AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

A differentially methylated region of the ZmCCT10 promoter affects flowering time in hybrid maize

Zhiqiang Zhou1Xin Lu1Chaoshu ZhangMingshun LiZhuanfang HaoDegui ZhangHongjun YongJienan HanXinhai Li( )Jianfeng Weng( )
Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China

1 These authors contributed equally to this work.

Show Author Information

Abstract

Flowering time (FT) is a key maize domestication trait, variation in which allows maize to grow in a wide range of latitudes. Although previous studies have investigated the genetic control of FT-related traits per se, few studies of FT hybrid performance have been published. We characterized the genomic architecture associated with hybrid performance for FT in a hybrid panel by testcrossing Chang 7–2 with 328 Ye478×Qi319 recombinant inbred lines (RILs). We identified 11 quantitative trait loci (QTL) for hybrid performance in FT-related traits, including a major QTL qFH10 that controls hybrid performance and heterosis in a summer maize-growing region. However, this locus acts in regulating FT traits per se only in a spring maize-growing region. We validated ZmCCT10 as a candidate gene for qFH10 and found that differences between hybrids and their parental lines in DNA methylation in the differentially methylated region (DMR, –700 to –1520) of the ZmCCT10 promoter affected gene expression pattern and thereby FT in the summer maize-growing region.

References

[1]

G. Larson, D.R. Piperno, R.G. Allaby, M.D. Purugganan, L. Andersson, M. Arroyo-Kalin, L. Barton, C. Climer Vigueira, T. Denham, K. Dobney, A.N. Doust, P. Gepts, M.T. Gilbert, K.J. Gremillion, L. Lucas, L. Lukens, F.B. Marshall, K.M. Olsen, J.C. Pires, P.J. Richerson, R. Rubio de Casas, O.I. Sanjur, M.G. Thomas, D.Q. Fuller, Current perspectives and the future of domestication studies, Proc. Natl. Acad. Sci. U.S.A. 111 (2014) 6139–6146.

[2]

D. Tilman, C. Balzer, J. Hill, B.L. Befort, Global food demand and the sustainable intensification of agriculture, Proc. Natl. Acad. Sci. U.S.A. 108 (2011) 20260–20264.

[3]

Z.B. Lippman, D. Zamir, Heterosis: revisiting the magic, Trends Genet. 23 (2007) 60–66.

[4]

C. Riedelsheimer, A. Czedik-Eysenberg, C. Grieder, J. Lisec, F. Technow, R. Sulpice, T. Altmann, M. Stitt, L. Willmitzer, A.E. Melchinger, Genomic and metabolic prediction of complex heterotic traits in hybrid maize, Nat. Genet. 44 (2012) 217–220.

[5]

Z. Zhou, C. Zhang, X. Lu, L. Wang, Z. Hao, M. Li, D. Zhang, H. Yong, H. Zhu, J. Weng, X. Li, Dissecting the genetic basis underlying combining ability of plant height related traits in maize, Front Plant Sci. 9 (2018) 1117.

[6]

Z.J. Chen, Molecular mechanisms of polyploidy and hybrid vigor, Trends Plant Sci. 15 (2010) 57–71.

[7]

D. Li, Z. Huang, S. Song, Y. Xin, D. Mao, Q. Lv, M. Zhou, D. Tian, M. Tang, Q. Wu, X. Liu, T. Chen, X. Song, X. Fu, B. Zhao, C. Liang, A. Li, G. Liu, S. Li, S. Hu, X. Cao, J. Yu, L. Yuan, C. Chen, L. Zhu, Integrated analysis of phenome, genome, and transcriptome of hybrid rice uncovered multiple heterosis-related loci for yield increase, Proc. Natl. Acad. Sci. U.S.A. 113 (2016) E6026–E6035.

[8]

M. Yang, X. Wang, D. Ren, H. Huang, M. Xu, G. He, X.W. Deng, Genomic architecture of biomass heterosis in Arabidopsis, Proc. Natl. Acad. Sci. U. S. A. 114 (2017) 8101–8106.

[9]

J. Xiao, J. Li, L. Yuan, S.D. Tanksley, Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers, Genetics 140 (1995) 745–754.

[10]

X. Huang, S. Yang, J. Gong, Q. Zhao, Q.i. Feng, Q. Zhan, Y. Zhao, W. Li, B. Cheng, J. Xia, N. Chen, T. Huang, L. Zhang, D. Fan, J. Chen, C. Zhou, Y. Lu, Q. Weng, B. Han, Genomic architecture of heterosis for yield traits in rice, Nature 537 (2016) 629–633.

[11]

Y. Jiang, R.H. Schmidt, Y. Zhao, J.C. Reif, A quantitative genetic framework highlights the role of epistatic effects for grain-yield heterosis in bread wheat, Nat. Genet. 49 (2017) 1741–1746.

[12]

H. Wang, X. Zhang, H. Yang, X. Liu, H. Li, L. Yuan, W. Li, Z. Fu, J. Tang, D. Kang, Identification of heterotic loci associated with grain yield and its components using two CSSL test populations in maize, Sci. Rep. 6 (2016) 38205.

[13]

H. Li, Q. Yang, L. Gao, M. Zhang, Z. Ni, Y. Zhang, Identification of heterosis-associated stable QTLs for ear-weight-related traits in an elite maize hybrid Zhengdan 958 by Design Ⅲ, Front. Plant Sci. 8 (2017) 561.

[14]

H. Liu, Q. Wang, M. Chen, Y. Ding, X. Yang, J. Liu, X. Li, C. Zhou, Q. Tian, Y. Lu, D. Fan, J. Shi, L. Zhang, C. Kang, M. Sun, F. Li, Y. Wu, Y. Zhang, B. Liu, X.Y. Zhao, Q.I. Feng, J. Yang, B. Han, J. Lai, X.S. Zhang, X. Huang, Genome-wide identification and analysis of heterotic loci in three maize hybrids, Plant Biotechnol. J. 18 (2020) 185–194.

[15]

Y. Xiao, S. Jiang, Q. Cheng, X. Wang, J. Yan, R. Zhang, F. Qiao, C. Ma, J. Luo, W. Li, H. Liu, W. Yang, W. Song, Y. Meng, M.L. Warburton, J. Zhao, X. Wang, J. Yan, The genetic mechanism of heterosis utilization in maize improvement, Genome Biol. 22 (2021) 148.

[16]

U. Krieger, Z.B. Lippman, D. Zamir, The flowering gene SINGLE FLOWER TRUSS drives heterosis for yield in tomato, Nat. Genet. 42 (2010) 459–463.

[17]

L. Zhang, H. Yu, B. Ma, G. Liu, J. Wang, J. Wang, R. Gao, J. Li, J. Liu, J. Xu, Y. Zhang, Q. Li, X. Huang, J. Xu, J. Li, Q. Qian, B. Han, Z. He, J. Li, A natural tandem array alleviates epigenetic repression of IPA1 and leads to superior yielding rice, Nat. Commun. 8 (2017) 14789.

[18]

J.A. Baldauf, C. Marcon, A. Lithio, L. Vedder, L. Altrogge, H.P. Piepho, H. Schoof, D. Nettleton, F. Hochholdinger, Single-parent expression is a general mechanism driving extensive complementation of non-syntenic genes in maize hybrids, Curr. Biol. 28 (2018) 431–437.

[19]

L. Shao, F. Xing, C. Xu, Q. Zhang, J. Che, X. Wang, J. Song, X. Li, J. Xiao, L.L. Chen, Y. Ouyang, Q. Zhang, Patterns of genome-wide allele-specific expression in hybrid rice and the implications on the genetic basis of heterosis, Proc. Natl. Acad. Sci. U.S.A. 116 (2019) 5653–5658.

[20]

Z. Ni, E.D. Kim, M. Ha, E. Lackey, J. Liu, Y. Zhang, Q. Sun, Z.J. Chen, Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids, Nature 457 (2009) 327–331.

[21]

R. Fujimoto, J.M. Taylor, S. Shirasawa, W.J. Peacock, E.S. Dennis, Heterosis of Arabidopsis hybrids between C24 and Col is associated with increased photosynthesis capacity, Proc. Natl. Acad. Sci. U. S. A. 109 (2012) 7109–7114.

[22]

D.W. Ng, M. Miller, H.H. Yu, T.Y. Huang, E.D. Kim, J. Lu, Q. Xie, C.R. McClung, Z.J. Chen, A role for CHH methylation in the parent-of-origin effect on altered circadian rhythms and biomass heterosis in Arabidopsis intraspecific hybrids, Plant Cell 26 (2014) 2430–2440.

[23]

M. Luo, G. Rios, T.J. Sarnowski, S. Zhang, N. Mantri, J.B. Charron, M. Libault, Editorial: New insights into mechanisms of epigenetic modifiers in plant growth and development, Front. Plant Sci. 10 (2019) 1661.

[24]

H. Xie, Y. Han, X. Li, W. Dai, X. Song, K.M. Olsen, S. Qiang, Climate-dependent variation in cold tolerance of weedy rice and rice mediated by OsICE1 promoter methylation, Mol. Ecol. 29 (2020) 121–137.

[25]

G. He, B. Chen, X. Wang, X. Li, J. Li, H. He, M. Yang, L. Lu, Y. Qi, X. Wang, X.W. Deng, Conservation and divergence of transcriptomic and epigenomic variation in maize hybrids, Genome Biol. 14 (2013) R57.

[26]

S. Ducrocq, D. Madur, J.B. Veyrieras, L. Camus-Kulandaivelu, M. Kloiber-Maitz, T. Presterl, M. Ouzunova, D. Manicacci, A. Charcosset, Key impact of Vgt1 on flowering time adaptation in maize: evidence from association mapping and ecogeographical information, Genetics 178 (2008) 2433–2437.

[27]

S. Castelletti, R. Tuberosa, M. Pindo, S. Salvi, A MITE transposon insertion is associated with differential methylation at the maize flowering time QTL Vgt1, G3-Genes Genomics Genet. 4 (2014) 805–812.

[28]

C. Lu, J. Chen, Y. Zhang, Q. Hu, W. Su, H. Kuang, Miniature inverted-repeat transposable elements (MITEs) have been accumulated through amplification bursts and play important roles in gene expression and species diversity in Oryza sativa, Mol. Biol. Evol. 29 (2012) 1005–1017.

[29]

R.K. Chodavarapu, S. Feng, B.O. Ding, S.A. Simon, D. Lopez, Y. Jia, G.L. Wang, B.C. Meyers, S.E. Jacobsen, M. Pellegrini, Transcriptome and methylome interactions in rice hybrids, Proc. Natl. Acad. Sci. U. S. A. 109 (2012) 12040–12045.

[30]

Q. Zhang, D. Wang, Z. Lang, L. He, L. Yang, L. Zeng, Y. Li, C. Zhao, H. Huang, H. Zhang, H. Zhang, J.K. Zhu, Methylation interactions in Arabidopsis hybrids require RNA-directed DNA methylation and are influenced by genetic variation, Proc. Natl. Acad. Sci. U. S. A. 113 (2016) E4248–E4256.

[31]

J. Xu, G. Chen, P.J. Hermanson, Q. Xu, C. Sun, W. Chen, Q. Kan, M. Li, P.A. Crisp, J. Yan, L. Li, N.M. Springer, Q. Li, Population-level analysis reveals the widespread occurrence and phenotypic consequence of DNA methylation variation not tagged by genetic variation in maize, Genome Biol. 20 (2019) 243.

[32]

F. Andrés, G. Coupland, The genetic basis of flowering responses to seasonal cues, Nat. Rev. Genet. 13 (2012) 627–639.

[33]

Y. Matsuoka, Y. Vigouroux, M.M. Goodman, J. Sanchez, E. Buckler, J. Doebley, A single domestication for maize shown by multilocus microsatellite genotyping, Proc. Natl. Acad. Sci. U. S. A. 99 (2002) 6080–6084.

[34]

E.S. Buckler, J.B. Holland, P.J. Bradbury, C.B. Acharya, P.J. Brown, C. Browne, E. Ersoz, S. Flint-Garcia, A. Garcia, J.C. Glaubitz, M.M. Goodman, C. Harjes, K. Guill, D.E. Kroon, S. Larsson, N.K. Lepak, H. Li, S.E. Mitchell, G. Pressoir, J.A. Peiffer, M.O. Rosas, T.R. Rocheford, M.C. Romay, S. Romero, S. Salvo, H.S. Villeda, H. Sofia da Silva, Q.I. Sun, F. Tian, N. Upadyayula, D. Ware, H. Yates, J. Yu, Z. Zhang, S. Kresovich, M.D. McMullen, The genetic architecture of maize flowering time, Science 325 (2009) 714–718.

[35]

K. Swarts, R.M. Gutaker, B. Benz, M. Blake, R. Bukowski, J. Holland, M. Kruse-Peeples, N. Lepak, L. Prim, M.C. Romay, J. Ross-Ibarra, J.d.J. Sanchez-Gonzalez, C. Schmidt, V.J. Schuenemann, J. Krause, R.G. Matson, D. Weigel, E.S. Buckler, H.A. Burbano, Genomic estimation of complex traits reveals ancient maize adaptation to temperate North America, Science 357 (2017) 512–515.

[36]

F. Bonnafous, G. Fievet, N. Blanchet, M.-C. Boniface, S. Carrère, J. Gouzy, L. Legrand, G. Marage, E. Bret-Mestries, S. Munos, N. Pouilly, P. Vincourt, N. Langlade, B. Mangin, Comparison of GWAS models to identify non-additive genetic control of flowering time in sunflower hybrids, Theor. Appl. Genet. 131 (2018) 319–332.

[37]

Y.J. Zhu, Y.Y. Fan, K. Wang, D.R. Huang, W.Z. Liu, J.Z. Ying, J.Y. Zhuang, Rice Flowering Locus T1 plays an important role in heading date influencing yield traits in rice, Sci. Rep. 7 (2017) 4918.

[38]

X. Meng, M.G. Muszynski, O.N. Danilevskaya, The FT-like ZCN8 gene functions as a floral activator and is involved in photoperiod sensitivity in maize, Plant Cell 23 (2011) 942–960.

[39]

M.G. Muszynski, T. Dam, B. Li, D.M. Shirbroun, Z. Hou, E. Bruggemann, R. Archibald, E.V. Ananiev, O.N. Danilevskaya, Delayed flowering1 encodes a basic leucine zipper protein that mediates floral inductive signals at the shoot apex in maize, Plant Physiol. 142 (2006) 1523–1536.

[40]

K. Bomblies, J.F. Doebley, Pleiotropic effects of the duplicate maize FLORICAULA/LEAFY genes zfl1 and zfl2 on traits under selection during maize domestication, Genetics 172 (2006) 519–531.

[41]

T.A. Miller, E.H. Muslin, J.E. Dorweiler, A maize CONSTANS-like gene, conz1, exhibits distinct diurnal expression patterns in varied photoperiods, Planta 227 (2008) 1377–1388.

[42]

F. Chardon, B. Virlon, L. Moreau, M. Falque, J. Joets, L. Decousset, A. Murigneux, A. Charcosset, Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome, Genetics 168 (2004) 2169–2185.

[43]

H.Y. Hung, L.M. Shannon, F. Tian, P.J. Bradbury, C. Chen, S.A. Flint-Garcia, M.D. McMullen, D. Ware, E.S. Buckler, J.F. Doebley, J.B. Holland, ZmCCT and the genetic basis of day-length adaptation underlying the postdomestication spread of maize, Proc. Natl. Acad. Sci. U. S. A. 109 (2012) E1913–E1921.

[44]

C. Huang, H. Sun, D. Xu, Q. Chen, Y. Liang, X. Wang, G. Xu, J. Tian, C. Wang, D. Li, L. Wu, X. Yang, W. Jin, J.F. Doebley, F. Tian, ZmCCT9 enhances maize adaptation to higher latitudes, Proc. Natl. Acad. Sci. U. S. A. 115 (2018) E334–E341.

[45]

Q. Yang, Z. Li, W. Li, L. Ku, C. Wang, J. Ye, K. Li, N. Yang, Y. Li, T. Zhong, J. Li, Y. Chen, J. Yan, X. Yang, M. Xu, CACTA-like transposable element in ZmCCT attenuated photoperiod sensitivity and accelerated the postdomestication spread of maize, Proc. Natl. Acad. Sci. U. S. A. 110 (2013) 16969–16974.

[46]

H. Liu, X. Zhou, Q. Li, L. Wang, Y. Xing, CCT domain-containing genes in cereal crops: flowering time and beyond, Theor. Appl. Genet. 133 (2020) 1385–1396.

[47]

Z. Zhou, C. Zhang, Y. Zhou, Z. Hao, Z. Wang, X. Zeng, H. Di, M. Li, D. Zhang, H. Yong, S. Zhang, J. Weng, X. Li, Genetic dissection of maize plant architecture with an ultra-high density bin map based on recombinant inbred lines, BMC Genomics 17 (2016) 178.

[48]

C. Zhang, Z. Zhou, H. Yong, X. Zhang, Z. Hao, F. Zhang, M. Li, D. Zhang, X. Li, Z. Wang, J. Weng, Analysis of the genetic architecture of maize ear and grain morphological traits by combined linkage and association mapping, Theor. Appl. Genet. 130 (2017) 1011–1029.

[49]

D.K. Seymour, E. Chae, D.G. Grimm, C. Martín Pizarro, A. Habring-Müller, F. Vasseur, B. Rakitsch, K.M. Borgwardt, D. Koenig, D. Weigel, Genetic Architecture of Nonadditive Inheritance in Arabidopsis thaliana hybrids, Proc. Natl. Acad. Sci. U. S. A. 113 (46) (2016).

[50]

K. Tamura, G. Stecher, D. Peterson, A. Filipski, S. Kumar, MEGA6: molecular evolutionary genetics analysis version 6.0, Mol. Biol. Evol. 30 (2013) 2725–2729.

[51]

K.W. Broman, H. Wu, S. Sen, G.A. Churchill, R/qtl: QTL mapping in experimental crosses, Bioinformatics 19 (2003) 889–890.

[52]

D.G. Grimm, D. Roqueiro, P.A. Salome, S. Kleeberger, B. Greshake, W. Zhu, C. Liu, C. Lippert, O. Stegle, B. Schölkopf, D. Weigel, K.M. Borgwardt, easyGWAS: a cloud-based platform for comparing the results of genome-wide association studies, Plant Cell 29 (2017) 5–19.

[53]

K.J. Livak, T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method, Methods 25 (2001) 402–408.

[54]

W. Xue, Y. Xing, X. Weng, Y.U. Zhao, W. Tang, L. Wang, H. Zhou, S. Yu, C. Xu, X. Li, Q. Zhang, Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice, Nat. Genet. 40 (2008) 761–767.

[55]

C. Andorf, W.D. Beavis, M. Hufford, S. Smith, W.P. Suza, K. Wang, M. Woodhouse, J. Yu, T. Lübberstedt, Technological advances in maize breeding: past, present and future, Theor. Appl. Genet. 132 (2019) 817849.

[56]

C. Wang, Y. Chen, L. Ku, T. Wang, Z. Sun, F. Cheng, L. Wu, P.K. Ingvarsson, Mapping QTL associated with photoperiod sensitivity and assessing the importance of QTL×environment interaction for flowering time in maize, PLoS ONE 5 (2010) e14068.

[57]

J.A. Romero Navarro, M. Willcox, J. Burgueño, C. Romay, K. Swarts, S. Trachsel, E. Preciado, A. Terron, H.V. Delgado, V. Vidal, A. Ortega, A.E. Banda, N.O.G. Montiel, I. Ortiz-Monasterio, F.S. Vicente, A.G. Espinoza, G. Atlin, P. Wenzl, S. Hearne, E.S. Buckler, A study of allelic diversity underlying flowering-time adaptation in maize landraces, Nat. Genet. 49 (2017) 476–480.

[58]

Z. Lin, P. Qin, X. Zhang, C. Fu, H. Deng, X. Fu, Z. Huang, S. Jiang, C. Li, X. Tang, X. Wang, G. He, Y. Yang, H. He, X.W. Deng, Divergent Selection And Genetic Introgression Shape The Genome Landscape Of Heterosis In Hybrid Rice, Proc. Natl. Acad. Sci. U. S. A. 117 (2020) 4623–4631.

[59]

I.T. Silva, H.K.R. Abbaraju, L.P. Fallis, H. Liu, M. Lee, K.S. Dhugga, Biochemical and genetic analyses of N metabolism in maize testcross seedlings: 2. Roots, Theor. Appl. Genet. 131 (2018) 1191–1205.

[60]

T. Zhang, L. Han, J. Xu, K. Jiang, X. Wu, X. Wang, J. Zheng, Correlation between genetic distance and yield heterosis of hybrid aromatic rice, Sci. Agric. Sin. 39 (2006) 831–835.

[61]

H. Shen, H. He, J. Li, W. Chen, X. Wang, L. Guo, Z. Peng, G. He, S. Zhong, Y. Qi, W. Terzaghi, X.W. Deng, Genome-wide analysis of DNA methylation and gene expression changes in two Arabidopsis ecotypes and their reciprocal hybrids, Plant Cell 24 (2012) 875–892.

[62]

I.K. Greaves, M. Groszmann, A. Wang, W.J. Peacock, E.S. Dennis, Inheritance of trans chromosomal methylation patterns from Arabidopsis F1 hybrids, Proc. Natl. Acad. Sci. U. S. A. 111 (2014) 2017–2022.

[63]

I.K. Greaves, M. Groszmann, H. Ying, J.M. Taylor, W.J. Peacock, E.S. Dennis, Trans chromosomal methylation in Arabidopsis hybrids, Proc. Natl. Acad. Sci. U. S. A. 109 (2012) 3570–3575.

[64]

Y. Li, L. Tong, L. Deng, Q. Liu, Y. Xing, C. Wang, B. Liu, X. Yang, M. Xu, Evaluation of ZmCCT haplotypes for genetic improvement of maize hybrids, Theor. Appl. Genet. 130 (2017) 2587–2600.

The Crop Journal
Pages 1380-1389
Cite this article:
Zhou Z, Lu X, Zhang C, et al. A differentially methylated region of the ZmCCT10 promoter affects flowering time in hybrid maize. The Crop Journal, 2023, 11(5): 1380-1389. https://doi.org/10.1016/j.cj.2023.05.006

228

Views

3

Downloads

2

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 14 September 2022
Revised: 20 October 2022
Accepted: 15 June 2023
Published: 29 June 2023
© 2023 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return