AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (883 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Salt stress responses in foxtail millet: Physiological and molecular regulation

Changai Wua,1( )Meng Zhanga,1Yifan LiangaLei ZhangaXianmin Diaob
State Key Laboratory of Crop Biology, Engineering Center of Saline-alkali Soil Plant-microbial Joint Restoration, Shandong Agricultural University, Tai’an 271018, Shandong, China
Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China

1 These authors contributed equally to this work.

Show Author Information

Abstract

Foxtail millet (Setaria italica L.), a member of the Paniceae family, is a temperate and tropical grass species that is widely cultivated on the Eurasian continent. It is Chinese in origin and possesses a small genome, short growth cycle, and strong natural abiotic stress resistance. Elucidating the mechanism of millet tolerance to salt stress is becoming increasingly important with increasing soil salinization limiting crop productivity. The responses and mechanisms of tolerance to salt stress from other model plants such as Arabidopsis and rice, were compared with those from foxtail millet to summarize current research on responses to salt stress. Numerous processes are involved in these processes, including physiological reactions, sensing, signaling, and control at the transcriptional, post-transcriptional, and epigenetic levels. To increase crop productivity and agricultural sustainability, a variety of technologies can be used to investigate how salt tolerance is mediated by physiological and molecular processes in foxtail millet.

References

[1]

M.A. Chemisquy, L.M. Giussani, M.A. Scataglini, E.A. Kellogg, O. Morrone, Phylogenetic studies favour the unification of Pennisetum, Cenchrus and Odontelytrum (Poaceae): a combined nuclear, plastid and morphological analysis, and nomenclatural combinations in Cenchrus, Ann. Bot. 106 (2010) 107–130.

[2]
X. Diao, G. Jia, Origin and domestication of foxtail millet, in: A. Doust, X. Diao (Eds.), Genetics and Genomics of Setaria, Plant Genetics and Genomics: Crops and Models, Springer, Cham, Switzerland, 2017, pp. 61–72.
[3]
A. Doust, X. Diao, Genetics and Genomics of Setaria, Plant Genetics and Genomics Crops and Models, Springer, Cham, Switzerland, 2017.
[4]

H. Hu, M. Mauro-Herrera, A.N. Doust, Domestication and improvement in the model C4 Grass, Setaria, Front. Plant Sci. 9 (2018) 719.

[5]

X. Diao, J. Schnable, J.L. Bennetzen, J. Li, Initiation of Setaria as a model plant, Front. Agric. Sci. Eng. 1 (2014) 16–20.

[6]

X. Yang, Z. Wan, L. Perry, H. Lu, Q. Wang, C. Zhao, J. Li, F. Xie, J. Yu, T. Cui, T. Wang, M. Li, Q. Ge, Early millet use in northern China, Proc. Natl. Acad. Sci. U. S. A. 109 (2012) 3726–3730.

[7]

M. Muthamilarasan, M. Prasad, Advances in Setaria genomics for genetic improvement of cereals and bioenergy grasses, Theor. Appl. Genet. 128 (2015) 1–14.

[8]

P.J. Gregory, S. Mayes, C. Hui, E. Jahanshiri, A. Julkifle, G. Kuppusamy, H. Kuan, T. Lin, F. Massawe, T. Suhairi, S.N. Azam-Ali, Crops For the future (CFF): an overview of research efforts in the adoption of underutilised species, Planta 250 (2019) 979–988.

[9]

N.A.N. Gowda, K. Siliveru, P.V.V. Prasad, Y. Bhatt, B.P. Netravati, C. Gurikar, Modern processing of indian millets: a perspective on changes in nutritional properties, Foods 11 (2022) 499.

[10]

A.N. Doust, E.A. Kellogg, K.M. Devos, J.L. Bennetzen, Foxtail millet: a sequence-driven grass model system, Plant Physiol. 149 (2009) 137–141.

[11]

T.P. Brutnell, L. Wang, K. Swartwood, A. Goldschmidt, D. Jackson, X. Zhu, E. Kellogg, J. van Eck, Setaria viridis: a model for C4 photosynthesis, Plant Cell 22 (2010) 2537–2544.

[12]

T.P. Brutnell, J.L. Bennetzen, J.P. Vogel, Brachypodium distachyon and Setaria viridis: Model genetic systems for the grasses, Annu. Rev. Plant Biol. 66 (2015) 465–485.

[13]

R. Peng, B. Zhang, Foxtail Millet: a new model for C4 plants, Trends Plant Sci. 26 (2021) 199–201.

[14]

Z. Yang, H.X. Zhang, H. Li, J. Shen, S. Gao, B. Hou, S. Zhang, M. Mayes, J. Bennett, C. Ma, Y. Wu, Y. Sui, X. Han, A. Wang, Mini foxtail millet with an Arabidopsis-like life cycle as a C4 model system, Nat. Plants 6 (2020) 1167–1178.

[15]

A. Panchal, R.K. Singh, M. Prasad, Recent advancements and future perspectives of foxtail millet genomics, Plant Growth Regul. 99 (2023) 11–23.

[16]

M. Mauro-Herrera, A.N. Doust, Development and genetic control of plant architecture and biomass in the panicoid drass, Setaria, PLoS ONE 11 (2016) e0151346.

[17]

V.G. Renganathan, C. Vanniarajan, A. Karthikeyan, J. Ramalingam, Barnyard millet for food and nutritional security: current status and future research direction, Front. Genet. 11 (2020) 500.

[18]

A. Doust, Architectural evolution and its implications for domestication in grasses, Ann. Bot. 100 (2007) 941–950.

[19]

A.N. Doust, L. Lukens, K.M. Olsen, M. Mauro-Herrera, A. Meyer, K. Rogers, Beyond the single gene: How epistasis and gene-by-environment effects influence crop domestication, Proc. Natl. Acad. Sci. U. S. A. 111 (2014) 6178–6183.

[20]

S. Odonkor, S. Choi, D. Chakraborty, L. Martinez-Bello, X. Wang, B.A. Bahri, M.I. Tenaillon, O. Panaud, K.M. Devos, QTL Mapping combined with comparative analyses identified candidate genes for reduced shattering in Setaria italica, Front. Plant Sci. 9 (2018) 918.

[21]

M.J. Feldman, R.E. Paul, D. Banan, J.F. Barrett, J. Sebastian, M.C. Yee, H. Jiang, A. E. Lipka, T.P. Brutnell, J.R. Dinneny, A.D.B. Leakey, I. Baxter, R. Mauricio, Time dependent genetic analysis links field and controlled environment phenotypes in the model C4 grass Setaria, PLoS Genet. 13 (2017) e1006841.

[22]

M. Mauro-Herrera, X. Wang, H. Barbier, T.P. Brutnell, K.M. Devos, A.N. Doust, Genetic control and comparative genomic analysis of flowering time in Setaria (Poaceae), G3-Genes Genomics Genet. 3 (2013) 283–295.

[23]

J.K. Zhu, Plant salt tolerance, Trends Plant Sci. 6 (2001) 66–71.

[24]

R. Mittler, S.I. Zandalinas, Y. Fichman, F. van Breusegem, Reactive oxygen species signaling in plant stress responses, Nat. Rev. Mol. Cell Biol. 23 (2022) 663–679.

[25]

S. Zhao, Q. Zhang, M. Liu, H. Zhou, C. Ma, P. Wang, Regulation of plant responses to salt stress, Int. J. Mol. Sci. 22 (2021) 4609.

[26]

U. Deinlein, A.B. Stephan, T. Horie, W. Luo, G. Xu, J.I. Schroeder, Plant salt-tolerance mechanisms, Trends Plant Sci. 19 (2014) 371–379.

[27]

W. Liang, X. Ma, P. Wan, L. Liu, Plant salt-tolerance mechanism: A review, Biochem. Biophys. Res. Commun. 495 (2018) 286–291.

[28]

J.M. Chapman, J.K. Muhlemann, S.R. Gayomba, G.K. Muday, RBOH-dependent ROS synthesis and ROS scavenging by plant specialized metabolites to modulate plant development and stress responses, Chem. Res. Toxicol. 32 (2019) 370–396.

[29]

P. Singh, K.K. Choudhary, N. Chaudhary, S. Gupta, M. Sahu, B. Tejaswini, S. Sarkar, Salt stress resilience in plants mediated through osmolyte accumulation and its crosstalk mechanism with phytohormones, Front. Plant Sci. 13 (2022) 1006617.

[30]

P. Rathinapriya, S. Pandian, K. Rakkammal, M. Balasangeetha, R. Alexpandi, L. Satish, R. Rameshkumar, M. Ramesh, The protective effects of polyamines on salinity stress tolerance in foxtail millet (Setaria italica L.), an important C4 model crop, Physiol. Mol. Biol. Plants 26 (2020) 1815–1829.

[31]

C. Sudhakar, G. Veeranagamallaiah, A. Nareshkumar, O. Sudhakarbabu, M. Sivakumar, M. Pandurangaiah, K. Kiranmai, U. Lokesh, Polyamine metabolism influences antioxidant defense mechanism in foxtail millet (Setaria italica L.) cultivars with different salinity tolerance, Plant Cell Rep. 34 (2015) 141–156.

[32]

D.D.C. Valença, de S.M. Moura, J. Travassos-Lins, M. Alves-Ferreira, L.O. Medici, B. Ortiz-Silva, A. Macrae, F. Reinert, Physiological and molecular responses of Setaria viridis to osmotic stress, Plant Physiol. Biochem. 155 (2020) 114–125.

[33]

L. Qin, E. Chen, F. Li, X. Yu, Z. Liu, Y. Yang, R. Wang, H. Zhang, H. Wang, B. Liu, Y. Guan, Y. Ruan, Genome-wide gene expression profiles analysis reveal novel insights into drought stress in foxtail millet (Setaria italica L.), Int. J. Mol. Sci. 21 (2020) 8520.

[34]

N. Verbruggen, C. Hermans, Proline accumulation in plants: a review, Amino Acids 35 (2008) 753–759.

[35]

J. Pan, Z. Li, S. Dai, H. Ding, Q. Wang, X. Li, G. Ding, P. Wang, Y. Guan, W. Liu, Integrative analyses of transcriptomics and metabolomics upon seed germination of foxtail millet in response to salinity, Sci. Rep. 10 (2020) 13660.

[36]

M. Wang, P. Li, C. Li, Y. Pan, X. Jiang, D. Zhu, Q. Zhao, J. Yu, SiLEA14, a novel atypical LEA protein, confers abiotic stress resistance in foxtail millet, BMC Plant Biol. 14 (2014) 290.

[37]

Y. Pan, J. Li, L. Jiao, C. Li, D. Zhu, J. Yu, A non-specific Setaria italica lipid transfer protein gene displays a critical role under abiotic stress, Front. Plant Sci. 7 (2016) 1752.

[38]

S. Zhang, Y. Yu, T. Song, M. Zhang, N. Li, M. Yu, H. Zhou, Y. Yang, S. Guo, C. Xu, Y. Tu, J. Xiang, X. Zhang, Genome-wide identification of foxtail millet’s TRX family and a functional analysis of SiNRX1 in response to drought and salt stresses in transgenic Arabidopsis, Front. Plant Sci. 13 (2022) 946037.

[39]

M. Thalmann, D. Santelia, Starch as a determinant of plant fitness under abiotic stress, New Phytol. 214 (2017) 943–951.

[40]

G. Veeranagamallaiah, P. Chandraobulreddy, G. Jyothsnakumari, C. Sudhakar, Glutamine synthetase expression and pyrroline-5-carboxylate reductase activity influence proline accumulation in two cultivars of foxtail millet (Setaria italica L.) with differential salt sensitivity, Environ. Exp. Bot. 60 (2007) 239–244.

[41]

E. Bassil, E. Blumwald, The ins and outs of intracellular ion homeostasis: NHX-type cation/H(+) transporters, Curr. Opin. Plant Biol. 22 (2014) 1–6.

[42]

H. Shi, M. Ishitani, C. Kim, J. Zhu, The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter, Proc. Natl. Acad. Sci. U. S. A. 97 (2000) 6896–6901.

[43]

M. Zhang, Y. Cao, Z. Wang, Z.Q. Wang, J. Shi, X. Liang, W. Song, Q. Chen, J. Lai, C. Jiang, A retrotransposon in an HKT1 family sodium transporter causes variation of leaf Na+ exclusion and salt tolerance in maize, New Phytol. 217 (2018) 1161–1176.

[44]

H.J. Kronzucker, D.T. Britto, Sodium transport in plants: a critical review, New Phytol. 189 (2011) 54–81.

[45]

Q.S. Qiu, Y. Guo, M.A. Dietrich, K.S. Schumaker, J.K. Zhu, Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3, Proc. Natl. Acad. Sci. U. S. A. 99 (2002) 8436–8441.

[46]

J. Liu, M. Ishitani, U. Halfter, C.S. Kim, J.K. Zhu, The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance, Proc. Natl. Acad. Sci. U. S. A. 97 (2000) 3730–3734.

[47]

H. Lin, Y. Yang, R. Quan, I. Mendoza, Y. Wu, W. Du, S. Zhao, K.S. Schumaker, J. M. Pardo, Y. Guo, Phosphorylation of SOS3-LIKE CALCIUM BINDING PROTEIN8 by SOS2 protein kinase stabilizes their protein complex and regulates salt tolerance in Arabidopsis, Plant Cell 21 (2009) 1607–1619.

[48]

R. Quan, H. Lin, I. Mendoza, Y. Zhang, W. Cao, Y. Yang, M. Shang, S. Chen, J.M. Pardo, Y. Guo, SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress, Plant Cell 19 (2007) 1415–1431.

[49]

J. Zhao, A. Yu, G. Tian, Y. Du, E. Guo, X. Diao, Identification of CBL genes from Foxtail millet (Setaria italica [L.] Beauv.) and its expression under drought and salt stresses, Acta Agron. Sin. 39 (2013) 360 (in Chinese with English abstract).

[50]

J. Zhao, A. Yu, Y. Du, G. Wang, Y. Li, G. Zhao, X. Wang, W. Zhang, K. Cheng, X. Liu, Z. Wang, Y. Wang, M. Prasad, Foxtail millet (Setaria italica (L.) P. Beauv) CIPKs are responsive to ABA and abiotic stresses, PLoS One 14 (2019) e0225091.

[51]

Y. Zhang, J. Linghu, D. Wang, X.I. Liu, A. Yu, F. Li, J. Zhao, T. Zhao, Foxtail millet CBL4 (SiCBL4) interacts with SiCIPK24, modulates plant salt stress tolerance, Plant Mol. Biol. Rep. 35 (2017) 634–646.

[52]

J. Yan, L. Yang, Y.A. Liu, Y. Zhao, T. Han, X. Miao, A. Zhang, Calcineurin B-like protein 5 (SiCBL5) in Setaria italica enhances salt tolerance by regulating Na+ homeostasis, Crop J. 10 (2022) 234–242.

[53]

Y. Wan, S. Xiao, Y. Bai, J. Fan, Y. Wang, C. Wu, Establishment and optimization of hairy root induction method in millet, Acta Agron. Sin. 49 (2023) 1758–1768 (in Chinese with English abstract).

[54]

T. Horie, F. Hauser, J.I. Schroeder, HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants, Trends Plant Sci. 14 (2009) 660–668.

[55]

I. Zepeda-Jazo, S. Shabala, Z. Chen, I.I. Pottosin, Na-K transport in roots under salt stress, Plant Signal. Behav. 3 (2008) 401–403.

[56]

N. Raddatz, L. Morales de los Ríos, M. Lindahl, F.J. Quintero, J.M. Pardo, Coordinated transport of nitrate, potassium, and sodium. Front. Plant Sci. 11 (2020) 247.

[57]

H. Zhang, W. Xiao, W. Yu, L. Yao, L. Li, J. Wei, R. Li, Foxtail millet SiHAK1 excites extreme high-affinity K+ uptake to maintain K+ homeostasis under low K+ or salt stress, Plant Cell Rep. 37 (2018) 1533–1546.

[58]

B. Zhang, Y. Guo, H. Wang, X. Wang, M. Lv, P. Yang, L. Zhang, Identification and characterization of shaker K+ channel gene family in foxtail millet (Setaria italica) and their role in stress response, Front. Plant Sci. 13 (2022) 907635.

[59]

R. Kaddour, N. Nasri, S. M’rah, P. Berthomieu, M. Lachaâl, Comparative effect of potassium on K and Na uptake and transport in two accessions of Arabidopsis thaliana during salinity stress, C. R. Biol. 332 (2009) 784–794.

[60]

A.C. Mendes Bezerra, D. da Cunha Valença, N.E. da Gama Junqueira, C. Moll Hüther, J. Borella, C. Ferreira de Pinho, M. Alves Ferreira, L. Oliveira Medici, B. Ortiz-Silva, F. Reinert, Potassium supply promotes the mitigation of NaCl-induced effects on leaf photochemistry, metabolism and morphology of Setaria viridis, Plant Physiol. Biochem. 160 (2021) 193–210.

[61]

M. Nieves-Cordones, F. Alemán, V. Martínez, F. Rubio, K+ uptake in plant roots: The systems involved, their regulation and parallels in other organisms, J. Plant Physiol. 171 (2014) 688–695.

[62]

S. Shabala, T.A. Cuin, Potassium transport and plant salt tolerance, Physiol. Plant. 133 (2008) 651–669.

[63]

F. Rubio, M. Nieves-Cordones, T. Horie, S. Shabala, Doing ‘business as usual’ comes with a cost: evaluating energy cost of maintaining plant intracellular K+ homeostasis under saline conditions, New Phytol. 225 (2020) 1097–1104.

[64]

M. Nieves-Cordones, V. Martínez, B. Benito, F. Rubio, Comparison between Arabidopsis and Rice for main pathways of K+ and Na+ uptake by roots, Front. Plant Sci. 7 (2016) 992.

[65]

Y. Sato, K. Nanatani, S. Hamamoto, M. Shimizu, M. Takahashi, M. Tabuchi-Kobayashi, A. Mizutani, J.I. Schroeder, S. Souma, N. Uozumi, Defining membrane spanning domains and crucial membrane-localized acidic amino acid residues for K+ transport of a Kup/HAK/KT-type Escherichia coli potassium transporter, J. Biochem. 155 (2014) 315–323.

[66]

A. Rodríguez-Navarro, F. Rubio, High-affinity potassium and sodium transport systems in plants, J. Exp. Bot. 57 (2006) 1149–1160.

[67]

F. Hauser, T. Horie, A conserved primary salt tolerance mechanism mediated by HKT transporters: a mechanism for sodium exclusion and maintenance of high K+/Na+ ratio in leaves during salinity stress, Plant Cell Environ. 33 (2010) 552–565.

[68]

T. Horie, A. Costa, T.H. Kim, M.J. Han, R. Horie, H.Y. Leung, A. Miyao, H. Hirochika, G. An, J.I. Schroeder, Rice OsHKT2;1 transporter mediates large Na+ influx component into K+-starved roots for growth, EMBO J. 26 (2007) 3003–3014.

[69]

C.S. Byrt, M. Zhao, M. Kourghi, J. Bose, S.W. Henderson, J. Qiu, M. Gilliham, C. Schultz, M. Schwarz, S.A. Ramesh, A. Yool, S. Tyerman, Non-selective cation channel activity of aquaporin AtPIP2;1 regulated by Ca2+ and pH, Plant Cell Environ. 40 (2017) 802–815.

[70]

C. Balagué, B. Lin, C. Alcon, G. Flottes, S. Malmström, C. Köhler, G. Neuhaus, G. Pelletier, F. Gaymard, D. Roby, HLM1, an essential signaling component in the hypersensitive response, is a member of the cyclic nucleotide-gated channel ion channel family, Plant Cell 15 (2003) 365–379.

[71]

A. Gobert, G. Park, A. Amtmann, D. Sanders, F.J. Maathuis, Arabidopsis thaliana cyclic nucleotide gated channel 3 forms a non-selective ion transporter involved in germination and cation transport, J. Exp. Bot. 57 (2006) 791–800.

[72]

D. Cho, S.A. Kim, Y. Murata, S. Lee, S.K. Jae, H.G. Nam, J.M. Kwak, De-regulated expression of the plant glutamate receptor homolog AtGLR3.1 impairs long-term Ca2+-programmed stomatal closure, Plant J. 58 (2009) 437–449.

[73]

V. Demidchik, P.A. Essah, M. Tester, Glutamate activates cation currents in the plasma membrane of Arabidopsis root cells, Planta 219 (2004) 167–175.

[74]

R. Álvarez-Aragón, A. Rodríguez-Navarro, Nitrate-dependent shoot sodium accumulation and osmotic functions of sodium in Arabidopsis under saline conditions, Plant J. 91 (2017) 208–219.

[75]

S. Hussain, S. Hussain, B. Ali, X. Ren, X. Chen, Q. Li, M. Saqib, N. Ahmad, Recent progress in understanding salinity tolerance in plants: Story of Na+/K+ balance and beyond, Plant Physiol. Biochem. 160 (2021) 239–256.

[76]

K. Apel, H. Hirt, Reactive oxygen species: metabolism, oxidative stress, and signal transduction, Annu. Rev. Plant Biol. 55 (2004) 373–399.

[77]

Z. Feng, G. He, W. Zheng, P. Lu, M. Chen, Y. Gong, Y. Ma, Z. Xu, Foxtail millet NF-Y families: genome-wide survey and evolution analyses identified two functional genes important in abiotic stresses, Front. Plant Sci. 6 (2015) 1142.

[78]

J. Li, Y. Dong, C. Li, Y. Pan, J. Yu, SiASR4, the target gene of SiARDP from Setaria italica, improves abiotic stress adaption in plants, Front. Plant Sci. 7 (2016) 2053.

[79]

T. Wang, H. Song, B. Zhang, Q. Lu, Z. Liu, S. Zhang, R. Guo, C. Wang, Z. Zhao, J. Liu, R. Peng, Genome-wide identification, characterization, and expression analysis of superoxide dismutase (SOD) genes in foxtail millet (Setaria italica L.), 3 Biotech 8 (2018) 486.

[80]

M. Droux, M.L. Ruffet, R. Douce, D. Job, Interactions between serine acetyltransferase and O-acetylserine (thiol) lyase in higher plants–structural and kinetic properties of the free and bound enzymes, Eur. J. Biochem. 255 (1998) 235–245.

[81]

L.C. Romero, M.Á. Aroca, A.M. Laureano-Marín, I. Moreno, I. García, C. Gotor, Cysteine and cysteine-related signaling pathways in Arabidopsis thaliana, Mol. Plant 7 (2014) 264–276.

[82]

D. Liu, J. Li, J. Lu, B. Tian, X. Liu, G. Yang, Y. Pei, Cloning and functional analysis of four O-Acetylserine (thiol) lyase family genes from foxtail millet, Plant Physiol. Biochem. 139 (2019) 325–332.

[83]

Y. Yang, Y. Guo, Unraveling salt stress signaling in plants, J. Integr. Plant Biol. 60 (2018) 796–804.

[84]

H. Zhang, J. Zhu, Z. Gong, J.K. Zhu, Abiotic stress responses in plants, Nat. Rev. Genet. 23 (2022) 104–119.

[85]

J. Kudla, O. Batistic, K. Hashimoto, Calcium signals: the lead currency of plant information processing, Plant Cell 22 (2010) 541–563.

[86]

P. Köster, L. Wallrad, K.H. Edel, M. Faisal, A.A. Alatar, J. Kudla, The battle of two ions: Ca2+ signalling against Na+ stress, Plant Biol. 21 (2019) 39–48.

[87]

A.N. Dodd, J. Kudla, D. Sanders, The language of calcium signaling, Annu. Rev. Plant Biol. 61 (2010) 593–620.

[88]

H. Knight, A.J. Trewavas, M.R. Knight, Calcium signalling in Arabidopsis thaliana responding to drought and salinity, Plant J. 12 (1997) 1067–1078.

[89]

F. Yuan, H. Yang, Y. Xue, D. Kong, R. Ye, C. Li, J. Zhang, L. Theprungsirikul, T. Shrift, B. Krichilsky, D.M. Johnson, G.B. Swift, Y. He, J.N. Siedow, Z.M. Pei, OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis, Nature 514 (2014) 367–371.

[90]

Z. Jiang, X. Zhou, M. Tao, F. Yuan, L. Liu, F. Wu, X. Wu, Y. Xiang, Y. Niu, F. Liu, C. Li, R. Ye, B. Byeon, Y. Xue, H. Zhao, H.N. Wang, B.M. Crawford, D.M. Johnson, C. Hu, C. Pei, W. Zhou, G.B. Swift, H. Zhang, T. Vo-Dinh, Z. Hu, J.N. Siedow, Z.M. Pei, Plant cell-surface GIPC sphingolipids sense salt to trigger Ca2+ influx, Nature 572 (2019) 341–346.

[91]

Q. Yu, L. An, W. Li, The CBL-CIPK network mediates different signaling pathways in plants, Plant Cell Rep. 33 (2014) 203–214.

[92]

Q. Dong, L. Wallrad, B.O. Almutairi, J. Kudla, Ca2+ signaling in plant responses to abiotic stresses, J. Integr. Plant Biol. 64 (2022) 287–300.

[93]

Z. Yu, X. Duan, L.U. Luo, S. Dai, Z. Ding, G. Xia, How plant hormones mediate salt stress responses, Trends Plant Sci. 25 (2020) 1117–1130.

[94]

R. Waadt, C.A. Seller, P.K. Hsu, Y. Takahashi, S. Munemasa, J.I. Schroeder, Plant hormone regulation of abiotic stress responses, Nat. Rev. Mol. Cell Biol. 23 (2022) 680–694.

[95]

J. Zhu, Salt and drought stress signal transduction in plants, Annu. Rev. Plant Biol. 53 (2002) 247–273.

[96]

K. Chen, G.J. Li, R.A. Bressan, C.P. Song, J.K. Zhu, Y. Zhao, Abscisic acid dynamics, signaling, and functions in plants, Integr. Plant Biol. 62 (2020) 25–54.

[97]

T. Yoshida, J. Mogami, K. Yamaguchi-Shinozaki, ABA-dependent and ABAindependent signaling in response to osmotic stress in plants, Curr. Opin. Plant Biol. 21 (2014) 133–139.

[98]

J. Santiago, F. Dupeux, K. Betz, R. Antoni, M. Gonzalez-Guzman, L. Rodriguez, J. A. Márquez, P.L. Rodriguez, Structural insights into PYR/PYL/RCAR ABA receptors and PP2Cs, Plant Sci. 182 (2012) 3–11.

[99]

J. Fidler, J. Graska, M. Gietler, M. Nykiel, B. Prabucka, A. Rybarczyk-Płońska, E. Muszyńska, I. Morkunas, M. Labudda, PYR/PYL/RCAR receptors play a vital role in the abscisic-acid-dependent responses of plants to external or internal stimuli, Cells 11 (2022) 1352.

[100]

N. Nishimura, A. Sarkeshik, K. Nito, S.Y. Park, A. Wang, P.C. Carvalho, S. Lee, D. F. Caddell, S.R. Cutler, J. Chory, J.R. Yates, J.I. Schroeder, PYR/PYL/RCAR family members are major in-vivo ABI1 protein phosphatase 2C-interacting proteins in Arabidopsis, Plant J. 61 (2010) 290–299.

[101]

A. Ali, J.M. Pardo, D. Yun, Desensitization of ABA-signaling: The swing from activation to degradation, Front. Plant Sci. 11 (2020) 379.

[102]

C. Yunta, M. Martinez-Ripoll, A. Albert, SnRK2.6/OST1 from Arabidopsis thaliana: cloning, expression, purification, crystallization and preliminary Xray analysis of K50N and D160A mutants, Acta Crystallogr., Sect. F. Struct. Biol. Cryst. Commun. 67 (2011) 364–368.

[103]

C. Belin, P.O. de Franco, C. Bourbousse, S. Chaignepain, J.M. Schmitter, A. avasseur, J. Giraudat, H. Barbier-Brygoo, S. Thomine, Identification of features regulating OST1 kinase activity and OST1 function in guard cells, Plant Physiol. 141 (2006) 1316–1327.

[104]

Y. Deng, H. Kashtoh, Q. Wang, G. Zhen, Q. Li, L. Tang, H. Gao, C. Zhang, L. Qin, M. Su, F. Li, X. Huang, Y. Wang, Q. Xie, O.B. Clarke, W.A Hendrickson, Y. Chen, Structure and activity of SLAC1 channels for stomatal signaling in leaves, Proc. Natl. Acad. Sci. U. S. A. 118 (2021) e2015151118.

[105]

K.E. Duarte, W.R. de Souza, T.R. Santiago, B.L. Sampaio, A.P. Ribeiro, M.G. Cotta, B. da Cunha, P.R.R. Marraccini, A.K. Kobayashi, H.B.C. Molinari, Identification and characterization of core abscisic acid (ABA) signaling components and their gene expression profile in response to abiotic stresses in Setaria viridis, Sci. Rep. 9 (2019) 4028.

[106]

L. Zhang, Y. Ren, Q. Xu, Y. Wan, S. Zhang, G. Yang, J. Huang, K. Yan, C. Zheng, C. Wu, SiCEP3, a C-terminally encoded peptide from Setaria italica, promotes ABA import and signaling, J. Exp. Bot. 72 (2021) 6260–6273.

[107]

C. Li, J. Yue, X. Wu, C. Xu, J. Yu, An ABA-responsive DRE-binding protein gene from Setaria italica, SiARDP, the target gene of SiAREB, plays a critical role under drought stress, J. Exp. Bot. 65 (2014) 5415–5427.

[108]

Z. Zhao, S. Tang, W. Li, X. Yang, R. Wang, X. Diao, W. Tang, Overexpression of a BRASSINAZOLE RESISTANT 1 homolog attenuates drought tolerance by suppressing the expression of PLETHORA-LIKE 1 in Setaria italica, Crop J. 9 (2021) 1208–1213.

[109]

M. Sauer, J. Kleine-Vehn, PIN-FORMED and PIN-LIKES auxin transport facilitators, Development 146 (2019) dev168088.

[110]

M. Muthamilarasan, V.S. Bonthala, R. Khandelwal, J. Jaishankar, S. Shweta, K. Nawaz, M. Prasad, Global analysis of WRKY transcription factor superfamily in Setaria identifies potential candidates involved in abiotic stress signaling, Front. Plant Sci. 6 (2015) 910.

[111]

Q. Ding, X. Wang, L. Hu, X. Qi, L. Ge, W. Xu, Z. Xu, Y. Zhou, G. Jia, X. Diao, Y. Ma, M. Chen, MYB-like transcription factor SiMYB42 from foxtail millet (Setaria italica L.) enhances Arabidopsis tolerance to low-nitrogen stress, Yi Chuan 40 (2018) 327–338.

[112]

M. Schieber, N.S. Chandel, ROS function in redox signaling and oxidative stress, Curr. Biol. 24 (2014) R453–462.

[113]

M. Hasanuzzaman, M. Bhuyan, K. Parvin, T.F. Bhuiyan, T.I. Anee, K. Nahar, M. S. Hossen, F. Zulfiqar, M.M. Alam, M. Fujita, Regulation of ROS, metabolism in plants under environmental stress: A review of recent experimental evidence, Int. J. Mol. Sci. 21 (2020) 8695.

[114]

K.K. Nadarajah, ROS homeostasis in abiotic stress tolerance in plants, Int. J. Mol. Sci. 21 (2020) 5208.

[115]

L. Sun, Z. Zhao, F. Hao, NADPH oxidases, essential players of hormone signalings in plant development and response to stresses, Plant Signal. Behav. 14 (2019) 1657343.

[116]

M.M. Kurowska, Aquaporins in cereals-important players in maintaining cell homeostasis under abiotic stress, Genes (Basel) 12 (2021) 477.

[117]

Y. Shi, K.S. Carroll, Activity-based sensing for site-specific proteomic analysis of cysteine oxidation, Acc. Chem. Res. 53 (2020) 20–31.

[118]

S. Akter, L. Fu, Y. Jung, M.L. Conte, J.R. Lawson, W.T. Lowther, R. Sun, K. Liu, J. Yang, K.S. Carroll, Chemical proteomics reveals new targets of cysteine sulfinic acid reductase, Nat. Chem. Biol. 14 (2018) 995–1004.

[119]

F. Huang, J. Pan, Z. Li, Q. Wang, F. Mastouri, Y. Li, S. Yang, M. Liu, S. Dai, W. Liu, Genome-wide identification of PTI1 family in Setaria italica and salinity-responsive functional analysis of SiPTI1-5, BMC Plant Biol. 21 (2021) 319.

[120]

T. Chen, D. Cohen, M. Itkin, S. Malitsky, R. Fluhr, Lipoxygenase functions in 1O2 production during root responses to osmotic stress, Plant Physiol. 185 (2021) 1638–1651.

[121]

Q. Zhang, Y. Zhao, J. Zhang, X. Li, F. Ma, M. Duan, B. Zhang, H. Li, The responses of the lipoxygenase gene family to salt and drought stress in foxtail millet (Setaria italica), Life (Basel) 11 (2021) 1169.

[122]

H. Porta, M. Rocha-Sosa, Lipoxygenase in bacteria: a horizontal transfer event?, Microbiology 147 (2001) 3199–3200

[123]

M. Alina, F. Ivo, H. Ingo, Oxylipins: structurally diverse metabolites from fatty acid oxidation, Plant Physiol. Biochem. 47 (2009) 511–517.

[124]

J. Wang, L. Song, X. Gong, J. Xu, M. Li, Functions of jasmonic acid in plant regulation and response to abiotic stress, Int. J. Mol. Sci. 21 (2020) 1446.

[125]

T.V. Savchenko, O.M. Zastrijnaja, V.V. Klimov, Oxylipins and plant abiotic stress resistance, Biochemistry (Mosc.) 79 (2014) 362–375.

[126]

Q. Hou, G. Ufer, D. Bartels, Lipid signalling in plant responses to abiotic stress, Plant Cell Environ. 39 (2016) 1029–1048.

[127]

C. Wasternack, I. Feussner, The oxylipin pathways: biochemistry and function, Annu. Rev. Plant Biol. 69 (2018) 363–386.

[128]

M.S. Ali, K.H. Baek, Jasmonic acid signaling pathway in response to abiotic stresses in plants, Int. J. Mol. Sci. 21 (2020) 621.

[129]

C. Wasternack, M. Strnad, Jasmonate signaling in plant stress responses and development - active and inactive compounds, Nat. Biotechnol. 33 (2016) 604–613.

[130]

C. Böttcher, S. Pollmann, Plant oxylipins: plant responses to 12-oxo-phytodienoic acid are governed by its specific structural and functional properties, FEBS J. 27 (2009) 4693–4704.

[131]

E.H. Baillo, R.N. Kimotho, Z. Zhang, P. Xu, Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement, Genes (Basel) 10 (2019) 771.

[132]

Z. Gong, L. Xiong, H. Shi, S. Yang, L.R. Herrera-Estrella, G. Xu, D.Y. Chao, J. Li, P. Y. Wang, F. Qin, J. Li, Y. Ding, Y. Shi, Y.u. Wang, Y. Yang, Y. Guo, J.K. Zhu, Plant abiotic stress response and nutrient use efficiency, Sci. China Life Sci. 63 (2020) 635–674.

[133]

S.A. Khan, M. Li, S. Wang, H. Yin, Revisiting the role of plant transcription factors in the battle against abiotic stress, Int. J. Mol. Sci. 19 (2018) 1634.

[134]

K. Yamaguchi-Shinozaki, K. Shinozaki, A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress, Plant Cell 6 (1994) 251–264.

[135]

D. Kizis, M. Pages, Maize DRE-binding proteins DBF1 and DBF2 are involved in rab17 regulation through the drought-responsive element in an ABA-dependent pathway, Plant J. 30 (2002) 679–689.

[136]

J. Yue, C. Li, Y. Liu, J. Yu, J.S. Zhang, A remorin gene SiREM6, the target gene of SiARDP, from foxtail millet (Setaria italica) promotes high salt tolerance in transgenic Arabidopsis, PLoS ONE 9 (2014) e100772.

[137]

C. Xu, M. Luo, X. Sun, J. Yan, H. Shi, H. Yan, R. Yan, S. Wang, W. Tang, Y. Zhou, C. Wang, Z. Xu, J. Chen, Y. Ma, Q. Jiang, M. Chen, D. Sun, SiMYB19 from foxtail millet (Setaria italica) confers transgenic rice tolerance to high salt stress in the field, Int. J. Mol. Sci. 23 (2022) 756.

[138]

Z.J. Feng, Z.S. Xu, J. Sun, L.C. Li, M. Chen, G.X. Yang, G.Y. He, Y.Z. Ma, Investigation of the ASR family in foxtail millet and the role of ASR1 in drought/oxidative stress tolerance, Plant Cell Rep. 35 (2016) 115–128.

[139]

W. Xiong, Y. Zhao, H. Gao, Y. Li, W. Tang, L. Ma, G. Yang, J. Sun, Genomic characterization and expression analysis of TCP transcription factors in Setaria italica and Setaria viridis, Plant Signal. Behav. 17 (2022) 2075158.

[140]

W. Zhao, L. Zhang, Z. Xu, L. Fu, H. Pang, Y. Ma, D. Min, Genome-wide analysis of MADS-Box Genes in foxtail millet (Setaria italica L.) and functional assessment of the role of SiMADS51 in the drought stress response, Front. Plant Sci. 12 (2021) 659474.

[141]

M. Guo, J. Liu, X. Ma, D. Luo, Z. Gong, M. Lu, The plant heat stress transcription factors (HSFs): structure, regulation, and function in response to abiotic stresses, Front. Plant Sci. 7 (2016) 114.

[142]

D. Lai, Y. Fan, G. Xue, A. He, H. Yang, C. He, Y. Li, J. Ruan, J. Yan, J. Cheng, Genome-wide identification and characterization of the SPL gene family and its expression in the various developmental stages and stress conditions in foxtail millet (Setaria italica), BMC Genomics 23 (2022) 389.

[143]

R. Sunkar, V. Chinnusamy, J. Zhu, J.K. Zhu, Small RNAs as big players in plant abiotic stress responses and nutrient deprivation, Trends Plant Sci. 12 (2007) 301–309.

[144]

B. Ben Amor, S. Wirth, F. Merchan, P. Laporte, Y. d’Aubenton-Carafa, J. Hirsch, A. Maizel, A. Mallory, A. Lucas, J.M. Deragon, H. Vaucheret, C. Thermes, M. Crespi, Novel long non-protein coding RNAs involved in Arabidopsis differentiation and stress responses, Genome Res. 19 (2009) 57–69.

[145]

Y. Zhang, Y. Zhou, W. Zhu, J. Liu, F. Cheng, Non-coding RNAs fine-tune the balance between plant growth and abiotic stress tolerance, Front. Plant Sci. 13 (2022) 965745.

[146]

Y.U. Yu, Y. Zhang, X. Chen, Y. Chen, Plant Noncoding RNAs: hidden players in development and stress responses, Annu. Rev. Cell Dev. Biol. 35 (2019) 407–431.

[147]

A. Reynolds, D. Leake, Q. Boese, S. Scaringe, W.S. Marshall, A. Khvorova, Rational siRNA design for RNA interference, Nat. Biotechnol. 22 (2004) 326–330.

[148]

O. Borsani, J. Zhu, P.E. Verslues, R. Sunkar, J.K. Zhu, Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis, Cell 123 (2005) 1279–1291.

[149]

D.C. Phillips, S. Martin, B.T. Doyle, J.A. Houghton, Sphingosine-induced apoptosis in rhabdomyosarcoma cell lines is dependent on premitochondrial Bax activation and post-mitochondrial caspases, Cancer Res. 67 (2007) 756–764.

[150]

H. Ito, Small RNAs and transposon silencing in plants, Dev. Growth Differ. 54 (2012) 100–107.

[151]

X. Qi, S. Xie, Y. Liu, F. Yi, J. Yu, Genome-wide annotation of genes and noncoding RNAs of foxtail millet in response to simulated drought stress by deep sequencing, Plant Mol. Biol. 83 (2013) 459–473.

[152]

F. Yi, J. Chen, J. Yu, Global analysis of uncapped mRNA changes under drought stress and microRNA-dependent endonucleolytic cleavages in foxtail millet, BMC Plant Biol. 15 (2015) 241.

[153]

C. Lu, N. Fedoroff, A mutation in the Arabidopsis HYL1 gene encoding a dsRNA binding protein affects responses to abscisic acid, auxin, and cytokinin, Plant Cell 12 (2000) 2351–2365.

[154]

X. Liu, S. Tang, G. Jia, J.C. Schnable, H. Su, C. Tang, H. Zhi, X. Diao, The C-terminal motif of SiAGO1b is required for the regulation of growth, development and stress responses in foxtail millet (Setaria italica (L.) P. Beauv), J. Exp. Bot. 67 (2016) 3237–3249.

[155]

Y. Wang, L. Li, S. Tang, J. Liu, H. Zhang, H. Zhi, G. Jia, X. Diao, Combined small RNA and degradome sequencing to identify miRNAs and their targets in response to drought in foxtail millet, BMC Genet. 17 (2016) 57.

[156]

A. Steimer, H. Schöb, U. Grossniklaus, Epigenetic control of plant development: new layers of complexity, Curr. Opin. Plant Biol. 7 (2004) 11–19.

[157]

A. Boyko, I. Kovalchuk, Epigenetic control of plant stress response, Environ. Mol. Mutagen. 49 (2008) 61–72.

[158]

R. Karan, T. DeLeon, H. Biradar, P.K. Subudhi, Salt stress induced variation in DNA methylation pattern and its influence on gene expression in contrasting rice genotypes, PLoS ONE 7 (2012) e40203.

[159]

G. Pandey, C.B. Yadav, P.P. Sahu, M. Muthamilarasan, M. Prasad, Salinity induced differential methylation patterns in contrasting cultivars of foxtail millet (Setaria italica L.), Plant Cell Rep. 36 (2017) 759–772.

[160]

Z. Lippman, A.V. Gendrel, M. Black, M.W. Vaughn, N. Dedhia, W. Richard McCombie, K. Lavine, V. Mittal, B. May, K.D. Kasschau, J.C. Carrington, R.W. Doerge, V. Colot, R. Martienssen, Role of transposable elements in heterochromatin and epigenetic control, Nature 430 (2004) 471–476.

[161]

J. Han, P. Wang, Q. Wang, Q. Lin, K. Wang, Genome-wide characterization of DNase I-Hypersensitive sites and cold response regulatory landscapes in grasses, Plant Cell 32 (2020) 2457–2473.

[162]

C.B. Yadav, M. Muthamilarasan, A. Dangi, S. Shweta, M. Prasad, Comprehensive analysis of SET domain gene family in foxtail millet identifies the putative role of SiSET14 in abiotic stress tolerance, Sci. Rep. 6 (2016) 32621.

[163]

H. Fujii, J.K. Zhu, Osmotic stress signaling via protein kinases, Cell Mol, Life Sci. 69 (2012) 3165–3173.

[164]

P. Wang, C.C. Hsu, Y. Du, P. Zhu, C. Zhao, X. Fu, C. Zhang, J.S. Paez, A.P. Macho, W.A. Tao, J.K. Zhu, Mapping proteome-wide targets of protein kinases in plant stress responses, Proc. Natl. Acad. Sci. U. S. A. 117 (2020) 3270–3280.

[165]

N. Fàbregas, T. Yoshida, A.R. Fernie, Role of Raf-like kinases in SnRK2 activation and osmotic stress response in plants, Nat. Commun. 11 (2020) 6184.

[166]

R. Hedrich, D. Geiger, Biology of SLAC1-type anion channels - from nutrient uptake to stomatal closure, New Phytol. 216 (2017) 46–61.

[167]

Y. Wang, Z. Li, J. Pan, Y. Li, Q. Wang, Y. Guan, W. Liu, Cloning and functional analysis of the SiRLK35 gene in Setaria italica L., Yi Chuan 39 (2017) 413–422.

[168]

K. Shu, W. Yang, E3 ubiquitin ligases: ubiquitous actors in plant development and abiotic stress responses, Plant Cell Physiol. 58 (2017) 1461–1476.

[169]

R. Al-Saharin, H. Hellmann, S. Mooney, Plant E3 ligases and their role in abiotic stress response, Cells 11 (2022) 890.

[170]

S. Wang, X. Lv, J. Zhang, D. Chen, S. Chen, G. Fan, C. Ma, Y. Wang, Roles of E3 ubiquitin ligases in plant responses to abiotic stresses, Int. J. Mol. Sci. 23 (2022) 2308.

[171]

W.J. Lyzenga, S.L. Stone, Abiotic stress tolerance mediated by protein ubiquitination, J. Exp. Bot. 63 (2012) 599–616.

[172]

A.K. Mishra, M. Muthamilarasan, Y. Khan, S.K. Parida, M. Prasad, G.K. Pandey, Genome-wide investigation and expression analyses of WD40 protein family in the model plant Foxtail Millet (Setaria italica L.), PLoS ONE 9 (2014) e86852.

[173]

A.K. Mishra, S. Puranik, R.P. Bahadur, M. Prasad, The DNA-binding activity of an AP2 protein is involved in transcriptional regulation of a stress-responsive gene, SiWD40, in foxtail millet, Genomics 100 (2012) 252–263.

[174]

J.H. Lee, W. Terzaghi, G. Gusmaroli, Characterization of Arabidopsis and rice DWD Proteins and their roles as substrate receptors for CUL4-RING E3 ubiquitin ligases, Plant Cell 20 (2008) 152–167.

[175]

H. Chen, J. Dong, T. Wang, Autophagy in plant abiotic stress management, Int. J. Mol. Sci. 22 (2021) 4075.

[176]

J.L. Nieto-Torres, A.M. Leidal, J. Debnath, M. Hansen, Beyond autophagy: The expanding roles of ATG8 proteins, Trends Biochem. Sci 46 (2021) 673–686.

[177]

F. Bu, M. Yang, X. Guo, W. Huang, L. Chen, Multiple functions of ATG8 family proteins in plant autophagy, Front. Cell Dev. Biol. 8 (2020) 466.

[178]

W.W. Li, M. Chen, L.I. Zhong, J.M. Liu, Z.S. Xu, L.C. Li, Y.B. Zhou, C.H. Guo, Y.Z. Ma, Overexpression of the autophagy-related gene SiATG8a from foxtail millet (Setaria italica L.) confers tolerance to both nitrogen starvation and drought stress in Arabidopsis, Biochem. Biophys. Res. Commun. 468 (2015) 800–806.

[179]

L. Krishnamurthy, H.D. Upadhyaya, C. Gowda, J. Kashiwagi, R. Purushothaman, S. Singh, V. Vadez, Large variation for salinity tolerance in the core collection of foxtail millet (Setaria italica (L.) P. Beauv.) germplasm, Crop Pasture Sci. 65 (2014) 353–361.

[180]

H.D. Upadhyaya, C.R. Ravishankar, Y. Narasimhudu, N.D.R.K. Sarma, S.K. Singh, S.K. Varshney, V.G. Reddy, S. Singh, H.K. Parzies, S.L. Dwivedi, H.L. Nadaf, K.L. Sahrawat, C.L.L. Gowda, Identification of trait-specific germplasm and developing a mini core collection for efficient use of foxtail millet genetic resources in crop improvement, Field Crops Res. 124 (2011) 459–467.

[181]

H.D. Upadhyaya, R.P.S. Pundir, C.L.L. Gowda, V. Gopal Reddy, S. Singh, Establishing a core collection of foxtail millet to enhance the utilization of germplasm of an underutilized crop, Plant Genet. Resour. 7 (2009) 177–184.

[182]

L. Qie, G. Jia, W. Zhang, J. Schnable, Z. Shang, W. Li, B. Liu, M. Li, Y. Chai, H. Zhi, X. Diao, Mapping of quantitative trait locus (QTLs) that contribute to germination and early seedling drought tolerance in the interspecific cross Setaria italica×Setaria viridis, PLoS ONE 9 (2014) e101868.

[183]

W. Wei, S. Li, P. Li, K. Yu, G. Fan, Y. Wang, F. Zhao, X. Zhang, X. Feng X, G. Shi, W. Zhang, G. Song, W. Dan, F. Wang, Y. Zhang, X. Li, D. Wang, W. Zhang, J. Pei, X. Wang, Z. Zhao, QTL analysis of important agronomic traits and metabolites in foxtail millet (Setaria italica) by RIL population and widely targeted metabolome, Front. Plant Sci. 13 (2023) 1035906.

[184]

G. Jia, X. Huang, H. Zhi, Y. Zhao, Q. Zhao, W. Li, Y. Chai, L. Yang, K. Liu, H. Lu, C. Zhu, Y. Lu, C. Zhou, D. Fan, Q. Weng, Y. Guo, T. Huang, L. Zhang, T. Lu, Q.I. Feng, H. Hao, H. Liu, P. Lu, N. Zhang, Y. Li, E. Guo, S. Wang, S. Wang, J. Liu, W. Zhang, G. Chen, B. Zhang, W. Li, Y. Wang, H. Li, B. Zhao, J. Li, X. Diao, B. Han, A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica), Nat. Genet. 45 (2013) 957–961.

[185]

Y. Wang, X. Wang, S. Sun, C. Jin, J. Su, J. Wei, X. Luo, J. Wen, T. Wei, S.K. Sahu, H. Zou, H. Chen, Z. Mu, G. Zhang, X. Liu, X. Xu, L. Gram, H. Yang, E. Wang, H. Liu, GWAS, MWAS and mGWAS provide insights into precision agriculture based on genotype-dependent microbial effects in foxtail millet, Nat. Commun. 13 (2022) 5913.

[186]

J. Sun, N.S. Luu, Z. Chen, B. Chen, X. Cui, J. Wu, Z. Zhang, T. Lu, Generation and characterization of a foxtail millet (Setaria italica) mutant library, Front. Plant Sci. 10 (2019) 369.

[187]

M. Zhao, S. Tang, H. Zhang, M. He, J. Liu, H. Zhi, Y.I. Sui, X. Liu, G. Jia, Z. Zhao, J. Yan, B. Zhang, Y. Zhou, J. Chu, X. Wang, B. Zhao, W. Tang, J. Li, C. Wu, X. Liu, X. Diao, DROOPY LEAF1 controls leaf architecture by orchestrating early brassinosteroid signaling, Proc. Natl. Acad. Sci. U. S. A. 117 (2020) 21766–21774.

[188]

X. Li, J. Gao, J. Song, K. Guo, S. Hou, X. Wang, Q. He, Y. Zhang, Y. Zhang, Y. Yang, J. Tang, H. Wang, S. Persson, M. Huang, L. Xu, L. Zhong, D. Li, Y. Liu, H. Wu, X. Diao, P. Chen, X. Wang, Y. Han, Multi-omics analyses of 398 foxtail millet accessions reveal genomic regions associated with domestication, metabolite traits, and anti-inflammatory effects, Mol. Plant 15 (2022) 1367–1383.

[189]

E. Gamalero, B.R. Glick, Recent advances in bacterial amelioration of plant drought and salt stress, Biology (Basel) 11 (2022) 437.

[190]

M. Yazdizadeh, L. Fahmideh, G. Mohammadi-Nejad, M. Solouki, B. Nakhoda, Association analysis between agronomic traits and AFLP markers in a wide germplasm of proso millet (Panicum miliaceum L.) under normal and salinity stress conditions, BMC Plant Biol. 20 (2020) 427.

[191]

A. Jayaraman, S. Puranik, N.K. Rai, S. Vidapu, P.P. Sahu, C. Lata, M. Prasad, cDNA-AFLP analysis reveals differential gene expression in response to salt stress in foxtail millet (Setaria italica L.), Mol. Biotechnol. 40 (2008) 241–251.

[192]

W. Mbinda, A. Mukami, A review of recent advances and future directions in the management of salinity stress in finger millet, Front. Plant Sci. 12 (2021) 734798.

The Crop Journal
Pages 1011-1021
Cite this article:
Wu C, Zhang M, Liang Y, et al. Salt stress responses in foxtail millet: Physiological and molecular regulation. The Crop Journal, 2023, 11(4): 1011-1021. https://doi.org/10.1016/j.cj.2023.06.001

274

Views

8

Downloads

8

Crossref

5

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 30 November 2022
Revised: 07 February 2023
Accepted: 15 June 2023
Published: 29 June 2023
© 2023 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return