AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

High-throughput phenotyping of plant leaf morphological, physiological, and biochemical traits on multiple scales using optical sensing

Huichun Zhanga,b( )Lu WangaXiuliang JincLiming Biand,eYufeng Gef
College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture, Beijing 100081, China
College of Forestry, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
Co-Innovation Center for Sustainable Forestry in Southern China and Key Laboratory of Forest Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
Department of Biological Systems Engineering, University of Nebraska-Lincoln, NE 68583, USA
Show Author Information

Abstract

Acquisition of plant phenotypic information facilitates plant breeding, sheds light on gene action, and can be applied to optimize the quality of agricultural and forestry products. Because leaves often show the fastest responses to external environmental stimuli, leaf phenotypic traits are indicators of plant growth, health, and stress levels. Combination of new imaging sensors, image processing, and data analytics permits measurement over the full life span of plants at high temporal resolution and at several organizational levels from organs to individual plants to field populations of plants. We review the optical sensors and associated data analytics used for measuring morphological, physiological, and biochemical traits of plant leaves on multiple scales. We summarize the characteristics, advantages and limitations of optical sensing and data-processing methods applied in various plant phenotyping scenarios. Finally, we discuss the future prospects of plant leaf phenotyping research. This review aims to help researchers choose appropriate optical sensors and data processing methods to acquire plant leaf phenotypes rapidly, accurately, and cost-effectively.

References

[1]

A. Xue, The constraints and path choice of food security in China, J. Huanghe S&T Coll. 23 (2021) 29–34.

[2]

Q. Fang, Analysis of current food security situation and countermeasures, Crop. Res. 35 (2021) 420–422.

[3]

M. Cheng, H. Yuan, Z. Cai, N. Wang, Review of field-based information acquisition and analysis of high-throughput phenotyping, Trans. Chin. Soc. Agric. Mach. 51 (2020) 314–324.

[4]

X. Jin, W. Yang, J.H. Doonan, C. Atzberger, Crop phenotyping studies with application to crop monitoring, Crop J. 10 (2022) 1221–1223.

[5]

X. Jin, P.J. Zarco-Tejada, U. Schmidhalter, M.P. Reynolds, M.J. Hawkesford, R.K. Varshney, T. Yang, C. Nie, Z. Li, B. Ming, Y. Xiao, Y. Xie, S. Li, High-throughput estimation of crop traits: a review of ground and aerial phenotyping platforms, IEEE Geosci. Remote Sens. Mag. 9 (2021) 200–231.

[6]

R. Qiu, S. Wei, M. Zhang, H. Li, H. Sun, G. Liu, M. Li, Sensors for measuring plant phenotyping: a review, Int. J. Agric. Biol. Eng. 11 (2019) 1–17.

[7]

H. Zhang, H. Zhou, J. Zheng, Y. Ge, Y. Li, Research progress and prospect in plant phenotyping platform and image analysis technology, Trans. Chin. Soc. Agric. Mach. 51 (2020) 1–17.

[8]

D. Zhang, H. Fang, Y. He, Research of crop disease based on visible/near infrared spectral image technology: a review, Spectrosc. Spectr. Anal. 39 (2019) 1748–1756.

[9]

J. Tian, B. Wang, Z. Zhang, L. Lin, Application of spectral diversity in plant diversity monitoring and assessment, Chin. J. Plant Ecol. 46 (2022) 1129–1150.

[10]

Q. Li, Y. Yang, P. Yuan, Y, Xue, Image measurement method of leaf area based on saturation segmentation, J. For. Eng. 6 (2021) 147–152.

[11]

R. Rexiti, S. Liu, T. Liu, B. Chen, J. Wang, Survey of plant leaf area measurement methods, Anhui Agric, Sci. Bull. 26 (2020) 22–23.

[12]

F. Li, H. Huang, C. Guan, Review on measurement of crop leaf area, J. Hunan Agric. Univ. (Nat. Sci.) 47 (2021) 274–282.

[13]

U. Hasan, N. Kasim, C. Chen, M. Sawut, Estimation of winter wheat LAI based on multi-dimensional hyperspectral vegetation indices, Trans. Chin. Soc. Agric. Mach. 53 (2022) 181–190.

[14]

X. Yin, X. Yang, R. Hou, L. Zhao, J. Zhang, Determination of canopy leaf area index of maize based on smart phone, Sci. Soil Water Conserv. 19 (2021) 125–130.

[15]

W. Guo, C. Zhou, W. Han, Rapid and non-destructive measurement system for plant leaf area based on android mobile phone, Trans. Chin. Soc. Agric. Mach. 45 (2014) 275–280.

[16]

D. Fanourakis, F. Kazakos, P.A. Nektarios, Allometric individual leaf area estimation in chrysanthemum, Agronomy 11 (2021) 795.

[17]

C. Li, R. Adhikari, Y. Yao, A.G. Miller, K. Kalbaugh, D. Li, K. Nemali, Measuring plant growth characteristics using smartphone based image analysis technique in controlled environment agriculture, Comput. Electron. Agric. 168 (2020) 105123.

[18]
N. Jiang, A non-destructive method for total green leaf area estimation of individual rice plants, Master thesis, Huazhong University of Science and Technology, 2014 (in Chinses with English abstract).
[19]

B. Su, Y. Liu, C. Wang, Z. Mi, F. Wang, Leaf area estimation method based on three-dimensional point cloud, Trans. Chin. Soc. Agric. Mach. 50 (2019) 240–246, 254.

[20]

W.K. Yau, O. Ng, S.W. Lee, Portable device for contactless, non-destructive and in situ outdoor individual leaf area measurement, Comput. Electron. Agric. 187 (2021) 106278.

[21]

P. Berk, D. Stajnko, A. Belsak, M. Hocevar, Digital evaluation of leaf area of an individual tree canopy in the apple orchard using the LiDAR measurement system, Comput. Electron. Agric. 169 (2020) 105158.

[22]

Q. Li, Y. Xue, Total leaf area estimation based on the total grid area measured using mobile laser scanning, Comput. Electron. Agric. 204 (2023) 107503.

[23]

S. Sarkar, A. Cazenave, J. Oakes, D. Mccall, W. Thomason, L. Abbott, M. Balota, Aerial high-throughput phenotyping of peanut leaf area index and lateral growth, Sci. Rep. 11 (2021) 21661.

[24]

S. Liu, W. Zeng, L. Wu, G. Lei, H. Chen, T. Gaiser, A.K. Srivastava, Simulating the leaf area index of rice from multispectral images, Remote Sens. 13 (2021) 3663.

[25]

S. Liu, X. Jin, C. Nie, S. Wang, X. Yu, M. Cheng, M. Shao, Z. Wang, N. Tuohuti, Y. Bai, Y. Liu, Estimating leaf area index using unmanned aerial vehicle data: shallow vs. deep machine learning algorithms, Plant Physiol. 187 (2021) 1551–1576.

[26]
L. Wang, J. Li, L. Zhao, B. Zhao, G. Bai, Y. Ge, Y. Shi, J.A. Thomasson, A.F. TorresRua, Investigate the potential of UAS-based thermal infrared imagery for maize leaf area index estimation, in: J.A. Thomasson, A.F. Torres-Rua (Eds), Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping Ⅵ, SPIE Proceedings Vol. 11747, 2021, 1174703.
[27]

J. Zhang, T. Cheng, W. Guo, X. Xu, H. Qiao, Y. Xie, X. Ma, Leaf area index estimation model for UAV image hyperspectral data based on wavelength variable selection and machine learning methods, Plant Methods 17 (2021) 49.

[28]

Y. Gong, K. Yang, Z. Lin, S. Fang, X. Wu, R. Zhu, Y. Peng, Remote estimation of leaf area index (LAI) with unmanned aerial vehicle (UAV) imaging for different rice cultivars throughout the entire growing season, Plant Methods 17 (2021) 88.

[29]

L. Lin, K. Yu, X. Yao, Y. Deng, Z. Hao, Y. Chen, N. Wu, J. Liu, UAV based estimation of forest leaf area index (LAI) through oblique photogrammetry, Remote Sens. 13 (2021) 803.

[30]

H. Jiang, W. Yuan, Y. Ru, Q. Chen, J. Wang, H. Zhou, Feasibility of identifying the authenticity of fresh and cooked mutton kebabs using visible and near-infrared hyperspectral imaging, Spectrochim. Acta A Mol. Biomol. Spectrosc. 282 (2022) 121689.

[31]

Y. Huang, J. Xiong, X. Jiang, K. Chen, D. Hu, Assessment of firmness and soluble solids content of peaches by spatially resolved spectroscopy with a spectral difference technique, Comput. Electron. Agric. 200 (2022) 107212.

[32]

X. Jiang, X. Mo, T. Sun, D. Hu, Determination of trans fatty acids in edible vegetable oil by LaserRaman spectroscopy, Spectrosc. Spectr. Anal. 39 (2019) 3821–3825.

[33]

Y. Ma, Q. Zhang, X. Yi, L. Ma, L. Zhang, C. Huang, Z. Zhang, X. Lv, Estimation of cotton leaf area index (LAI) based on spectral transformation and vegetation index, Remote Sens. 14 (2022) 136.

[34]

T. Yin, B.D. Cook, D.C. Morton, Three-dimensional estimation of deciduous forest canopy structure and leaf area using multi-directional, leaf-on and leaf-off airborne LiDAR data, Agric. For. Meteorol. 314 (2022) 108781.

[35]

G. Kaplan, O. Rozenstein, Spaceborne estimation of leaf area index in cotton, tomato, and wheat using sentinel-2, Land 10 (2021) 505.

[36]

S.M. Kinane, C.R. Montes, T.J. Albaugh, D.R. Mishra, A model to estimate leaf area index in loblolly pine plantations using landsat 5 and 7 images, Remote Sens. 13 (2021) 1140.

[37]

J. Hu, H. Lin, N. Xu, R. Jiao, Z. Dai, C. Lu, Y. Rao, Y. Wang, Advances in molecular mechanisms of rice leaf inclination and its application in breeding, Chin. J. Rice Sci. 33 (2019) 391–400.

[38]

X. Zou, M. Mõttus, P. Tammeorg, C.L. Torres, T. Takala, J. Pisek, P. Mäkelä, F.L. Stoddard, P. Pellikka, Photographic measurement of leaf angles in field crops, Agric. For. Meteorol. 184 (2014) 137–146.

[39]

D. Li, G. Shi, W. Kong, S. Wang, Y. Chen, A leaf segmentation and phenotypic feature extraction framework for multiview stereo plant point clouds, IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 13 (2020) 2321–2336.

[40]

K. Itakura, F. Hosoi, Automatic leaf segmentation for estimating leaf area and leaf inclination angle in 3D plant images, Sensors 18 (2018) 3576.

[41]

Z. Zhang, X. Ma, H. Guan, K. Zhu, J. Feng, S. Yu, A method for calculating the leaf inclination of soybean canopy based on 3D point clouds, Int. J. Remote Sens. 42 (2021) 5719–5740.

[42]

Q. Xu, L. Cao, L. Xue, B. Chen, F. An, T. Yun, Extraction of leaf biophysical attributes based on a computer graphic-based algorithm using terrestrial laser scanning data, Remote Sens. 11 (2019) 15.

[43]

F. Hosoi, K. Omasa, Estimating leaf inclination angle distribution of broad-leaved trees in each part of the canopies by a high-resolution portable scanning LiDAR, J. Agric. Meteorol. 71 (2015) 136–141.

[44]

S. Thapa, F. Zhu, H. Walia, H. Yu, Y. Ge, A novel lidar-based instrument for high-throughput, 3D measurement of morphological traits in maize and sorghum, Sensors 18 (2018) 1187.

[45]

K. Fu, Q. Feng, S. Yang, B. Chen, Monitoring and experimental verification of strawberry leaf moisture content using 3D geometric features, Trans. Chin. Soc Agric. Eng. 36 (2020) 161–169.

[46]

W. Su, K. Jiang, H. Guo, Z. Liu, D. Zhu, X. Zhang, Extraction of phenotypic information of maize plants in field by terrestrial laser scanning, Trans. Chin. Soc Agric. Eng. 35 (2019) 125–130.

[47]

L. Lei, Z. Li, J. Wu, C. Zhang, Y. Zhu, R. Chen, Z. Dong, H. Yang, G. Yang, Extraction of maize leaf base and inclination angles using terrestrial laser scanning (TLS) data, IEEE Trans. Geosci. Remote Sens. 60 (2022) 1–17.

[48]

X. Xie, Y. Ge, H. Walia, J. Yang, H. Yu, Leaf-counting in monocot plants using deep regression models, Sensors 23 (2023) 1890.

[49]

B. Jiang, P. Wang, S. Zhuang, M. Li, Z. Li, Z. Gong, Leaf counting with multi-scale convolutional neural network features and fisher vector coding, Symmetry 11 (2019) 516.

[50]

S. Zhou, X. Chai, Z. Yang, H. Wang, C. Yang, T. Sun, Maize-IAS: a maize image analysis software using deep learning for high-throughput plant phenotyping, Plant Methods 17 (2021) 1–17.

[51]

C. Miao, A. Guo, A.M. Thompson, J. Yang, Y. Ge, J.C. Schnable, Automation of leaf counting in maize and sorghum using deep learning, bioRxiv, Plant Biol. 4 (2021) e20022.

[52]

L. Lou, H. Lv, R, Song, Segmentation of plant leaves and features extraction based on muti-view and time-series image, Trans. Chin. Soc. Agric. Mach. 53 (2022) 253–260.

[53]

M.V. Giuffrida, P. Doerner, S.A. Tsaftaris, Pheno-deep counter: a unified and versatile deep learning architecture for leaf counting, Plant J. 96 (2018) 880–890.

[54]

J. Ubbens, M. Cieslak, P. Prusinkiewicz, I. Stavness, The use of plant models in deep learning: an application to leaf counting in rosette plants, Plant Methods 14 (2018) 6.

[55]

J. Praveen Kumar, S. Domnic, Image based leaf segmentation and counting in rosette plants, Inf. Process. Agric. 6 (2019) 233–246.

[56]

A. Soetedjo, E. Hendriarianti, Plant leaf detection and counting in a greenhouse during day and nighttime using a raspberry Pi NoIR camera, Sensors 21 (2021) 6659.

[57]

Y. Ding, J. Zhang, W. Lee, M. Li, Segmentation of tomato leaves from canopy images by combination of wavelet transform and watershed algorithm, Trans. Chin. Soc. Agric. Mach. 48 (2017) 32–37.

[58]

J. Praveen Kumar, S. Domnic, Rosette plant segmentation with leaf count using orthogonal transform and deep convolutional neural network, Mach. Vis. Appl. 31 (2020) 1–14.

[59]

J. Zhang, C. Zhao, X. Li, Y. Ren, L. Lei, The relationship between the net photosynthetic rate and leaf area and thickness of Phragmites australis in the grass lake wetlands of Jiayuguan, Acta Ecol. Sin. 38 (2018) 6084–6091.

[60]

J. Pfeifer, M. Mielewczik, M. Friedli, N. Kirchgessner, A. Walter, Non-destructive measurement of soybean leaf thickness via X-ray computed tomography allows the study of diel leaf growth rhythms in the third dimension, J. Plant Res. 131 (2018) 111–124.

[61]

J. de Wit, S. Tonn, G. Van den Ackerveken, J. Kalkman, Quantification of plant morphology and leaf thickness with optical coherence tomography, Appl. Opt. 59 (2020) 10304–10311.

[62]

M.F. Buitrago, T.A. Groen, C.A. Hecker, A.K. Skidmore, Spectroscopic determination of leaf traits using infrared spectra, Int. J. Appl. Earth Obs. Geoinf. 69 (2018) 237–250.

[63]

E. Ahn, G. Odvody, L.K. Prom, C. Magill, Leaf angle distribution in johnsongrass, leaf thickness in sorghum and johnsongrass, and association with response to colletotrichum sublineola, Sci. Rep. 10 (2020) 22320.

[64]

A. Afzal, S.W. Duiker, J.E. Watson, Leaf thickness to predict plant water status, Biosyst. Eng. 156 (2017) 148–156.

[65]

J. Han, M. Li, J. Hu, Y. Yang, L. Chen, Research progress on vegetation phenological changes, J. Heilongjiang Vocat. Inst. Ecol. Eng. 34 (2021) 49–55.

[66]

M. Wang, Y. Luo, Z. Zhang, Q. Xie, X. Wu, X. Ma, Recent advances in remote sensing of vegetation phenology: Retrieval algorithm and validation strategy, Natl. Remote Sens. Bull. 26 (2022) 431–455.

[67]

L. Zhou, H. He, X. Sun, L. Zhang, G. Yu, X. Ren, J. Wang, J. Zhang, Species-and community-scale simulation of the phenology of a temperate forest in changbai mountain based on digital camera images, J. Resour. Ecol. 4 (2013) 317–326.

[68]

Y. Xie, D.L. Civco, J.A. Silander, Species-specific spring and autumn leaf phenology captured by time-lapse digital cameras, Ecosphere 9 (2018) e02089.

[69]

G. Weil, I.M. Lensky, N. Levin, Using ground observations of a digital camera in the VIS-NIR range for quantifying the phenology of mediterranean woody species, Int. J. Appl. Earth Obs. Geoinf. 62 (2017) 88–101.

[70]

J. Han, L. Shi, Q.I. Yang, K. Huang, Y. Zha, J. Yu, Real-time detection of rice phenology through convolutional neural network using handheld camera images, Precis. Agric. 22 (2021) 154–178.

[71]

H. Anderson, L. Nilsen, H. Tømmervik, S. Karlsen, S. Nagai, E. Cooper, Using ordinary digital cameras in place of near-infrared sensors to derive vegetation indices for phenology studies of high arctic vegetation, Remote Sens. 8 (2016) 847.

[72]

W. Nijland, R. de Jong, S.M. de Jong, M.A. Wulder, C.W. Bater, N.C. Coops, Monitoring plant condition and phenology using infrared sensitive consumer grade digital cameras, Agric. For. Meteorol. 184 (2014) 98–106.

[73]

Y.M. de Moura, L.S. Galvão, T. Hilker, J. Wu, S. Saleska, C.H. Do Amaral, B.W. Nelson, A.P. Lopes, K.K. Wiedeman, N. Prohaska, R.C. de Oliveira, C.B. Machado, L.E.O.C. Aragão, Spectral analysis of amazon canopy phenology during the dry season using a tower hyperspectral camera and modis observations, ISPRS J. Photogramm. Remote Sens. 131 (2017) 52–64.

[74]

A. Sanaeifar, C. Yang, M. de la Guardia, W. Zhang, X. Li, Y. He, Proximal hyperspectral sensing of abiotic stresses in plants, Sci. Total Environ. 861 (2023) 160652.

[75]

J. Pastor-Guzman, J. Dash, P.M. Atkinson, Remote sensing of mangrove forest phenology and its environmental drivers, Remote Sens. Environ. 205 (2018) 71–84.

[76]

K.D. Noumonvi, G. Oblišar, A. žust, U. Vilhar,, Empirical approach for modelling tree phenology in mixed forests using remote sensing, Remote Sens. 13 (2021) 3015.

[77]

V. Songsom, W. Koedsin, R.J. Ritchie, A. Huete, Mangrove phenology and environmental drivers derived from remote sensing in southern Thailand, Remote Sens. 11 (2019) 955.

[78]

W. Ji, Y. Fan, C. Li, L. Wei, J. Jiang, B. Li, W. Jia, Correlation analysis between leaf conductance and water potential changes during drought stress in grapevine, J. China Agric. Univ. 19 (2014) 74–80.

[79]

S. Jarolmasjed, S. Sankaran, L. Kalcsits, L.R. Khot, Proximal hyperspectral sensing of stomatal conductance to monitor the efficacy of exogenous abscisic acid applications in apple trees, Crop Prot. 109 (2018) 42–50.

[80]

J. Zhou, Y. Zhang, Z. Han, X. Liu, Y. Jian, C. Hu, Y. Dian, Evaluating the performance of hyperspectral leaf reflectance to detect water stress and estimation of photosynthetic capacities, Remote Sens. 13 (2021) 2160.

[81]

M. Maimaitiyiming, A. Ghulam, A. Bozzolo, J.L. Wilkins, M.T. Kwasniewski, Early detection of plant physiological responses to different levels of water stress using reflectance spectroscopy, Remote Sens. 9 (2017) 745.

[82]

L. Zhao, L. Wang, J. Li, G. Bai, Y. Shi, Y. Ge, J.A. Thomasson, A.F. Torres-Rua, Toward accurate estimating of crop leaf stomatal conductance combining thermal ir imaging, weather variables, and machine learning, Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping Ⅵ, SPIE 11747 (2021) 98–105.

[83]

M. Wang, P.Z. Ellsworth, J. Zhou, A.B. Cousins, S. Sankaran, Evaluation of water-use efficiency in foxtail millet (Setaria italica) using visible-near infrared and thermal spectral sensing techniques, Talanta 152 (2016) 531–539.

[84]

V. Sobejano-Paz, T.N. Mikkelsen, A. Baum, X. Mo, S. Liu, C.J. Köppl, M.S. Johnson, L. Gulyas, M. García, Hyperspectral and thermal sensing of stomatal conductance, transpiration, and photosynthesis for soybean and maize under drought, Remote Sens. 12 (2020) 3182.

[85]

C.Z. Espinoza, L.R. Khot, S. Sankaran, P.W. Jacoby, High resolution multispectral and thermal remote sensing-based water stress assessment in subsurface irrigated grapevines, Remote Sens. 9 (2017) 961.

[86]

X. Ma, Y. Guo, A. Wang, M. Li, X. Yu, J. Feng, W. Zhu, Effects of nitrogen application on photosynthetic of electron transport rate ofLycium ruthenicum Murr. in the arid area, J. Arid Land Resour. Environ. 35 (2021) 130–136.

[87]

S. Chen, G. Yin, N. Zhao, Z. Qin, X. Zhang, T. Gan, J. Liu, W. Liu, Measurement of primary productivity of phytoplankton based on photosynthetic electron transport rate, Acta Opt. Sin. 38 (2018) 334–341.

[88]

X. Zhang, L. Liu, H. Sun, K. Zhang, Z. Bai, H. Dong, C. Li, Y. Zhang, Hyperspectral estimation of the maximum carboxylation rate of cotton leaves under different nitrogen levels, Trans. Chin. Soc. Agric. Mach. 36 (2020) 166–173.

[89]

V. Silva-Perez, G. Molero, S.P. Serbin, A.G. Condon, M.P. Reynolds, R.T. Furbank, J.R. Evans, Hyperspectral reflectance as a tool to measure biochemical and physiological traits in wheat, J. Exp. Bot. 69 (2018) 483–496.

[90]

M.L. Barnes, D.D. Breshears, D.J. Law, W.J.D. van Leeuwen, R.K. Monson, A.C. Fojtik, G.A. Barron-Gafford, D.J.P. Moore, Beyond greenness: detecting temporal changes in photosynthetic capacity with hyperspectral reflectance data, PLoS ONE 12 (2017) e189539.

[91]

J. Jin, Q. Wang, G. Song, Selecting informative bands for partial least squares regressions improves their goodness-of-fits to estimate leaf photosynthetic parameters from hyperspectral data, Photosynth. Res. 151 (2022) 71–82.

[92]

M.L. Buchaillot, D. Soba, T. Shu, J. Liu, I. Aranjuelo, J.L. Araus, G.B. Runion, S.A. Prior, S.C. Kefauver, A. Sanz-Saez, Estimating peanut and soybean photosynthetic traits using leaf spectral reflectance and advance regression models, Planta 255 (2022) 93.

[93]

K. Bi, Z. Niu, S. Xiao, J. Bai, G. Sun, J. Wang, Z. Han, S. Gao, Estimation of maize photosynthesis traits using hyperspectral LiDAR backscattered intensity, Remote Sens. 13 (2021) 4203.

[94]

B. Dechant, M. Cuntz, M. Vohland, E. Schulz, D. Doktor, Estimation of photosynthesis traits from leaf reflectance spectra: correlation to nitrogen content as the dominant mechanism, Remote Sens. Environ. 196 (2017) 279–292.

[95]

K. Meacham-Hensold, P. Fu, J. Wu, S. Serbin, C.M. Montes, E. Ainsworth, K. Guan, E. Dracup, T. Pederson, S. Driever, C. Bernacchi, T. Lawson, Plot-level rapid screening for photosynthetic parameters using proximal hyperspectral imaging, J. Exp. Bot. 71 (2020) 2312–2328.

[96]

Y. Yu, X. Yang, W. Fan, Remote sensing inversion of leaf maximum carboxylation rate based on a mechanistic photosynthetic model, IEEE Trans. Geosci. Remote Sens. 60 (2022) 1–12.

[97]

Y. Zhang, L. Guanter, J.A. Berry, J. Joiner, C. van der Tol, A. Huete, A. Gitelson, M. Voigt, P. Köhler, Estimation of vegetation photosynthetic capacity from space-based measurements of chlorophyll fluorescence for terrestrial biosphere models, Glob. Chang. Biol. 20 (2014) 3727–3742.

[98]

J.R. Rodríguez-Pérez, C. Ordóñez, A.B. González-Fernández, E. Sanz-Ablanedo, J.B. Valenciano, V. Marcelo, Leaf water content estimation by functional linear regression of field spectroscopy data, Biosyst. Eng. 165 (2018) 36–46.

[99]

M. Fang, W. Ju, W. Zhan, T. Cheng, F. Qiu, J. Wang, A new spectral similarity water index for the estimation of leaf water content from hyperspectral data of leaves, Remote Sens. Environ. 196 (2017) 13–27.

[100]

H. Li, W. Yang, J. Lei, J. She, X. Zhou, C. Ribeiro da Silva, Estimation of leaf water content from hyperspectral data of different plant species by using three new spectral absorption indices, PLoS ONE 16 (2021) e0249351.

[101]

J. Zhang, W. Zhang, S. Xiong, Z. Song, W. Tian, L. Shi, X. Ma, Comparison of new hyperspectral index and machine learning models for prediction of winter wheat leaf water content, Plant Methods 17 (2021) 34.

[102]

B. Bruning, H. Liu, C. Brien, B. Berger, M. Lewis, T. Garnett, The development of hyperspectral distribution maps to predict the content and distribution of nitrogen and water in wheat (Triticum aestivum), Front. Plant Sci. 10 (2019) 1380.

[103]

Y. Ge, G. Bai, V. Stoerger, J.C. Schnable, Temporal dynamics of maize plant growth, water use, and leaf water content using automated high throughput RGB and hyperspectral imaging, Comput. Electron. Agric. 127 (2016) 625–632.

[104]

X. Zhu, A.K. Skidmore, R. Darvishzadeh, T. Wang, Estimation of forest leaf water content through inversion of a radiative transfer model from LiDAR and hyperspectral data, Int. J. Appl. Earth Obs. Geoinf. 74 (2019) 120–129.

[105]

R.J. Murphy, B. Whelan, A. Chlingaryan, S. Sukkarieh, Quantifying leaf-scale variations in water absorption in lettuce from hyperspectral imagery: a laboratory study with implications for measuring leaf water content in the context of precision agriculture, Precis. Agric. 20 (2019) 767–787.

[106]

W. Kong, W. Huang, L. Ma, L. Tang, C. Li, X. Zhou, R. Casa, Estimating vertical distribution of leaf water content within wheat canopies after head emergence, Remote Sens. 13 (2021) 4125.

[107]

N. Jin, D. Zhang, Z. Li, L. He, Evaluation of water status of winter wheat based on simulated reflectance of multispectral satellites, Trans. Chin. Soc. Agric. Mach. 51 (2020) 243–252.

[108]

H.S. Ndlovu, J. Odindi, M. Sibanda, O. Mutanga, A. Clulow, V.G.P. Chimonyo, T. Mabhaudhi, A comparative estimation of maize leaf water content using machine learning techniques and unmanned aerial vehicle (UAV)-based proximal and remotely sensed data, Remote Sens. 13 (2021) 4091.

[109]

Y. Peng, Y. Xiao, Z. Fu, Y. Dong, X. Li, H. Yan, Y. Zheng, Water content detection of maize leaves based on multispectral images, Spectrosc. Spectr. Anal. 40 (2020) 1257–1262.

[110]

K. Watanabe, H. Agarie, K. Aparatana, M. Mitsuoka, E. Taira, M. Ueno, Y. Kawamitsu, Fundamental study on water stress detection in sugarcane using thermal image combined with photosynthesis measurement under a greenhouse condition, Sugar Tech. 24 (2022) 1382–1390.

[111]

P.R. Mwinuka, B.P. Mbilinyi, W.B. Mbungu, S.K. Mourice, H.F. Mahoo, P. Schmitter, The feasibility of hand-held thermal and UAV-based multispectral imaging for canopy water status assessment and yield prediction of irrigated african eggplant (Solanum aethopicum L.), Agric. Water Manage 245 (2021) 106584.

[112]

I. Torres, M. Sánchez, M. Benlloch-González, D. Pérez-Marín, Irrigation decision support based on leaf relative water content determination in olive grove using near infrared spectroscopy, Biosyst. Eng. 180 (2019) 50–58.

[113]

X. Jin, C. Shi, C.Y. Yu, T. Yamada, E.J. Sacks, Determination of leaf water content by visible and near-infrared spectrometry and multivariate calibration in miscanthus, Front. Plant Sci. 8 (2017) 721.

[114]

M.D. Fariñas, D. Jimenez-Carretero, D. Sancho-Knapik, J.J. Peguero-Pina, E. Gil-Pelegrín, T. , Gómez álvarez-Arenas, Instantaneous and non-destructive relative water content estimation from deep learning applied to resonant ultrasonic spectra of plant leaves, Plant Methods 15 (2019) 128.

[115]

M. Pagano, L. Baldacci, A. Ottomaniello, G. Dato, F. Chianucci, L. Masini, G. Carelli, A. Toncelli, P. Storchi, A. Tredicucci, P. Corona, Thz water transmittance and leaf surface area: an effective nondestructive method for determining leaf water content, Sensors 19 (2019) 4838.

[116]

R. Li, Y. Lu, J.M.R. Peters, B. Choat, A.J. Lee, Non-invasive measurement of leaf water content and pressure–volume curves using terahertz radiation, Sci. Rep. 10 (2020) 21028.

[117]

B. Cecilia, A. Francesca, P. Dalila, S. Carlo, G. Antonella, F. Francesco, R. Marco, C. Mauro, On-line monitoring of plant water status: validation of a novel sensor based on photon attenuation of radiation through the leaf, Sci. Total Environ. 817 (2022) 152881.

[118]

G. Gao, Q. Feng, X. Zhang, J. Si, T. Yu, An overview of stomatal and non-stomatal limitations to photosynthesis of plants, Arid Zone Res. 35 (2018) 929–937.

[119]

X. Li, X. Lu, J. Xi, Y. Zhang, M. Zhang, Univeisal method to detect the chlorophyll content in plant leaves with RGB images captured by smart phones, Trans. Chin. Soc Agric. Eng. 37 (2021) 145–151.

[120]

J. Li, N.K. Wijewardane, Y. Ge, Y. Shi, Improved chlorophyll and water content estimations at leaf level with a hybrid radiative transfer and machine learning model, Comput. Electron. Agric. 206 (2023) 107669.

[121]

L. Cheng, X. Zhu, L. Gao, C. Li, L. Wang, G. Zhao, Y. Jiang, Estimation of chlorophyll content in apple leaves based on RGB model using digital camera, Acta Hortic. Sin. 44 (2017) 381–390.

[122]

H. Zhang, M. Zhang, L. Bian, Y. Ge, X. Li, Estimation and visualization of the chlorophyll content in plant based on YOLOv5, Trans. Chin. Soc. Agric. Mach. 53 (2022) 313–321.

[123]

M. Pérez-Patricio, J. Camas-Anzueto, A. Sanchez-Alegría, A. Aguilar-González, F. Gutiérrez-Miceli, E. Escobar-Gómez, Y. Voisin, C. Rios-Rojas, R. Grajales-Coutiño, Optical method for estimating the chlorophyll contents in plant leaves, Sensors 18 (2018) 650.

[124]

H. Jiang, X. Jiang, Y. Ru, Q. Chen, J. Wang, L. Xu, H. Zhou, Detection and visualization of soybean protein powder in ground beef using visible and near-infrared hyperspectral imaging, Infrared Phys. Technol. 127 (2022) 104401.

[125]

Y. Wang, X. Hu, G.e. Jin, Z. Hou, J. Ning, Z. Zhang, Rapid prediction of chlorophylls and carotenoids content in tea leaves under different levels of nitrogen application based on hyperspectral imaging, J. Sci. Food Agric. 99 (2019) 1997–2004.

[126]

T. Guo, C. Tan, Q. Li, G. Cui, H. Li, Estimating leaf chlorophyll content in tobacco based on various canopy hyperspectral parameters, J. Ambient Intell. Hum. Comput. 10 (2019) 3239–3247.

[127]

J. Zhang, H. Tian, D. Wang, H. Li, A.M. Mouazen, A novel spectral index for estimation of relative chlorophyll content of sugar beet, Comput. Electron. Agric. 184 (2021) 106088.

[128]

W. Li, Z. Sun, S. Lu, K. Omasa, Estimation of the leaf chlorophyll content using multiangular spectral reflectance factor, Plant Cell Environ. 42 (2019) 3152–3165.

[129]

Y. Zhao, C. Yan, S. Lu, P. Wang, G.Y. Qiu, R. Li, Estimation of chlorophyll content in intertidal mangrove leaves with different thicknesses using hyperspectral data, Ecol. Ind. 106 (2019) 105511.

[130]

B. Wu, H. Ye, W. Huang, H. Wang, P. Luo, Y. Ren, W. Kong, Monitoring the vertical distribution of maize canopy chlorophyll content based on multi-angular spectral data, Remote Sens. 13 (2021) 987.

[131]

G. Sun, X. Wang, Y. Sun, Y. Ding, W. Lu, Measurement method based on multispectral three-dimensional imaging for the chlorophyll contents of greenhouse tomato plants, Sensors 19 (2019) 3345.

[132]

A.M. Ali, R. Darvishzadeh, A. Skidmore, T.W. Gara, B.O. Connor, C. Roeoesli, M. Heurich, M. Paganini, Comparing methods for mapping canopy chlorophyll content in a mixed mountain forest using Sentinel-2 data, Int. J. Appl. Earth Obs. Geoinf. 87 (2020) 102037.

[133]

Y. Cao, K. Jiang, J. Wu, F. Yu, W. Du, T. Xu, W. Li, Inversion modeling of japonica rice canopy chlorophyll content with UAV hyperspectral remote sensing, PLoS ONE 15 (2020) e0238530.

[134]

J.M. Hoeppner, A.K. Skidmore, R. Darvishzadeh, M. Heurich, H. Chang, T.W. Gara, Mapping canopy chlorophyll content in a temperate forest using airborne hyperspectral data, Remote Sens. 12 (2020) 3573.

[135]

Y. Xu, V. Shrestha, C. Piasecki, B. Wolfe, L. Hamilton, R.J. Millwood, M. Mazarei, C.N. Stewart, Sustainability trait modeling of field-grown switchgrass (Panicum virgatum) using UAV-based imagery, Plants 10 (2021) 2726.

[136]

J. Li, Y. Shi, A. Veeranampalayam-Sivakumar, D.P. Schachtman, Elucidating sorghum biomass, nitrogen and chlorophyll contents with spectral and morphological traits derived from unmanned aircraft system, Front. Plant Sci. 9 (2018) 1406.

[137]

P. Campbell, E. Middleton, K. Huemmrich, L. Ward, T. Julitta, P. Yang, C. van der Tol, C. Daughtry, A. Russ, J. Alfieri, W. Kustas, Scaling photosynthetic function and CO2 dynamics from leaf to canopy level for maize – dataset combining diurnal and seasonal measurements of vegetation fluorescence, reflectance and vegetation indices with canopy gross ecosystem productivity, Data Brief 39 (2021) 107600.

[138]

H. Zhang, Y. Ge, X. Xie, A. Atefi, N.K. Wijewardane, S. Thapa, High throughput analysis of leaf chlorophyll content in sorghum using RGB, hyperspectral, and fluorescence imaging and sensor fusion, Plant Methods 18 (2022) 60.

[139]

B. Ye, S. Shi, R. Zhang, P. Nie, X. Tang, K. Wang, Effects of nitrogen deficiency and nitrogen recovery treatments on growth and some physiological and biochemical indexes of Isatis indigotica seedlings, J. Plant Resour. Environ. 24 (2015) 83–88.

[140]

M. Grzybowski, N.K. Wijewardane, A. Atefi, Y. Ge, J.C. Schnable, Hyperspectral reflectance-based phenotyping for quantitative genetics in crops: progress and challenges, Plant Commun. 2 (2021) 100209.

[141]

W. Yuan, H. Jiang, M. Sun, Y.U. Zhou, C. Zhang, H. Zhou, Geographical origin identification of Chinese tomatoes using long-wave fourier-transform near-infrared spectroscopy combined with deep learning methods, Food Anal. Methods 16 (2023) 664–676.

[142]

H. Yang, T. Inagaki, T. Ma, S. Tsuchikawa, High-resolution and non-destructive evaluation of the spatial distribution of nitrate and its dynamics in spinach (Spinacia oleracea L.) Leaves by near-infrared hyperspectral imaging, Front. Plant Sci. 8 (2017) 1937.

[143]

X. Ye, S. Abe, S. Zhang, Estimation and mapping of nitrogen content in apple trees at leaf and canopy levels using hyperspectral imaging, Precis. Agric. 21 (2020) 198–225.

[144]

L. Li, S. Wang, T. Ren, Y. Ma, Q. Wei, W. Gao, J. Lu, Evaluating models of leaf phosphorus content of winter oilseed rape based on hyperspectral data, Trans. Chin. Soc Agric. Eng. 32 (2016) 209–218.

[145]

P. Pandey, Y. Ge, V. Stoerger, J.C. Schnable, High throughput in vivo analysis of plant leaf chemical properties using hyperspectral imaging, Front. Plant Sci. 8 (2017) 1348.

[146]

Y. Xiong, S. Ohashi, K. Nakano, W. Jiang, K. Takizawa, K. Iijima, P. Maniwara, Quantification of potassium concentration with Vis-SWNIR spectroscopy in fresh lettuce, J. Innov. Opt. Health Sci. 13 (2020) 2050029.

[147]

W. Liu, Y. Li, F. Tomasetto, W. Yan, Z. Tan, J. Liu, J. Jiang, Non-destructive measurements of toona sinensis chlorophyll and nitrogen content under drought stress using near infrared spectroscopy, Front. Plant Sci. 12 (2022) 809828.

[148]

Y. Ge, A. Atefi, H. Zhang, C. Miao, R.K. Ramamurthy, B. Sigmon, J. Yang, J.C. Schnable, High-throughput analysis of leaf physiological and chemical traits with VIS–NIR–SWIR spectroscopy: a case study with a maize diversity panel, Plant Methods 15 (2019) 66.

[149]

J. Chen, F. Li, R. Wang, Y. Fan, M.A. Raza, Q. Liu, Z. Wang, Y. Cheng, X. Wu, F. Yang, W. Yang, Estimation of nitrogen and carbon content from soybean leaf reflectance spectra using wavelet analysis under shade stress, Comput. Electron. Agric. 156 (2019) 482–489.

[150]

J. Lu, T. Yang, X.I. Su, H. Qi, X. Yao, T. Cheng, Y. Zhu, W. Cao, Y. Tian, Monitoring leaf potassium content using hyperspectral vegetation indices in rice leaves, Precis. Agric. 21 (2020) 324–348.

[151]

J. Wang, C. Shen, N. Liu, X. Jin, X. Fan, C. Dong, Y. Xu, Non-destructive evaluation of the leaf nitrogen concentration by in-field Visible/Near-Infrared spectroscopy in pear orchards, Sensors 17 (2017) 538.

[152]

D. Li, C. Wang, H. Jiang, Z. Peng, J. Yang, Y. Su, J. Song, S. Chen, Monitoring litchi canopy foliar phosphorus content using hyperspectral data, Comput. Electron. Agric. 154 (2018) 176–186.

[153]

T. Yang, J. Lu, F. Liao, H. Qi, X. Yao, T. Cheng, Y. Zhu, W. Cao, Y. Tian, Retrieving potassium levels in wheat blades using normalised spectra, Int. J. Appl. Earth Obs. Geoinf. 102 (2021) 102412.

[154]

S. Ban, M. Tian, Q. Chang, Q. Wang, F. Li, Estimation of rice leaf phosphorus content using UAV-based hyperspectral images, Trans. Chin. Soc. Agric. Mach. 52 (2021) 163–171.

[155]

L.P. Osco, A.P. Marques Ramos, É.A. Saito Moriya, M. de Souza, J. Marcato Junior, E.T. Matsubara, N.N. Imai, J.E. Creste, Improvement of leaf nitrogen content inference in valencia-orange trees applying spectral analysis algorithms in UAV mounted-sensor images, Int. J. Appl. Earth Obs. Geoinf. 83 (2019) 101907.

[156]

A. Siedliska, P. Baranowski, J. Pastuszka-Woźniak, M. Zubik, J. Krzyszczak, Identification of plant leaf phosphorus content at different growth stages based on hyperspectral reflectance, BMC Plant Biol. 21 (2021) 1–17.

[157]

R.H. Furlanetto, M. Rafael Nanni, L. Guilherme Teixeira Crusiol, G.F.C. Silva, A.D.O. Junior, R.N.R. Sibaldelli, Identification and quantification of potassium (K+) deficiency in maize plants using an unmanned aerial vehicle and visible / near-infrared semi-professional digital camera, Int. J. Remote Sens. 42 (2021) 8783–8804.

[158]

P. Wei, X. Xu, Z. Li, G. Yang, Z. Li, H. Feng, G. Chen, L. Fan, Y. Wang, S. Liu, Remote sensing estimation of nitrogen content in summer maize leaves based on multispectral images of UAV, Trans. Chin. Soc. Agric. Eng. 35 (2019) 126–133,335.

[159]

L. Wang, S. Chen, D. Li, C. Wang, H. Jiang, Q. Zheng, Z. Peng, Estimation of paddy rice nitrogen content and accumulation both at leaf and plant levels from UAV hyperspectral imagery, Remote Sens. 13 (2021) 2956.

[160]

B. Yang, J. Ma, X. Yao, W. Cao, Y. Zhu, Estimation of leaf nitrogen content in wheat based on fusion of spectral features and deep features from near infrared hyperspectral imagery, Sensors 21 (2021) 613.

[161]

J. Zhang, T. Cheng, L. Shi, W. Wang, Z. Niu, W. Guo, X. Ma, Combining spectral and texture features of UAV hyperspectral images for leaf nitrogen content monitoring in winter wheat, Int. J. Remote Sens. 43 (2022) 2335–2356.

[162]

Z. Fu, S. Yu, J. Zhang, H. Xi, Y. Gao, R. Lu, H. Zheng, Y. Zhu, W. Cao, X. Liu, Combining UAV multispectral imagery and ecological factors to estimate leaf nitrogen and grain protein content of wheat, Eur. J. Agron. 132 (2022) 126405.

[163]

Z. Chen, X. Wang, Model for estimation of total nitrogen content in sandalwood leaves based on nonlinear mixed effects and dummy variables using multispectral images, Chemom. Intell. Lab. Syst. 195 (2019) 103874.

[164]

J. Jiang, J. Zhu, X. Wang, T. Cheng, Y. Tian, Y. Zhu, W. Cao, X. Yao, Estimating the leaf nitrogen content with a new feature extracted from the ultra-high spectral and spatial resolution images in wheat, Remote Sens. 13 (2021) 739.

[165]

L. Li, B. Jákli, P. Lu, T. Ren, J. Ming, S. Liu, S. Wang, J. Lu, Assessing leaf nitrogen concentration of winter oilseed rape with canopy hyperspectral technique considering a non-uniform vertical nitrogen distribution, Ind. Crop Prod. 116 (2018) 1–14.

[166]

T. Li, Z. Zhu, J. Cui, J. Chen, X. Shi, X.U. Zhao, M. Jiang, Y. Zhang, W. Wang, H. Wang, Monitoring of leaf nitrogen content of winter wheat using multi-angle hyperspectral data, Int. J. Remote Sens. 42 (2021) 4672–4692.

[167]

J. Shi, Y. Wang, Z. Li, X. Huang, T. Shen, X. Zou, Simultaneous and nondestructive diagnostics of nitrogen/magnesium/potassium-deficient cucumber leaf based on chlorophyll density distribution features, Biosyst. Eng. 212 (2021) 458–467.

[168]

J.P. Baresel, P. Rischbeck, Y. Hu, S. Kipp, Y. Hu, G. Barmeier, B. Mistele, U. Schmidhalter, Use of a digital camera as alternative method for nondestructive detection of the leaf chlorophyll content and the nitrogen nutrition status in wheat, Comput. Electron. Agric. 140 (2017) 25–33.

[169]

J. Yang, L. Du, W. Gong, S. Shi, J. Sun, B. Chen, Analyzing the performance of the first-derivative fluorescence spectrum for estimating leaf nitrogen concentration, Opt. Express 27 (2019) 3978.

[170]

J. Yang, L. Du, W. Gong, S. Shi, J. Sun, B. Chen, Analyzing the performance of the first-derivative fluorescence spectrum for estimating leaf nitrogen concentration, Opt. Express 27 (2019) 3978.

[171]

Y. El-Mejjaouy, M. Lahrir, R. Naciri, Y. Zeroual, B. Mercatoris, B. Dumont, A. Oukarroum, How far can chlorophyll a fluorescence detect phosphorus status in wheat leaves (Triticum durum L.), Environ. Exp. Bot. 194 (2022) 104762.

[172]

M. Grieco, M. Schmidt, S. Warnemünde, A. Backhaus, H. Klück, A. Garibay, Y.A. Tandrón Moya, A.M. Jozefowicz, H. Mock, U. Seiffert, A. Maurer, K. Pillen, Dynamics and genetic regulation of leaf nutrient concentration in barley based on hyperspectral imaging and machine learning, Plant Sci. 315 (2022) 111123.

[173]

H. Li, J. Zhang, K. Xu, X. Jiang, Y. Zhu, W. Cao, J. Ni, Spectral monitoring of wheat leaf nitrogen content based on canopy structure information compensation, Comput. Electron. Agric. 190 (2021) 106434.

[174]

L. Bian, H. Zhang, Y. Ge, J. Cepl, J. Stejskal, Y.A. El-Kassaby, Closing the gap between phenotyping and genotyping: review of advanced, image-based phenotyping technologies in forestry, Ann. For. Sci. 79 (2022) 1–21.

The Crop Journal
Pages 1303-1318
Cite this article:
Zhang H, Wang L, Jin X, et al. High-throughput phenotyping of plant leaf morphological, physiological, and biochemical traits on multiple scales using optical sensing. The Crop Journal, 2023, 11(5): 1303-1318. https://doi.org/10.1016/j.cj.2023.04.014

262

Views

3

Downloads

20

Crossref

13

Web of Science

19

Scopus

0

CSCD

Altmetrics

Received: 13 December 2022
Revised: 02 March 2023
Accepted: 16 May 2023
Published: 29 June 2023
© 2023 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return