AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Genetic and environmental control of rice tillering

Yuping Yan1Chaoqing Ding1Guangheng ZhangJiang HuLi ZhuDali ZengQian Qian( )Deyong Ren( )
State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, Zhejiang, China

1 These authors contributed equally to this work.

Show Author Information

Abstract

Increasing tiller number is a target of high-yield rice breeding. Identification of tiller-defect mutants and their corresponding genes is helpful for clarifying the molecular mechanism of rice tillering. Summarizing research progress on the two processes of rice tiller formation, namely the formation and growth of axillary meristem, this paper reviews the effects of genetic factors, endogenous hormones, and exogenous environment on rice tillering, finding that multiple molecular mechanisms and signal pathways regulating rice tillering cooperate rice tillering, and discusses future research objectives and application of its regulatory mechanism. Elucidation of theis mechanism will be helpful for breeding high-yielding rice cultivars with ideal plant type via molecular design breeding.

References

[1]

J. Peng, D.E. Richards, N.M. Hartley, G.P. Murphy, K.M. Devos, J.E. Flintham, J. Beales, L.J. Fish, A.J. Worland, F. Pelica, D. Sudhakar, P. Christou, J.W. Snape, M.D. Gale, N.P. Harberd, ’Green revolution’ genes encode mutant gibberellin response modulators, Nature 400 (1999) 256–261.

[2]

S.B. Yu, J. Ali, S.C. Zhou, G.J. Ren, H.A. Xie, J.L. Xu, X.Q. Yu, F.S. Zhou, S.B. Peng, L.Y. Ma, D.Y. Yuan, Z.F. Li, D.Z. Chen, R.F. Zheng, Z.G. Zhao, C.C. Chu, A.Q. You, Y. Wei, S.S. Zhu, Q.Y. Gu, G.C. He, S.G. Li, G.F. Liu, C.H. Liu, C.P. Zhang, J.H. Xiao, L.J. Luo, Z.K. Li, Q.F. Zhang, From Green Super Rice to green agriculture: reaping the promise of functional genomics research, Mol. Plant 15 (2022) 9–26.

[3]

Y. Ouyang, X.U. Li, Q. Zhang, Understanding the genetic and molecular constitutions of heterosis for developing hybrid rice, J. Genet. Genomics 49 (2022) 385–393.

[4]

X.H. Huang, S.H. Yang, J.Y. Gong, Q. Zhao, Q. Feng, Q.L. Zhan, Y. Zhao, W.J. Li, B.Y. Cheng, J.H. Xia, N. Chen, T. Huang, L. Zhang, D.L. Fan, J.Y. Chen, C.C. Zhou, Y.Q. Lu, Q.J. Weng, B. Han, Genomic architecture of heterosis for yield traits in rice, Nature 537 (2016) 629–633.

[5]

S.B. Wei, X. Li, Z.F. Lu, H. Zhang, X.Y. Ye, Y.J. Zhou, J. Li, Y.Y. Yan, H.C. Pei, F.Y. Duan, D.Y. Wang, S. Chen, P. Wang, C. Zhang, L.G. Shang, Y. Zhou, P. Yan, M. Zhao, J. Huang, R. Bock, Q. Qian, W.B. Zhou, A transcriptional regulator that boosts grain yields and shortens the growth duration of rice, Science 377 (2022) eabi8455.

[6]

J.Q. Yan, J. Zhu, C. He, M. Benmoussa, P. Wu, Quantitative trait loci analysis for the developmental behavior of tiller number in rice (Oryza sativa L.), Theor. Appl. Genet. 97 (1998) 267–274.

[7]

K. Wu, S.S. Wang, W.Z. Song, J.Q. Zhang, Y. Wang, Q. Liu, J.P. Yu, Y.F. Ye, S. Li, J.F. Chen, Y. Zhao, J. Wang, X.K. Wu, M.Y. Wang, Y.J. Zhang, B.M. Liu, Y.J. Wu, N.P. Harberd, X.D. Fu, Enhanced sustainable green revolution yield via nitrogen-responsive chromatin modulation in rice, Science 367 (2020) eaaz2046.

[8]

P. Stirnberg, K. Van De Sande, H.M. Leyser, MAX1 and MAX2 control shoot lateral branching in Arabidopsis, Development 2002 (129) 1131–1141.

[9]

G. Shao, Z. Lu, J. Xiong, B. Wang, Y. Jing, X. Meng, G. Liu, H. Ma, Y. Liang, F. Chen, Y. Wang, J. Li, H. Yu, Tiller bud formation regulators MOC1 and MOC3 cooperatively promote tiller bud outgrowth by activating FON1 expression in rice, Mol. Plant 12 (2019) 1090–1102.

[10]

Y. Wang, J. Li, Branching in rice, Curr. Opin. Plant Biol. 14 (2011) 94–99.

[11]

T. Sakamoto, M. Matsuoka, Identifying and exploiting grain yield genes in rice, Curr. Opin. Plant Biol. 11 (2008) 209–214.

[12]

Y. Wang, J. Li, Genes controlling plant architecture, Curr. Opin. Biotechnol. 17 (2006) 123–129.

[13]

X. Liu, Q. Hu, J. Yan, K. Sun, Y. Liang, M. Jia, X. Meng, S. Fang, Y. Wang, Y. Jing, G. Liu, D. Wu, C. Chu, S.M. Smith, J. Chu, Y. Wang, J. Li, B. Wang, ζ-carotene isomerase suppresses tillering in rice through the coordinated biosynthesis of strigolactone and abscisic acid, Mol. Plant 13 (2020) 1784–1801.

[14]

X. Li, Q. Qian, Z. Fu, Y. Wang, G. Xiong, D. Zeng, X. Wang, X. Liu, S. Teng, F. Hiroshi, M. Yuan, D.A. Luo, B. Han, J. Li, Control of tillering in rice, Nature 422 (2003) 618–621.

[15]

Y. Sato, S.K. Hong, A. Tagiri, H. Kitano, N. Yamamoto, Y. Nagato, M. Matsuoka, A rice homeobox gene, OSH1, is expressed before organ differentiation in a specific region during early embryogenesis, Proc. Natl. Acad. Sci. U. S. A. 93 (1996) 8117–8122.

[16]

T. Oikawa, J. Kyozuka, Two-step regulation of LAX PANICLE1 protein accumulation in axillary meristem formation in rice, Plant Cell 21 (2009) 1095–1108.

[17]

Q.B. Lin, D. Wang, H. Dong, S.H. Gu, Z.J. Cheng, J. Gong, R.Z. Qin, L. Jiang, G. Li, J.L. Wang, F.Q. Wu, X.Q. Guo, X. Zhang, C.L. Lei, H.Y. Wang, J.M. Wan, Rice APC/C(TE) controls tillering by mediating the degradation of MONOCULM 1, Nat. Commun. 3 (2012) 752.

[18]

Z. Lu, G. Shao, J. Xiong, Y. Jiao, J. Wang, G. Liu, X. Meng, Y. Liang, G. Xiong, Y. Wang, J. Li, MONOCULM 3, an ortholog of WUSCHEL in rice, is required for tiller bud formation, J. Genet. Genomics 42 (2015) 71–78.

[19]

S. Ishikawa, M. Maekawa, T. Arite, K. Onishi, I. Takamure, J. Kyozuka, Suppression of tiller bud activity in tillering dwarf mutants of rice, Plant Cell Physiol. 46 (2005) 79–86.

[20]

J.H. Zou, S.Y. Zhang, W.P. Zhang, G. Li, Z.X. Chen, W.X. Zhai, X.F. Zhao, X.B. Pan, Q. Xie, L.H. Zhu, The rice HIGH-TILLERING DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds, Plant J. 48 (2006) 687–698.

[21]

Y. Wang, L. Shang, H. Yu, L. Zeng, J. Hu, S. Ni, Y. Rao, S. Li, J. Chu, X. Meng, L. Wang, P. Hu, J. Yan, S. Kang, M. Qu, H. Lin, T. Wang, Q. Wang, X. Hu, H. Chen, B. Wang, Z. Gao, L. Guo, D. Zeng, X. Zhu, G. Xiong, J. Li, Q. Qian, A strigolactone biosynthesis gene contributed to the green revolution in rice, Mol. Plant 13 (2020) 923–932

[22]

T. Arite, H. Iwata, K. Ohshima, M. Maekawa, M. Nakajima, M. Kojima, H. Sakakibara, J. Kyozuka, DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice, Plant J. 51 (2007) 1019–1029.

[23]

H. Lin, R.X. Wang, Q. Qian, M.X. Yan, X.B. Meng, Z.M. Fu, C.Y. Yan, B. Jiang, Z. Su, J.Y. Li, Y.H. Wang, DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth, Plant Cell 21 (2009) 1512–1525.

[24]

L. Jiang, X. Liu, G. Xiong, H. Liu, F. Chen, L. Wang, X. Meng, G. Liu, H. Yu, Y. Yuan, W. Yi, L. Zhao, H. Ma, Y. He, Z. Wu, K. Melcher, Q. Qian, H.E. Xu, Y. Wang, J. Li, DWARF 53 acts as a repressor of strigolactone signalling in rice, Nature 504 (2013) 401–405.

[25]

Y. Jiao, Y. Wang, D. Xue, J. Wang, M. Yan, G. Liu, G. Dong, D. Zeng, Z. Lu, X. Zhu, Q. Qian, J. Li, Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice, Nat. Genet. 42 (2010) 541–544.

[26]

S. Moritoh, C.H. Eun, A. Ono, H. Asao, Y. Okano, K. Yamaguchi, Z. Shimatani, A. Koizumi, R. Terada, Targeted disruption of an orthologue of DOMAINS REARRANGED METHYLASE 2, OsDRM2, impairs the growth of rice plants by abnormal DNA methylation, Plant J. 71 (2012) 85–98.

[27]

Y. Wang, J. Li, Molecular basis of plant architecture, Annu. Rev. Plant Biol. 59 (2008) 253–279.

[28]

J.F. Zhao, T. Wang, M.X. Wang, Y.Y. Liu, S.J. Yuan, Y.N. Gao, L. Yin, W. Sun, L.X. Peng, W.H. Zhang, J.M. Wan, X.Y. Li, DWARF3 participates in an SCF complex and associates with DWARF14 to suppress rice shoot branching, Plant Cell Physiol. 55 (2014) 1096–1109.

[29]

M. Xu, L. Zhu, H.X. Shou, P. Wu, A PIN1 family gene, OsPIN1, involved in auxin-dependent adventitious root emergence and tillering in rice, Plant Cell Physiol. 46 (2005) 1674–1681.

[30]

K. Xia, R. Wang, X. Ou, Z. Fang, C. Tian, J. Duan, Y. Wang, M. Zhang, B. Zhang, OsTIR1 and OsAFB2 downregulation via OsmiR393 overexpression leads to more tillers, early flowering and less tolerance to salt and drought in rice, PLoS ONE 7 (2012) e30039.

[31]

B.J. Ferguson, C.A. Beveridge, Roles for auxin, cytokinin, and strigolactone in regulating shoot branching, Plant Physiol. 149 (2009) 1929–1944.

[32]

F. Zhou, Q. Lin, L. Zhu, Y. Ren, K. Zhou, N. Shabek, F. Wu, H. Mao, W. Dong, L.U. Gan, W. Ma, H.e. Gao, J. Chen, C. Yang, D. Wang, J. Tan, X. Zhang, X. Guo, J. Wang, L. Jiang, X.I. Liu, W. Chen, J. Chu, C. Yan, K. Ueno, S. Ito, T. Asami, Z. Cheng, J. Wang, C. Lei, H. Zhai, C. Wu, H. Wang, N. Zheng, J. Wan, D14-SCF(D3)-dependent degradation of D53 regulates strigolactone signalling, Nature 504 (2013) 406–410.

[33]

Z. Fang, Y. Ji, J. Hu, R. Guo, S. Sun, X. Wang, Strigolactones and brassinosteroids antagonistically regulate the stability of the D53-OsBZR1 complex to determine FC1 expression in rice tillering, Mol. Plant 13 (2020) 586–597.

[34]

J. Duan, H. Yu, K. Yuan, Z. Liao, X. Meng, Y. Jing, G. Liu, J. Chu, J. Li, Strigolactone promotes cytokinin degradation through transcriptional activation of CYTOKININ OXIDASE/DEHYDROGENASE 9 in rice, Proc. Natl. Acad. Sci. U. S. A. 116 (2019) 14319–14324.

[35]

S.Y. Guo, Y.Y. Xu, H.H. Liu, Z.W. Mao, C. Zhang, Y. Ma, Q.R. Zhang, Z. Meng, K. Chong, The interaction between OsMADS57 and OsTB1 modulates rice tillering via DWARF14, Nat. Commun. 4 (2013) 1566.

[36]

L. Chen, Y. Zhao, S. Xu, Z. Zhang, Y. Xu, J. Zhang, K. Chong, OsMADS57 together with OsTB1 coordinates transcription of its target OsWRKY94 and D14 to switch its organogenesis to defense for cold adaptation in rice, New Phytol. 218 (2018) 219–231.

[37]

K. Minakuchi, H. Kameoka, N. Yasuno, M. Umehara, L. Luo, K. Kobayashi, A. Hanada, K. Ueno, T. Asami, S. Yamaguchi, J. Kyozuka, FINE CULM1 (FC1) works downstream of strigolactones to inhibit the outgrowth of axillary buds in rice, Plant Cell Physiol. 51 (2010) 1127–1135.

[38]

J.L. Xu, Y.Z. Xing, Y.B. Xu, J.M. Wan, Rice as a model crop: genetics, genomics and breeding, Crop J. 9 (2021) 491–702.

[39]

M. Pautler, W. Tanaka, H.Y. Hirano, D. Jackson, Grass meristems I: shoot apical meristem maintenance, axillary meristem determinacy and the floral transition, Plant Cell Physiol. 54 (2013) 302–312.

[40]

J. Wang, L. Zhou, H. Shi, M. Chern, H. Yu, H. Yi, M. He, J. Yin, X. Zhu, Y. Li, W. Li, J. Liu, J. Wang, X. Chen, H. Qing, Y. Wang, G. Liu, W. Wang, P. Li, X. Wu, L. Zhu, J.M. Zhou, P.C. Ronald, S. Li, J. Li, X. Chen, A single transcription factor promotes both yield and immunity in rice, Science 361 (2018) 1026–1028.

[41]
T.A. Steeves, I.M. Sussex, Patterns in Plant Development, 2nd edn., Cambridge University Press, Cambridge, UK, 1989.
[42]

Z. Luo, B.J. Janssen, K.C. Snowden, The molecular and genetic regulation of shoot branching, Plant Physiol. 187 (2021) 1033–1044.

[43]

Q. Shang, Y. Wang, H. Tang, N.A. Sui, X. Zhang, F. Wang, Genetic, hormonal, and environmental control of tillering in wheat, Crop J. 9 (2021) 986–991.

[44]

C.H. Tian, Y.L. Jiao, A systems approach to understand shoot branching, Curr. Plant Biol. 3–4 (2015) 13–19.

[45]

W. Tanaka, Y. Ohmori, T. Ushijima, H. Matsusaka, T. Matsushita, T. Kumamaru, S. Kawano, H.-Y. Hirano, Axillary meristem formation in rice requires the WUSCHEL ortholog TILLERS ABSENT1, Plant Cell 27 (2015) 1173–1184.

[46]

H. Tabuchi, Y. Zhang, S. Hattori, M. Omae, S. Shimizu-Sato, T. Oikawa, Q. Qian, M. Nishimura, H. Kitano, H. Xie, X.H. Fang, H. Yoshida, J. Kyozuka, F. Chen, Y. Sato, LAX PANICLE2 of rice encodes a novel nuclear protein and regulates the formation of axillary meristems, Plant Cell 23 (2011) 3276–3287.

[47]

J. Long, M.K. Barton, Initiation of axillary and floral meristems in Arabidopsis, Dev. Biol. 218 (2000) 341–353.

[48]

A. Gallavotti, Q. Zhao, J. Kyozuka, R.B. Meeley, M.K. Ritter, J.F. Doebley, M. Enrico Pè, R.J. Schmidt, The role of barren stalk1 in the architecture of maize, Nature 432 (7017) (2004) 630–635.

[49]

F. Sun, W. Zhang, G. Xiong, M. Yan, Q. Qian, J. Li, Y. Wang, Identification and functional analysis of the MOC1 interacting protein 1, J. Genet. Genomics 37 (2010) 69–77.

[50]

Y. Liu, M. Koornneef, W.J. Soppe, The absence of histone H2B monoubiquitination in the Arabidopsis hub1 (rdo4) mutant reveals a role for chromatin remodeling in seed dormancy, Plant Cell 19 (2007) 433–444.

[51]

D. Fleury, K. Himanen, G. Cnops, H. Nelissen, T.M. Boccardi, S. Maere, G.T. Beemster, P. Neyt, S. Anami, P. Robles, J.L. Micol, D. Inzé, M.V. Lijsebettens, The Arabidopsis thaliana homolog of yeast BRE1 has a function in cell cycle regulation during early leaf and root growth, Plant Cell 19 (2007) 417–432.

[52]

C. Xu, Y.H. Wang, Y.C. Yu, J.B. Duan, Z.G. Liao, G.S. Xiong, X.B. Meng, G.F. Liu, Q. Qian, J.Y. Li, Degradation of MONOCULM 1 by APC/C(TAD1) regulates rice tillering, Nat. Commun. 3 (2012) 750.

[53]

Z.G. Liao, H. Yu, J.B. Duan, K. Yuan, C.J. Yu, X.B. Meng, L.Q. Kou, M.J. Chen, Y.H. Jing, G.F. Liu, S.M. Smith, L.J. Li, SLR1 inhibits MOC1 degradation to coordinate tiller number and plant height in rice, Nat. Commun. 10 (2019) 2738.

[54]

T. Greb, O. Clarenz, E. Schäfer, D. Müller, R. Herrero, G. Schmitz, K. Theres, Molecular analysis of the LATERAL SUPPRESSOR gene in Arabidopsis reveals a conserved control mechanism for axillary meristem formation, Genes Dev. 17 (2003) 1175–1187.

[55]

K. Schumacher, T. Schmitt, M. Rossberg, G. Schmitz, K. Theres, The Lateral suppressor (Ls) gene of tomato encodes a new member of the VHⅡD protein family, Proc. Natl. Acad. Sci. U.S.A. 96 (1999) 290–295.

[56]

T. Xia, H. Chen, S. Dong, Z. Ma, H. Ren, X. Zhu, X. Fang, F. Chen, OsWUS promotes tiller bud growth by establishing weak apical dominance in rice, Plant J. 104 (2020) 1635–1647.

[57]

Y. Ohmori, W. Tanaka, M. Kojima, H. Sakakibara, H.Y. Hirano, WUSCHEL-RELATED HOMEOBOX4 is involved in meristem maintenance and is negatively regulated by the CLE gene FCP1 in rice, Plant Cell 25 (2013) 229–241.

[58]

J. Kyozuka, S. Konishi, K. Nemoto, T. Izawa, K.O. Shimamoto, Down-regulation of RFL, the FLO/LFY homolog of rice, accompanied with panicle branch initiation, Proc. Natl. Acad. Sci. U. S. A. 95 (1998) 1979–1982.

[59]

K. Prasad, K. Kushalappa, U. Vijayraghavan, Mechanism underlying regulated expression of RFL, a conserved transcription factor, in the developing rice inflorescence, Mech. Dev. 120 (2003) 491–502.

[60]

N.N. Rao, K. Prasad, P.R. Kumar, U. Vijayraghavan, Distinct regulatory role for RFL, the rice LFY homolog, in determining flowering time and plant architecture, Proc. Natl. Acad. Sci. U. S. A. 105 (2008) 3646–3651.

[61]

J. Wang, J. Bao, B. Zhou, M. Li, X. Li, J. Jin, The osa-miR164 target OsCUC1 functions redundantly with OsCUC3 in controlling rice meristem/organ boundary specification, New Phytol. 229 (2021) 1566–1581.

[62]

G.M. Deshpande, K. Ramakrishna, G.L. Chongloi, U. Vijayraghavan, Functions for rice RFL in vegetative axillary meristem specification and outgrowth, J. Exp. Bot. 66 (2015) 2773–2784.

[63]

M. Komatsu, A. Chujo, Y. Nagato, K. Shimamoto, J. Kyozuka, FRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets, Development 130 (2003) 3841–3850.

[64]

X.F. Bai, Y. Huang, Y. Hu, H.Y. Liu, B. Zhang, C. Smaczniak, G. Hu, Z.M. Han, Y.Z. Xing, Duplication of an upstream silencer of FZP increases grain yield in rice, Nat. Plants 3 (2017) 885–893.

[65]

T. Bennett, T. Sieberer, B. Willett, J. Booker, C. Luschnig, O. Leyser, The Arabidopsis MAX pathway controls shoot branching by regulating auxin transport, Curr. Biol. 16 (2006) 553–563.

[66]

V. Gomez-Roldan, S. Fermas, P.B. Brewer, V. Puech-Pagès, E.A. Dun, J.P. Pillot, F. Letisse, R. Matusova, S. Danoun, J.C. Portais, H. Bouwmeester, G. Bécard, C.A. Beveridge, C. Rameau, S.F. Rochange, Strigolactone inhibition of shoot branching, Nature 455 (2008) 189–194.

[67]

M. Umehara, A. Hanada, S. Yoshida, K. Akiyama, T. Arite, N. Takeda-Kamiya, H. Magome, Y. Kamiya, K. Shirasu, K. Yoneyama, J. Kyozuka, S. Yamaguchi, Inhibition of shoot branching by new terpenoid plant hormones, Nature 455 (2008) 195–200.

[68]

A.H. Wai, G. An, Axillary meristem initiation and bud growth in rice, J. Plant Biol. 60 (5) (2017) 440–451.

[69]

S.Y. Zhang, L. Gang, J. Fang, W.Q. Chen, H.P. Jiang, J.H. Zou, X. Liu, X.F. Zhao, X.B. Li, C.C. Chu, Q. Xie, X.N. Jiang, L.H. Zhu, The interactions among DWARF10, auxin and cytokinin underlie lateral bud outgrowth in rice, J. Integr. Plant Biol. 52 (2010) 626–638.

[70]

L. Wang, B. Wang, L. Jiang, X. Liu, X. Li, Z. Lu, X. Meng, Y. Wang, S.M. Smith, J. Li, Strigolactone signaling in Arabidopsis regulates shoot development by targeting D53-Like SMXL repressor proteins for ubiquitination and degradation, Plant Cell 27 (2015) 3128–3142.

[71]

Z. Gao, Q. Qian, X. Liu, M. Yan, Q.I. Feng, G. Dong, J. Liu, B. Han, Dwarf 88, a novel putative esterase gene affecting architecture of rice plant, Plant Mol. Biol. 71 (2009) 265–276.

[72]

T. Liu, X. Zhang, H. Zhang, Z. Cheng, J. Liu, C. Zhou, S. Luo, W. Luo, S. Li, X. Xing, Y. Chang, C. Shi, Y. Ren, S. Zhu, C. Lei, X. Guo, J. Wang, Z. Zhao, H. Wang, H. Zhai, Q. Lin, J. Wan, Dwarf and High Tillering1 represses rice tillering through mediating the splicing of D14 pre-Mrna, Plant Cell 34 (2022) 3301–3318.

[73]

T. Takeda, Y. Suwa, M. Suzuki, H. Kitano, M. Ueguchi-Tanaka, M. Ashikari, M. Matsuoka, C. Ueguchi, The OsTB1 gene negatively regulates lateral branching in rice, Plant J. 33 (2003) 513–520.

[74]

K. Miura, M. Ikeda, A. Matsubara, X.J. Song, M. Ito, K. Asano, M. Matsuoka, H. Kitano, M. Ashikari, OsSPL14 promotes panicle branching and higher grain productivity in rice, Nat. Genet. 42 (2010) 545–549.

[75]

Z. Lu, H. Yu, G. Xiong, J. Wang, Y. Jiao, G. Liu, Y. Jing, X. Meng, X. Hu, Q. Qian, X. Fu, Y. Wang, J. Li, Genome-wide binding analysis of the transcription activator IDEAL PLANT ARCHITECTURE1 reveals a complex network regulating rice plant architecture, Plant Cell 25 (2013) 3743–3759.

[76]

E. Duan, Y. Wang, X. Li, Q. Lin, T. Zhang, Y. Wang, C. Zhou, H. Zhang, L. Jiang, J. Wang, C. Lei, X. Zhang, X. Guo, H. Wang, J. Wan, OsSHI1 regulates plant architecture through modulating the transcriptional activity of IPA1 in rice, Plant Cell 31 (2019) 1026–1042.

[77]

M. Murakami, Y. Tago, T. Yamashino, T. Mizuno, Comparative overviews of clock-associated genes of Arabidopsis thaliana and Oryza sativa, Plant Cell Physiol. 48 (2007) 110–121.

[78]

M.G. Mason, J.J. Ross, B.A. Babst, B.N. Wienclaw, C.A. Beveridge, Sugar demand, not auxin, is the initial regulator of apical dominance, Proc. Natl. Acad. Sci. U. S. A. 111 (2014) 6092–6097.

[79]

F. Wang, T. Han, Q. Song, W. Ye, X. Song, J. Chu, J. Li, Z.J. Chen, The rice circadian clock regulates tiller growth and panicle development through strigolactone signaling and sugar sensing, Plant Cell 32 (2020) 3124–3138.

[80]

S. Tamaki, S. Matsuo, H.L. Wong, S. Yokoi, K.O. Shimamoto, Hd3a protein is a mobile flowering signal in rice, Science 316 (2007) 1033–1036.

[81]

K.I. Taoka, I. Ohki, H. Tsuji, K. Furuita, K. Hayashi, T. Yanase, M. Yamaguchi, C. Nakashima, Y.A. Purwestri, S. Tamaki, Y. Ogaki, C. Shimada, A. Nakagawa, C. Kojima, K.O. Shimamoto, 14-3-3 proteins act as intracellular receptors for rice Hd3a florigen, Nature 476 (2011) 332–335.

[82]

H. Tsuji, C. Tachibana, S. Tamaki, K.I. Taoka, J. Kyozuka, K.O. Shimamoto, Hd3a promotes lateral branching in rice, Plant J. 82 (2015) 256–266.

[83]

Q. Zhang, J. Xie, X. Zhu, X. Ma, T. Yang, N.U. Khan, S. Zhang, M. Liu, L. Li, Y. Liang, Y. Pan, D. Li, J. Li, Z. Li, H. Zhang, Z. Zhang, Natural variation in Tiller Number 1 affects its interaction with TIF1 to regulate tillering in rice, Plant Biotechnol. J. (2023), https://doi.org/10.1111/pbi.14017.

[84]

B. Wang, S.M. Smith, J. Li, Genetic regulation of shoot architecture, Annu. Rev. Plant Biol. 69 (2018) 437–468.

[85]

S.M. Hall, J.R. Hillman, Correlative inhibition of lateral bud growth in Phaseolus vulgaris L. timing of bud growth following decapitation, Planta 123 (1975) 137–143.

[86]

R.C. Wright, J.L. Nemhauser, New tangles in the auxin signaling web, F1000Prime Rep. 7 (2015) 19.

[87]

M. Tanaka, K. Takei, M. Kojima, H. Sakakibara, H. Mori, Auxin controls local cytokinin biosynthesis in the nodal stem in apical dominance, Plant J. 45 (2006) 1028–1036.

[88]

H. Sakakibara, Cytokinin biosynthesis and regulation, Vitam. Horm. 72 (2005) 271–287.

[89]

J. Xu, M. Zha, Y.E. Li, Y. Ding, L. Chen, C. Ding, S. Wang, The interaction between nitrogen availability and auxin, cytokinin, and strigolactone in the control of shoot branching in rice (Oryza sativa L.), Plant Cell Rep. 34 (2015) 1647–1662.

[90]

A. Sasaki, M. Ashikari, M. Ueguchi-Tanaka, H. Itoh, A. Nishimura, D. Swapan, K. Ishiyama, T. Saito, M. Kobayashi, G.S. Khush, H. Kitano, M. Matsuoka, Green revolution: a mutant gibberellin-synthesis gene in rice, Nature 416 (2002) 701–702.

[91]

T.F. Skoog, On the inhibition of bud development and other functions of growth substance in Vicia Faba, Proc. R. Soc. Lond. Ser. B-Biol. Sci. 114 (1934) 317–339.

[92]

P. Stirnberg, S.P. Chatfield, H.M. Leyser, AXR1 acts after lateral bud formation to inhibit lateral bud growth in Arabidopsis, Plant Physiol. 121 (1999) 839–847.

[93]

Y. Miyashita, T. Takasugi, Y. Ito, Identification and expression analysis of PIN genes in rice, Plant Sci. 178 (2010) 424–428.

[94]

Y.N. Chen, X.R. Fan, W.J. Song, Y.L. Zhang, G.H. Xu, Over-expression of OsPIN2 leads to increased tiller numbers, angle and shorter plant height through suppression of OsLAZY1, Plant Biotechnol. J. 10 (2012) 139–149.

[95]

Q. Zhang, J.J. Li, W.J. Zhang, S.N. Yan, R. Wang, J.F. Zhao, Y.J. Li, Z.G. Qi, Z.X. Sun, Z.G. Zhu, The putative auxin efflux carrier OsPIN3t is involved in the drought stress response and drought tolerance, Plant J. 72 (2012) 805–816.

[96]

G. Lu, V. Coneva, J.A. Casaretto, S. Ying, K. Mahmood, F. Liu, E. Nambara, Y.M. Bi, S.J. Rothstein, OsPIN5b modulates rice (Oryza sativa) plant architecture and yield by changing auxin homeostasis, transport and distribution, Plant J. 83 (2015) 913–925.

[97]

T. Sazuka, N. Kamiya, T. Nishimura, K. Ohmae, Y. Sato, K. Imamura, Y. Nagato, T. Koshiba, Y. Nagamura, M. Ashikari, H. Kitano, M. Matsuoka, A rice tryptophan deficient dwarf mutant, tdd1, contains a reduced level of indole acetic acid and develops abnormal flowers and organless embryos, Plant J. 60 (2009) 227–241.

[98]

L. Jin, Q. Qin, Y. Wang, Y. Pu, L. Liu, X. Wen, S. Ji, J. Wu, C. Wei, B. Ding, Y.I. Li, S.P. Dinesh-Kumar, Rice dwarf virus P2 protein hijacks auxin signaling by directly targeting the rice OsIAA10 protein, enhancing viral infection and disease development, PLoS. Pathog. 12 (2016) e1005847.

[99]

H. Jung, D.K. Lee, Y.D. Choi, J.K. Kim, OsIAA6, a member of the rice Aux/IAA gene family, is involved in drought tolerance and tiller outgrowth, Plant Sci. 236 (2015) 304–312.

[100]

S. Shimizu-Sato, H. Mori, Control of outgrowth and dormancy in axillary buds, Plant Physiol. 127 (2001) 1405–1413.

[101]

F.F. Barbier, E.A. Dun, C.A. Beveridge, Apical dominance, Curr. Biol. 27 (2017) R864–R865.

[102]

T. Sakamoto, H. Sakakibara, M. Kojima, Y. Yamamoto, H. Nagasaki, Y. Inukai, Y. Sato, M. Matsuoka, Ectopic expression of KNOTTED1-like homeobox protein induces expression of cytokinin biosynthesis genes in rice, Plant Physiol. 14 (2006) 54–62.

[103]

C. Rong, Y. Liu, Z. Chang, Z. Liu, Y. Ding, C. Ding, J. Zhang, Cytokinin oxidase/dehydrogenase family genes exhibit functional divergence and overlap in rice growth and development, especially in control of tillering, J. Exp. Bot. 73 (2022) 3552–3568.

[104]

S.Y. Yeh, H.W. Chen, C.Y. Ng, C.Y. Lin, T.H. Tseng, W.H. Li, M.S. Ku, Down-regulation of cytokinin oxidase 2 expression increases tiller number and improves rice yield, Rice 8 (2015) 36.

[105]

W. Liu, D.C. Zhang, M.F. Tang, D.Y. Li, Y.X. Zhu, L.H. Zhu, C.Y. Chen, THIS1 is a putative lipase that regulates tillering, plant height, and spikelet fertility in rice, J. Exp. Bot. 64 (2013) 4389–4402.

[106]

A. Alder, M. Jamil, M. Marzorati, M. Bruno, M. Vermathen, P. Bigler, S. Ghisla, H. Bouwmeester, P. Beyer, S. Al-Babili, The path from β–carotene to carlactone, a strigolactone-like plant hormone, Science 335 (2012) 1348–1351.

[107]

H. Zhou, M. Yang, L. Zhao, Z. Zhu, F. Liu, H. Sun, C. Sun, L. Tan, J. Zhang, HIGH-TILLERING AND DWARF 12 modulates photosynthesis and plant architecture by affecting carotenoid biosynthesis in rice, J. Exp. Bot. 72 (2021) 1212–1224.

[108]

C.C. Yin, B. Ma, D.P. Collinge, B.J. Pogson, S.J. He, Q. Xiong, K.X. Duan, H. Chen, C. Yang, X. Lu, Y.Q. Wang, W.K. Zhang, C.C. Chu, X.H. Sun, S. Fang, J.F. Chu, T.G. Lu, S.Y. Chen, J.S. Zhang, Ethylene responses in rice roots and coleoptiles are differentially regulated by a carotenoid isomerase-mediated abscisic acid pathway, Plant Cell 27 (2015) 1061–1081.

[109]

D. Ren, W. Xie, Q. Xu, J. Hu, L.I. Zhu, G. Zhang, D. Zeng, Q. Qian, LSL1 controls cell death and grain production by stabilizing chloroplast in rice, Sci. China Life Sci. 65 (2022) 2148–2161.

[110]

K. Aya, M. Ueguchi-Tanaka, M. Kondo, K. Hamada, K. Yano, M. Nishimura, M. Matsuoka, Gibberellin modulates anther development in rice via the transcriptional regulation of GAMYB, Plant Cell 21 (2009) 1453–1472.

[111]

S.F. Lo, S.Y. Yang, K.T. Chen, Y.I. Hsing, J.A. Zeevaart, L.J. Chen, S.M. Yu, A novel class of gibberellin 2-oxidases control semidwarfism, tillering, and root development in rice, Plant Cell 20 (2008) 2603–2618.

[112]

Y. Yamamoto, T. Hirai, E. Yamamoto, M. Kawamura, T. Sato, H. Kitano, M. Matsuoka, M. Ueguchi-Tanaka, A rice gid1 suppressor mutant reveals that gibberellin is not always required for interaction between its receptor, GID1, and DELLA proteins, Plant Cell 22 (2010) 3589–3602.

[113]

A. Sasaki, H. Itoh, K. Gomi, M. Ueguchi-Tanaka, K. Ishiyama, M. Kobayashi, D.H. Jeong, G. An, H. Kitano, M. Ashikari, M. Matsuoka, Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant, Science 299 (2003) 1896–1898.

[114]

K. Gomi, A. Sasaki, H. Itoh, M. Ueguchi-Tanaka, M. Ashikari, H. Kitano, M. Matsuoka, GID2, an F-box subunit of the SCF E3 complex, specifically interacts with phosphorylated SLR1 protein and regulates the gibberellin-dependent degradation of SLR1 in rice, Plant J. 37 (2004) 626–634.

[115]

C. Yamamuro, Y. Ihara, X. Wu, T. Noguchi, S. Fujioka, S. Takatsuto, M. Ashikari, H. Kitano, M. Matsuoka, Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint, Plant Cell 12 (2000) 1591–1605.

[116]

M.Y. Bai, L.Y. Zhang, S.S. Gampala, S.W. Zhu, W.Y. Song, K. Chong, Z.Y. Wang, Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice, Proc. Natl. Acad. Sci. U. S. A. 104 (2007) 13839–13844.

[117]

H. Tong, L. Liu, Y. Jin, L. Du, Y. Yin, Q. Qian, L. Zhu, C. Chu, DWARF AND LOW-TILLERING acts as a direct downstream target of a GSK3/SHAGGY-like kinase to mediate brassinosteroid responses in rice, Plant Cell 24 (2012) 2562–2577.

[118]

B. Zhang, X. Wang, Z. Zhao, R. Wang, X. Huang, Y. Zhu, L.I Yuan, Y. Wang, X. Xu, A.L. Burlingame, Y. Gao, Y.U Sun, W. Tang, OsBRI1 activates BR signaling by preventing binding between the TPR and kinase domains of OsBSK3 via phosphorylation, Plant Physiol. 170 (2016) 1149–1161.

[119]

H.N. Tong, Y. Jin, W.B. Liu, F. Li, J. Fang, Y.H. Yin, Q. Qian, L.H. Zhu, C.C. Chu, DWARF AND LOW-TILLERING, a new member of the GRAS family, plays positive roles in brassinosteroid signaling in rice, Plant J. 58 (2009) 803–816.

[120]

S. Qiao, S. Sun, L. Wang, Z. Wu, C. Li, X. Li, T. Wang, L. Leng, W. Tian, T. Lu, X. Wang, The RLA1/SMOS1 transcription factor functions with OsBZR1 to Regulate brassinosteroid signaling and rice architecture, Plant Cell 29 (2017) 292–309.

[121]

K.O. Hirano, H. Yoshida, K. Aya, M. Kawamura, M. Hayashi, T. Hobo, K. Sato-Izawa, H. Kitano, M. Ueguchi-Tanaka, M. Matsuoka, SMALL ORGAN SIZE 1 and SMALL ORGAN SIZE 2/DWARF AND LOW-TILLERING form a complex to integrate auxin and brassinosteroid signaling in rice, Mol. Plant 10 (2017) 590–604.

[122]

B.J. Janssen, R.S. Drummond, K.C. Snowden, Regulation of axillary shoot development, Curr. Opin. Plant Biol. 17 (2014) 28–35.

[123]

V.C. Galvão, C. Fankhauser, Sensing the light environment in plants: photoreceptors and early signaling steps, Curr. Opin. Neurobiol. 34 (2015) 46–53.

[124]

S.K. Reddy, S.V. Holalu, J.J. Casal, S.A. Finlayson, Abscisic acid regulates axillary bud outgrowth responses to the ratio of red to far-red light, Plant Physiol. 163 (2013) 1047–1058.

[125]

Y. Liu, H. Wang, Z. Jiang, W. Wang, R. Xu, Q. Wang, Z. Zhang, A. Li, Y. Liang, S. Ou, X. Liu, S. Cao, H. Tong, Y. Wang, F. Zhou, H. Liao, B. Hu, C. Chu, Genomic basis of geographical adaptation to soil nitrogen in rice, Nature 590 (2021) 600–605.

[126]

G. Bae, G. Choi, Decoding of light signals by plant phytochromes and their interacting proteins, Annu. Rev. Plant Biol. 59 (2008) 281–311.

[127]

M.C. Cheng, P.K. Kathare, I. Paik, E. Huq, Phytochrome signaling networks, Annu. Rev. Plant Biol. 72 (2021) 217–244.

[128]

X.F. Zhang, C.Y. Yang, H.X. Lin, J.W. Wang, H.W. Xue, Rice SPL12 coevolved with GW5 to determine grain shape, Sci. Bull. 66 (2021) 2353–2357.

[129]

Y. Hyun, R. Richter, C. Vincent, R. Martinez-Gallegos, A. Porri, G. Coupland, Multi-layered regulation of SPL15 and cooperation with SOC1 integrate endogenous flowering pathways at the Arabidopsis shoot meristem, Dev. Cell. 37 (2016) 254–266.

[130]

L. Zhang, G. He, Y. Li, Z. Yang, T. Liu, X. Xie, X. Kong, J. Sun, PIL transcription factors directly interact with SPLs and repress tillering/branching in plants, New Phytol. 233 (2022) 1414–1425.

[131]

M. Lee, J.H. Jung, D.Y. Han, P.J. Seo, W.J. Park, C.M. Park, Activation of a flavin monooxygenase gene YUCCA7 enhances drought resistance in Arabidopsis, Planta 235 (2012) 923–938.

[132]

X.H. Ding, Y.L. Cao, L.L. Huang, J. Zhao, C.G. Xu, X.H. Li, S.P. Wang, Activation of the indole-3-acetic acid-amido synthetase GH3-8 suppresses expansin expression and promotes salicylate-and jasmonate-independent basal immunity in rice, Plant Cell 20 (2008) 228–240.

[133]

M. Umehara, A. Hanada, H. Magome, N. Takeda-Kamiya, S. Yamaguchi, Contribution of strigolactones to the inhibition of tiller bud outgrowth under phosphate deficiency in rice, Plant Cell Physiol. 51 (2010) 1118–1126.

[134]

Y. Li, Z. Yang, C. Yang, Z. Liu, S. Shen, C. Zhan, Y. Lyu, F. Zhang, K. Li, Y. Shi, J. Zhou, X. Liu, C. Fang, A.R. Fernie, J. Li, J. Luo, The NET locus determines the food taste, cooking and nutrition quality of rice, Sci. Bull. 67 (2022) 2045–2049.

[135]

Z.Y. Gao, Y.F. Wang, G. Chen, A.P. Zhang, S.L. Yang, L.G. Shang, D.Y. Wang, B.P. Ruan, C.L. Liu, H.Z. Jiang, G.J. Dong, L. Zhu, J. Hu, G.H. Zhang, D.L. Zeng, L.B. Guo, G.H. Xu, S. Teng, N.P. Harberd, Q. Qian, The indica nitrate reductase gene OsNR2 allele enhances rice yield potential and nitrogen use efficiency, Nat. Commun. 10 (2019) 5207.

[136]

J. Wu, Z.S. Zhang, J.Q. Xia, A. Alfatih, Y. Song, Y.J. Huang, G.Y. Wan, L.Q. Sun, H. Tang, Y. Liu, S.M. Wang, Q.S. Zhu, P. Qin, Y.P. Wang, S.G. Li, C.Z. Mao, G.Q. Zhang, C. Chu, L.H. Yu, C.B. Xiang, Rice NIN-LIKE PROTEIN 4 plays a pivotal role in nitrogen use efficiency, Plant Biotechnol. J. 19 (2021) 448–461.

[137]

J. Yu, W. Xuan, Y. Tian, L. Fan, J. Sun, W. Tang, G. Chen, B. Wang, Y. Liu, W. Wu, X. Liu, X. Jiang, C. Zhou, Z. Dai, D. Xu, C. Wang, J. Wan, Enhanced OsNLP4-OsNiR cascade confers nitrogen use efficiency by promoting tiller number in rice, Plant Biotechnol. J. 19 (2021) 167–176.

[138]

M.L. Devitt, J.P. Stafstrom, Cell cycle regulation during growth-dormancy cycles in pea axillary buds, Plant Mol. Biol. 29 (1995) 255–265.

[139]

D.P. Horvath, W.S. Chao, J.V. Anderson, Molecular analysis of signals controlling dormancy and growth in underground adventitious buds of leafy spurge, Plant Physiol. 128 (2002) 1439–1446.

[140]

F. Barbier, T. Péron, M. Lecerf, M.D. Perez-Garcia, Q. Barrière, J. Rolčík, S. Boutet-Mercey, S. Citerne, R. Lemoine, B. Porcheron, H. Roman, N. Leduc, J.L. Gourrierec, J. Bertheloot, S. Sakr, Sucrose is an early modulator of the key hormonal mechanisms controlling bud outgrowth in Rosa hybrida, J. Exp. Bot. 66 (2015) 2569–2582.

[141]

E. Shor, I. Paik, S. Kangisser, R. Green, E. Huq, PHYTOCHROME INTERACTING FACTORS mediate metabolic control of the circadian system in Arabidopsis, New Phytol. 215 (2017) 217–228.

[142]

H. Fang, S. Shen, D. Wang, F. Zhang, C. Zhang, Z. Wang, Q. Zhou, R. Wang, H. Tao, F. He, C. Yang, M. Peng, X. Jing, Z. Hao, X. Liu, J. Luo, G.L. Wang, Y. Ning, A monocot-specific hydroxycinnamoylputrescine gene cluster contributes to immunity and cell death in rice, Sci. Bull. 66 (2021) 2381–2393.

[143]

S.B. Patil, F.F. Barbier, J. Zhao, S.A. Zafar, M. Uzair, Y. Sun, J. Fang, M.D. Perez‐Garcia, J. Bertheloot, S. Sakr, F. Fichtner, T.G. Chabikwa, S. Yuan, C.A. Beveridge, X. Li, Sucrose promotes D53 accumulation and tillering in rice, New Phytol. 234 (2022) 122–136.

[144]

S.Y. Ma, Q.Y. Xia, Genetic breeding of silkworms: from traditional hybridization to molecular design, Yi Chuan 39 (2017) 1025–1032.

[145]

C.X. Xie, Y.B. Xu, J.M. Wan, Crop genome editing: a big step toward breeding by design, Crop J. 8 (2020) 379–504.

[146]

X. Wei, C. Liu, X.I. Chen, H. Lu, J. Wang, S. Yang, K. Wang, Synthetic apomixis with normal hybrid rice seed production, Mol. Plant 16 (2023) 489–492.

[147]

C. Zhu, M. Gore, E.S. Buckler, J.M. Yu, Status and prospects of association mapping in plants, Plant Genome 1 (2008) 5–20.

[148]

S. Shen, M. Peng, H. Fang, Z. Wang, S. Zhou, X. Jing, M. Zhang, C. Yang, H. Guo, Y. Li, L. Lei, Y. Shi, Y. Sun, X. Liu, C. Xu, T. Tohge, M. Yuan, A.R. Fernie, Y. Ning, G.L. Wang, J. Luo, An Oryza specific hydroxycinnamoyl tyramine gene cluster contributes to enhanced disease resistance, Sci. Bull. 66 (2021) 2369–2380.

[149]

D. Ren, C. Ding, Q. Qian, Molecular bases of rice grain size and quality for optimized productivity, Sci. Bull. 68 (3) (2023) 314–350.

[150]

L.G. Shang, X.X. Li, H.Y. He, Q.L. Yuan, Y.N. Song, Z.R. Wei, H. Lin, M. Hu, F.L. Zhao, C. Zhang, Y.H. Li, H.S. Gao, T.Y. Wang, X.P. Liu, H. Zhang, Y. Zhang, S.M. Cao, X.M. Yu, B. Zhang, Y. Zhang, Y.Q. Tan, M. Qin, C. Ai, Y.X. Yang, B. Zhang, Z.Q. Hu, H.R. Wang, Y. Lv, Y.X. Wang, J. Ma, Q. Wang, H.W. Lu, Z. Wu, S.L. Liu, Z.Y. Sun, H.L. Zhang, L.B. Guo, Z.C. Li, Y.F. Zhou, J.C. Li, Z.F. Zhu, G.S. Xiong, J. Ruan, Q. Qian, A super pan-genomic landscape of rice, Cell Res. 32 (2022) 878–896.

The Crop Journal
Pages 1287-1302
Cite this article:
Yan Y, Ding C, Zhang G, et al. Genetic and environmental control of rice tillering. The Crop Journal, 2023, 11(5): 1287-1302. https://doi.org/10.1016/j.cj.2023.05.009

295

Views

25

Downloads

14

Crossref

10

Web of Science

14

Scopus

1

CSCD

Altmetrics

Received: 02 February 2023
Revised: 16 April 2023
Accepted: 15 June 2023
Published: 05 July 2023
© 2023 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return