AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Assembly and phylogenomic analysis of cotton mitochondrial genomes provide insights into the history of cotton evolution

Yanlei Fenga,b,c,1Yukang Wanga,b,1Hejun Lua,1Jun LiaDelara Akhtera,b,dFang LiueTing ZhaoaXingxing ShenaXiaobo Lic,fJames WhelangTianzhen ZhangaJianping HuhRonghui Pana,b( )
College of Agriculture and Biotechnology & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058/311215, Zhejiang, China
Zhejiang Laboratory, Hangzhou 311121, Zhejiang, China
Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
Department of Genetics and Plant Breeding, Sylhet Agricultural University, Sylhet 3100, Bangladesh
State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 450000, Henan, China
Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
College of Life Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
Michigan State University, Department of Energy Plant Research Laboratory and Plant Biology Department, East Lansing, MI 48824, USA

1 These authors contributed equally to this work.

Show Author Information

Abstract

Cotton is a major crop that provides the most important renewable textile fibers in the world. Studies of the taxonomy and evolution of cotton species have received wide attentions, not only due to cotton’s economic value but also due to the fact that Gossypium is an ideal model system to study the origin, evolution, and cultivation of polyploid species. Previous studies suggested the involvement of mitochondrial genome editing sites and copy number as well as mitochondrial functions in cotton fiber elongation. Whereas, with only a few mitogenomes assembled in the cotton genus Gossypium, our knowledge about their roles in cotton evolution and speciation is still scarce. To close this gap, here we assembled 20 mitogenomes from 15 cotton species spanning all the cotton clades (A–G, K, and AD genomes) and 5 cotton relatives using short and long sequencing reads. Systematic analyses uncovered a high level of mitochondrial gene sequence conservation, abundant sequence repeats and many insertions of foreign sequences, as well as extensive structural variations in cotton mitogenomes. The sequence repeats and foreign sequences caused significant mitogenome size inflation in Gossypium and its close relative Kokia in general, while there is no significant difference between the lint and fuzz cotton mitogenomes in terms of gene content, RNA editing, and gene expression level. Interestingly, we further revealed the specific presence and expression of two novel mitochondrial open reading frames (ORFs) in lint-fiber cotton species. Finally, these structural features and novel ORFs help us gain valuable insights into the history of cotton evolution and polyploidization and the origin of species producing long lint fibers from a mitogenomic perspective.

References

[1]
J.F. Wendel, C.E. Grover, Taxonomy and evolution of the cotton genus, Gossypium, in: D.D. Fang, R.G. Percy (Eds.), Cotton, John Wiley & Sons, Madison, WI, USA, 2015, pp. 25–44.
[2]

J.F. Wendel, R.C. Cronn, Polyploidy and the evolutionary history of cotton, Adv. Agron. 78 (2003) 139–186.

[3]

J.F. Wendel, New World tetraploid cottons contain Old World cytoplasm, Proc. Natl. Acad. Sci. U. S. A. 86 (1989) 4132–4136.

[4]

W.L. Applequist, R. Cronn, J.F. Wendel, Comparative development of fiber in wild and cultivated cotton, Evol. Dev. 3 (2001) 3–17.

[5]

Y. Pang, H. Wang, W.Q. Song, Y.X. Zhu, The cotton ATP synthase δ1 subunit is required to maintain a higher ATP/ADP ratio that facilitates rapid fibre cell elongation, Plant Biol. 12 (2010) 903–909.

[6]

P. He, G. Xiao, H. Liu, L. Zhang, L.I. Zhao, M. Tang, S. Huang, Y. An, J. Yu, Two pivotal RNA editing sites in the mitochondrial atp1mRNA are required for ATP synthase to produce sufficient ATP for cotton fiber cell elongation, New Phytol. 218 (2018) 167–182.

[7]

J.P. Mower, Variation in protein gene and intron content among land plant mitogenomes, Mitochondrion 53 (2020) 203–213.

[8]

G.N. Thyssen, X. Song, M. Naoumkina, H.J. Kim, D.D. Fang, Independent replication of mitochondrial genes supports the transcriptional program in developing fiber cells of cotton, (Gossypium hirsutum) L., Gene 544 (2014) 41–48.

[9]

G.N. Thyssen, D.D. Fang, L. Zeng, X. Song, C.D. Delhom, T.L. Condon, P. Li, H.J. Kim, The immature fiber mutant phenotype of cotton (Gossypium hirsutum) is linked to a 22-bp frame-shift deletion in a mitochondria targeted pentatricopeptide repeat gene, G3-Genes Genomes Genet. 6 (2016) 1627–1633.

[10]

D. Zhang, C. Chen, H. Wang, E. Niu, P. Zhao, S. Fang, G. Zhu, X. Shang, W. Guo, Cotton fiber development requires the pentatricopeptide repeat protein ghim for splicing of mitochondrial nad7 mRNA, Genetics 217 (2021) 1–17.

[11]

C.J. Dong, A.M. Wu, S.J. Du, K. Tang, Y. Wang, J.Y. Liu, GhMCS1, the cotton orthologue of human GRIM-19, is a subunit of mitochondrial complex I and associated with cotton fibre growth, PLoS ONE 11 (2016) e0162928.

[12]

J. Yu, S. Jung, C.H. Cheng, S.P. Ficklin, T. Lee, P. Zheng, D. Jones, R.G. Percy, D. Main, CottonGen: a genomics, genetics and breeding database for cotton research, Nucleic Acids Res. 42 (2014) D1229–1236.

[13]

Y. Wu, F. Liu, D.G. Yang, W. Li, X.J. Zhou, X.Y. Pei, Y.G. Liu, K.L. He, W.S. Zhang, Z. Y. Ren, K.H. Zhou, X.F. Ma, Z.H. Li, Comparative chloroplast genomics of Gossypium species: insights into repeat sequence variations and phylogeny, Front. Plant Sci. 9 (2018) 376.

[14]

B. Lei, S. Li, G. Liu, Z. Chen, A. Su, P. Li, Z. Li, J. Hua, Evolution of mitochondrial gene content: loss of genes, tRNAs and introns between Gossypium harknessii and other plants, Plant Syst. Evol. 299 (2013) 1889–1897.

[15]

G. Liu, D. Cao, S. Li, A. Su, J. Geng, C.E. Grover, S. Hu, J. Hua, The complete mitochondrial genome of Gossypium hirsutum and evolutionary analysis of higher plant mitochondrial genomes, PLoS ONE 8 (2013) e69476.

[16]

M. Tang, Z. Chen, C.E. Grover, Y. Wang, S. Li, G. Liu, Z. Ma, J.F. Wendel, J. Hua, Rapid evolutionary divergence of Gossypium barbadense and G. hirsutum mitochondrial genomes, BMC Genomics 16 (2015) 770.

[17]

Z. Chen, N. Zhao, S. Li, C.E. Grover, H. Nie, J.F. Wendel, J. Hua, Plant mitochondrial genome evolution and cytoplasmic male sterility, Crit. Rev. Plant Sci. 36 (2017) 55–69.

[18]

F. Budar, G. Pelletier, Male sterility in plants: occurrence, determinism, significance and use, C. R. Acad. Sci. Ⅲ 324 (2001) 543–550.

[19]
T. Zhang, J.E. Endrizzi, Cytology and cytogenetics, in: D.D. Fang, R.G. Percy (Eds.), Cotton, John Wiley & Sons, Madison, WI, USA, 2015, pp. 129–154.
[20]

G. Huang, Z. Wu, R.G. Percy, M. Bai, Y. Li, J.E. Frelichowski, J. Hu, K. Wang, J.Z. Yu, Y. Zhu, Genome sequence of Gossypium herbaceum and genome updates of Gossypium arboreum and Gossypium hirsutum provide insights into cotton A-genome evolution, Nat. Genet. 52 (2020) 516–524.

[21]
J.F. Wendel, C. Brubaker, I. Alvarez, R. Cronn, J. McD, Stewart, Evolution and natural history of the cotton genus, in: A.H. Paterson (Ed.), Genetics and Genomics of Cotton, Springer, New York, NY, USA, 2009, pp. 3–22.
[22]

M. Kolmogorov, J. Yuan, Y.U. Lin, P.A. Pevzner, Assembly of long, error-prone reads using repeat graphs, Nat. Biotechnol. 37 (2019) 540–546.

[23]

C. Camacho, G. Coulouris, V. Avagyan, N. Ma, J. Papadopoulos, K. Bealer, T.L. Madden, BLAST+: architecture and applications, BMC Bioinformatics 10 (2009) 421

[24]

Y. Feng, X. Xiang, D. Akhter, R. Pan, Z. Fu, X. Jin, Mitochondrial phylogenomics of fagales provides insights into plant mitogenome mosaic evolution, Front. Plant Sci. 12 (2021) 762195.

[25]

A.M. Bolger, M. Lohse, B. Usadel, Trimmomatic: a flexible trimmer for Illumina sequence data, Bioinformatics 30 (2014) 2114–2120.

[26]

A. Bankevich, S. Nurk, D. Antipov, A.A. Gurevich, M. Dvorkin, A.S. Kulikov, V.M. Lesin, S.I. Nikolenko, S. Pham, A.D. Prjibelski, A.V. Pyshkin, A.V. Sirotkin, N. Vyahhi, G. Tesler, M.A. Alekseyev, P.A. Pevzner, SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing, J. Comput. Biol. 19 (2012) 455–477.

[27]
P.P. Chan, T.M. Lowe, tRNAscan-SE: searching for tRNA genes in genomic sequences, in: M. Kollmar (Ed.), Gene Prediction, Springer, New York, NY, USA, 2019, pp. 1–14.
[28]

M. Krzywinski, J. Schein, I. Birol, J. Connors, R. Gascoyne, D. Horsman, S.J. Jones, M.A. Marra, Circos: an information aesthetic for comparative genomics, Genome Res. 19 (2009) 1639–1645.

[29]
H. Wickham, ggplot2: Elegant Graphics for Data Analysis, Springer, Cham, Switzerland, 2016.
[30]

K. Katoh, D.M. Standley, MAFFT multiple sequence alignment software version 7: improvements in performance and usability, Mol. Biol. Evol. 30 (2013) 772–780.

[31]

L.T. Nguyen, H.A. Schmidt, A. von Haeseler, B.Q. Minh, IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies, Mol. Biol. Evol. 32 (2015) 268–274.

[32]

Y. Hu, J. Chen, L. Fang, Z. Zhang, W. Ma, Y. Niu, L. Ju, J. Deng, T. Zhao, J. Lian, K. Baruch, D. Fang, X. Liu, Y.L. Ruan, M.U. Rahman, J. Han, K. Wang, Q. Wang, H. Wu, G. Mei, Y. Zang, Z. Han, C. Xu, W. Shen, D. Yang, Z. Si, F. Dai, L. Zou, F. Huang, Y. Bai, Y. Zhang, A. Brodt, H. Ben-Hamo, X. Zhu, B. Zhou, X. Guan, S. Zhu, X. Chen, T. Zhang, Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton, Nat. Genet. 51 (2019) 739–748.

[33]

C.E. Grover, D. Yuan, M.A. Arick, E.R. Miller, G. Hu, D.G. Peterson, J.F. Wendel, J. A. Udall, The Gossypium anomalum genome as a resource for cotton improvement and evolutionary analysis of hybrid incompatibility, G3-Genes Genomes Genet. 11 (2021) jkab319.

[34]

Z. Yang, X. Ge, W. Li, Y. Jin, L. Liu, W. Hu, F. Liu, Y. Chen, S. Peng, F. Li, Cotton D genome assemblies built with long-read data unveil mechanisms of centromere evolution and stress tolerance divergence, BMC Biol. 19 (2021) 115.

[35]

M. Wang, J. Li, P. Wang, F. Liu, Z. Liu, G. Zhao, Z. Xu, L. Pei, C.E. Grover, J.F. Wendel, K. Wang, X. Zhang, Comparative genome analyses highlight transposon-mediated genome expansion and the evolutionary architecture of 3D genomic folding in cotton, Mol. Biol. Evol. 38 (2021) 3621–3636.

[36]

C.E. Grover, M. Pan, D. Yuan, M.A. Arick, G. Hu, L. Brase, D.M. Stelly, Z. Lu, R.J. Schmitz, D.G. Peterson, J.F. Wendel, J.A. Udall, The Gossypium longicalyx genome as a resource for cotton breeding and evolution, G3-Genes Genomes Genet. 10 (2020) 1457–1467.

[37]

J.A. Udall, E. Long, T. Ramaraj, J.L. Conover, D. Yuan, C.E. Grover, L. Gong, M.A. Arick, R.E. Masonbrink, D.G. Peterson, J.F. Wendel, The genome sequence of Gossypioides kirkii illustrates a descending dysploidy in plants, Front. Plant Sci. 10 (2019) 1541.

[38]

S.C. Boon, L. Lim, Organelle transcriptomes in plants, Transcriptomics 2 (2013) 1000e106.

[39]

T. Zhao, X. Tao, S. Feng, L. Wang, H. Hong, W. Ma, G. Shang, S. Guo, Y. He, B. Zhou, X. Guan, LncRNAs in polyploid cotton interspecific hybrids are derived from transposon neofunctionalization, Genome Biol. 19 (2018) 195.

[40]

D. Kim, J.M. Paggi, C. Park, C. Bennett, S.L. Salzberg, Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype, Nat. Biotechnol. 37 (2019) 907–915.

[41]

S. Anders, P.T. Pyl, W. Huber, HTSeq—a Python framework to work with high-throughput sequencing data, Bioinformatics 31 (2015) 166–169.

[42]

Z. Chen, K. Feng, C.E. Grover, P. Li, F. Liu, Y. Wang, Q. Xu, M. Shang, Z. Zhou, X. Cai, X. Wang, J.F. Wendel, K. Wang, J. Hua, Chloroplast DNA structural variation, phylogeny, and age of divergence among diploid cotton species, PLoS ONE 11 (2016) e0157183.

[43]

Z. Chen, C.E. Grover, P. Li, Y. Wang, H. Nie, Y. Zhao, M. Wang, F. Liu, Z. Zhou, X. Wang, X. Cai, K. Wang, J.F. Wendel, J. Hua, Molecular evolution of the plastid genome during diversification of the cotton genus, Mol. Phylogenet. Evol. 112 (2017) 268–276.

[44]

A. Tsitrone, M. Kirkpatrick, D.A. Levin, A model for chloroplast capture, Evolution 57 (2003) 1776–1782.

[45]
V. Knoop, U. Volkmar, J. Hecht, F. Grewe, Mitochondrial genome evolution in the plant lineage, in: F. Kempken (Ed.), Plant Mitochondria, Springer, New York, NY, USA, 2011, pp. 3–29.
[46]
J.P. Mower, D.B. Sloan, A.J. Alverson, Plant mitochondrial genome diversity: the genomics revolution, in: J.F. Wendel, J. Greilhuber, J. Dolezel, I.J. Leitch (Eds.), Plant Genome Diversity, Volume I, Springer, Vienna, Austria, 2012, pp. 123–144.
[47]

T. Kazama, M. Okuno, Y. Watari, S. Yanase, C. Koizuka, Y. Tsuruta, H. Sugaya, A. Toyoda, T. Itoh, N. Tsutsumi, K. Toriyama, N. Koizuka, S. ichi Arimura,, Curing cytoplasmic male sterility via TALEN-mediated mitochondrial genome editing, Nat. Plants 5 (2019) 722–730.

[48]

S. Li, Z. Chen, N. Zhao, Y. Wang, H. Nie, J. Hua, The comparison of four mitochondrial genomes reveals cytoplasmic male sterility candidate genes in cotton, BMC Genomics 19 (2018) 775.

[49]

S. O’Conner, L. Li, Mitochondrial fostering: the mitochondrial genome may play a role in plant orphan gene evolution, Front. Plant Sci. 11 (2020) 600117.

The Crop Journal
Pages 1782-1792
Cite this article:
Feng Y, Wang Y, Lu H, et al. Assembly and phylogenomic analysis of cotton mitochondrial genomes provide insights into the history of cotton evolution. The Crop Journal, 2023, 11(6): 1782-1792. https://doi.org/10.1016/j.cj.2023.05.004

273

Views

1

Downloads

3

Crossref

2

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 13 April 2023
Revised: 11 May 2023
Accepted: 15 June 2023
Published: 29 June 2023
© 2023 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return