wang, J. Wan, White panicle2 encoding thioredoxin z, regulates plastid RNA editing by interacting with multiple organellar RNA editing factors in rice, New Phytol. 229 (2021) 2693–2706.

[64]

H. Naver, E. Boudreau, J.D. Rochaix, Functional studies of ycf3: its role in assembly of photosystem I and interactions with some of its subunits, Plant Cell 13 (2001) 2731–2745.

[65]

X. Wang, Z. Yang, Y.I. Zhang, W. Zhou, A. Zhang, C. Lu, Pentatricopeptide repeat protein PHOTOSYSTEM I BIOGENESIS FACTOR2 is required for splicing of ycf3, J. Integr. Plant Biol. 62 (2020) 1741–1761.

[66]

A.M. Landau, H. Lokstein, H.V. Scheller, V. Lainez, S. Maldonado, A.R. Prina, A cytoplasmically inherited barley mutant is defective in photosystem I assembly due to a temperature-sensitive defect in ycf3 splicing, Plant Physiol. 151 (2009) 1802–1811.

[67]

J. Ye, Z. Gong, C. Chen, H. Mi, G. Chen, A mutation of OSOTP 51 leads to impairment of photosystem I complex assembly and serious photo-damage in rice, J. Integr. Plant Biol. 54 (2012) 87–98.

[68]

Z. Zhang, X. Cui, Y. Wang, J. Wu, X. Gu, T. Lu, The RNA editing factor WSP1 is essential for chloroplast development in rice, Mol. Plant 10 (2017) 86–98.

[69]

Q. Zhang, Y. Wang, W. Xie, C. Chen, D. Ren, J. Hu, L. Zhu, G. Zhang, Z. Gao, L. Guo, D. Zeng, L. Shen, Q. Qian, OsMORF9 is necessary for chloroplast development and seedling survival in rice, Plant Sci. 307 (2021) 110907.

[70]

Q. Zhang, L. Shen, D. Ren, J. Hu, G. Chen, L. Zhu, Z. Gao, G. Zhang, L. Guo, D. Zeng, Q. Qian, Characterization, expression, and interaction analyses of OsMORF gene family in rice, Genes 10 (2019) 694.

[71]

X. Zhao, J. Huang, J. Chory, GUN1 interacts with MORF2 to regulate plastid RNA editing during retrograde signaling, Proc. Natl. Acad. Sci. U. S. A. 116 (2019) 10162–10167.

[72]

Y. Okegawa, N. Tsuda, W. Sakamoto, K. Motohashi, Maintaining the chloroplast redox balance through the PGR5-dependent pathway and the trx system is required for light-dependent activation of photosynthetic reactions, Plant Cell Physiol. 63 (2022) 92–103.

The Crop Journal
Pages 1353-1367
Cite this article:
Wang Y, Duan Y, Ai P. OsTHA8 encodes a pentatricopeptide repeat protein required for RNA editing and splicing during rice chloroplast development. The Crop Journal, 2023, 11(5): 1353-1367. https://doi.org/10.1016/j.cj.2023.04.009

240

Views

4

Downloads

2

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 15 November 2022
Revised: 22 March 2023
Accepted: 04 April 2023
Published: 05 June 2023
© 2023 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return