AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

The MabHLH11 transcription factor interacting with MaMYB4 acts additively in increasing plant scopolin biosynthesis

Zhen DuanShengsheng WangZhengshe ZhangQi YanCaibin ZhangPei ZhouFan Wu( )Jiyu Zhang( )
State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, Gansu, China
Show Author Information

Abstract

The plant natural product scopolin, a coumarin secondary metabolite, has been extensively exploited in flavor, cosmetic, medicine, and other industrial fields. Melilotus albus, a leguminous rotation crop, contains high concentrations of coumarin. The transcriptional regulatory network that controls the flow through the scopolin biosynthesis pipeline in M. albus remains poorly understood. MabHLH11 encodes a basic helix–loop–helix (bHLH) transcription factor whose transcription is positively associated with scopolin accumulation and with the expression of MaMYB4, the bHLH partner of the MYB-bHLH complex. Phylogenetic analysis grouped MabHLH11 in the TRANSPARENT TESTA 8 (TT8) clade of the bHLH IIIf subgroup. The MabHLH11 protein contained an MYB-interacting region and physically interacted with MaMYB4 in yeast and tobacco leaves. Co-overexpression of MabHLH11 with MaMYB4 in M. albus additively increased the expression of UDP-glucosyltransferase (MaUGT79) and induced more scopolin accumulation than occurred under the expression of MabHLH11 alone. MabHLH11 directly targeted the promoter of MaUGT79 and the activation of MabHLH11 was strengthened by the presence of MaMYB4. Thus, MaMYB4 enhanced the function of MabHLH11 in upregulating scopolin biosynthesis in M. albus, providing a theoretical basis for scalable production of a high-value plant natural product.

References

[1]

S. Doll, M. Kuhlmann, T. Rutten, M.F. Mette, S. Scharfenberg, A. Petridis, D.C. Berreth, H.P. Mock, Accumulation of the coumarin scopolin under abiotic stress conditions is mediated by the Arabidopsis thaliana THO/TREX complex, Plant J. 93 (2018) 431–444.

[2]

I.A. Stringlis, R. De Jonge, C.M. Pieterse, The age of coumarins in plant-microbe interactions, Plant Cell Physiol. 60 (2019) 1405–1419.

[3]

M.J.E.E.E. Voges, Y. Bai, P. Schulze-Lefert, E.S. Sattely, Plant-derived coumarins shape the composition of an Arabidopsis synthetic root microbiome, Proc. Natl. Acad. Sci. U. S. A. 116 (2019) 12558–12565.

[4]

C. Alonso, I.M. Garcia, N. Zapata, R. Perez, Variability in the behavioural responses of three generalist herbivores to the most abundant coumarin in Daphne laureola leaves, Entomol. Exp. Appl. 132 (2009) 76–83.

[5]

H.H. Tsai, W. Schmidt, Mobilization of iron by plant-borne coumarins, Trends Plant Sci. 22 (2017) 538–548.

[6]

K. Robe, G. Conejero, F. Gao, L. Lefebvre-Legendre, E. Sylvestre-Gonon, V. Rofidal, S. Hem, N. Rouhier, M. Barberon, A. Hecker, F. Gaymard, E. Izquierdo, C. Dubos, Coumarin accumulation and trafficking in Arabidopsis thaliana: a complex and dynamic process, New Phytol. 229 (2021) 2062–2079.

[7]

E. Park, C.G. Lee, J. Kim, E. Lim, S. Yeo, S.Y. Jeong, Scopolin prevents adipocyte differentiation in 3T3-L1 preadipocytes and weight gain in an ovariectomy-induced obese mouse model, Int. J. Mol. Sci. 21 (2020) 8699.

[8]

J. Siwinska, L. Kadzinski, R. Banasiuk, A. Gwizdek-Wisniewska, A. Olry, B. Banecki, E. Lojkowska, A. Ihnatowicz, Identification of QTLs affecting scopolin and scopoletin biosynthesis in Arabidopsis thaliana, BMC Plant Biol. 14 (2014) 280.

[9]

Y. Deng, S. Lu, Biosynthesis and regulation of phenylpropanoids in plants, Crit. Rev. Plant Sci. 36 (2017) 257–290.

[10]

X. Liu, P. Zhang, Q. Zhao, A.C. Huang, Making small molecules in plants: a chassis for synthetic biology-based production of plant natural products, J. Integr. Plant Biol. 65 (2023) 417–443.

[11]

K. Robe, E. Izquierdo, F. Vignols, H. Rouached, C. Dubos, The coumarins: secondary metabolites playing a primary role in plant nutrition and health, Trends Plant Sci. 26 (2021) 248–259.

[12]

C. Gachon, R. Baltz, P. Saindrenan, Over-expression of a scopoletin glucosyltransferase in Nicotiana tabacum leads to precocious lesion formation during the hypersensitive response to tobacco mosaic virus but does not affect virus resistance, Plant Mol. Biol. 54 (2004) 137–146.

[13]

H.H. Tsai, J. Rodriguez-Celma, P. Lan, Y.C. Wu, I.C. Velez-Bermudez, W. Schmidt, Scopoletin 8-hydroxylase-mediated fraxetin production is crucial for iron mobilization, Plant Physiol. 177 (2018) 194–207.

[14]

Y. Liu, K. Ma, Y. Qi, G. Lv, X. Ren, Z. Liu, F. Ma, Transcriptional regulation of anthocyanin synthesis by MYB-bHLH-WDR complexes in kiwifruit (Actinidia chinensis), J. Agric. Food Chem. 69 (2021) 3677–3691.

[15]

A. Feller, K. Machemer, E.L. Braun, E. Grotewold, Evolutionary and comparative analysis of MYB and bHLH plant transcription factors, Plant J. 66 (2011) 94–116.

[16]

P.C. Bailey, C. Martin, G. Toledo-Ortiz, P.H. Quail, E. Huq, M.A. Heim, M. Jakoby, M. Werber, B. Weisshaar, Update on the basic helix-loop-helix transcription factor gene family in Arabidopsis thaliana, Plant Cell 15 (2003) 2497–2502.

[17]

W. Xu, C. Dubos, L. Lepiniec, Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes, Trends Plant Sci. 20 (2015) 176–185.

[18]

X.C. Wang, J. Wu, M.L. Guan, C.H. Zhao, P. Geng, Q. Zhao, Arabidopsis MYB4 plays dual roles in flavonoid biosynthesis, Plant J. 101 (2020) 637–652.

[19]

R. Gao, T. Han, H. Xun, X. Zeng, P. Li, Y. Li, Y. Wang, Y. Shao, X. Cheng, X. Feng, J. Zhao, L.i. Wang, X. Gao, Q. Zhao, MYB transcription factors GmMYBA2 and GmMYBR function in a feedback loop to control pigmentation of seed coat in soybean, J. Exp. Bot. 72 (2021) 4401–4418.

[20]

D. Schenke, C. Boettcher, D. Scheel, Crosstalk between abiotic ultraviolet-B stress and biotic (flg22) stress signalling in Arabidopsis prevents flavonol accumulation in favor of pathogen defence compound production, Plant Cell and Environ. 34 (2011) 1849–1864.

[21]

F. Gao, K. Robe, M. Bettembourg, N. Navarro, V. Rofidal, V. Santoni, F. Gaymard, F. Vignols, H. Roschzttardtz, E. Izquierdo, C. Dubos, The transcription factor bHLH121 interacts with bHLH105 (ILR3) and its closest homologs to regulate iron homeostasis in Arabidopsis, Plant Cell 32 (2020) 508–524.

[22]

F. Gao, K. Robe, F. Gaymard, E. Izquierdo, C. Dubos, The transcriptional control of iron homeostasis in plants: a tale of bHLH transcription factors? Front. Plant Sci. 10 (2019) 6.

[23]

S.A. Kim, I.S. LaCroix, S.A. Gerber, M.L. Guerinot, The iron deficiency response in Arabidopsis thaliana requires the phosphorylated transcription factor URI, Proc. Natl. Acad. Sci. U. S. A. 116 (2019) 24933–24942.

[24]

R. Lei, Y. Li, Y. Cai, C. Li, M. Pu, C. Lu, Y. Yang, G. Liang, bHLH121 functions as a direct link that facilitates the activation of FIT by bHLH IVc transcription factors for maintaining Fe homeostasis in Arabidopsis, Mol. Plant 13 (2020) 634–649.

[25]

A. Petridis, S. Döll, L. Nichelmann, W. Bilger, H.P. Mock, Arabidopsis thaliana G2-Like flavonid regulator and brassinosteroid enhanced expression 1 are low-temperature regulators of flavonoid accumulation, New Phytol. 211 (2016) 912–925.

[26]

J.M. Zabala, L. Marinoni, J.A. Giavedoni, G.E. Schrauf, Breeding strategies in Melilotus albus Desr., a salt-tolerant forage legume, Euphytica 214 (2018) 22.

[27]

P.M. Evans, G.A. Kearney, Melilotus albus (Medik.) is productive and regenerates well on saline soils of neutral to alkaline reaction in the high rainfall zone of south-western Victoria, Aust. J. Exp. Agric. 43 (2003) 349–355.

[28]

J. Zhang, H. Di, K. Luo, Z. Jahufer, F. Wu, Z. Duan, A. Stewart, Z. Yan, Y. Wang, Coumarin content, morphological variation, and molecular phylogenetics of Melilotus, Molecules 23 (2018) 810.

[29]

F. Wu, Z. Duan, P. Xu, Q.I. Yan, M. Meng, M. Cao, C.S. Jones, X. Zong, P. Zhou, Y. Wang, K. Luo, S. Wang, Z. Yan, P. Wang, H. Di, Z. Ouyang, Y. Wang, J. Zhang, Genome and systems biology of Melilotus albus provides insights into coumarins biosynthesis, Plant Biotechnol. J. 23 (2022) 592–609.

[30]

K. Luo, F. Wu, D. Zhang, R. Dong, Z. Fan, R. Zhang, Z. Yan, Y. Wang, J. Zhang, Transcriptomic profiling of Melilotus albus near-isogenic lines contrasting for coumarin content, Sci. Rep. 7 (2017) 4577.

[31]

F. Wu, K. Luo, Z. Yan, D. Zhang, Q. Yan, Y. Zhang, X. Yi, J. Zhang, Analysis of miRNAs and their target genes in five Melilotus albus NILs with different coumarin content, Sci. Rep. 8 (2018) 14138.

[32]

L. Chen, F. Wu, J. Zhang, NAC and MYB families and lignin biosynthesis-related members identification and expression analysis in Melilotus albus, Plants 10 (2021) 303.

[33]

Z. Duan, Q. Yan, F. Wu, Y. Wang, S. Wang, X. Zong, P. Zhou, J. Zhang, Genome-Wide analysis of the UDP-Glycosyltransferase family reveals its roles in coumarin biosynthesis and abiotic stress in Melilotus albus, Int. J. Mol. Sci. 22 (2021) 10826.

[34]

J. Xu, H. Xu, H. Zhao, H. Liu, L. Xu, Z. Liang, Genome-wide investigation of bHLH genes and expression analysis under salt and hormonal treatments in Andrographis paniculata, Ind. Crop Prod. 183 (2022) 114928.

[35]

C. Chen, H. Chen, Y. Zhang, H.R. Thomas, M.H. Frank, Y. He, R. Xia, TBtools: an integrative toolkit developed for interactive analyses of big biological data, Mol. Plant. 13 (2020) 1194–1202.

[36]

S. Kumar, G. Stecher, K. Tamura, MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets, Mol. Biol. Evol. 33 (2016) 1870–1874.

[37]

M.A. Heim, M. Jakoby, M. Werber, C. Martin, B. Weisshaar, P.C. Bailey, The basic helix-loop-helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity, Mol. Biol. Evo. 20 (2003) 735–747.

[38]

S. Wang, Z. Duan, Q. Yan, F. Wu, P. Zhou, J. Zhang, Genome-wide identification of the GRAS family genes in Melilotus albus and expression analysis under various tissues and abiotic stresses, Int. J. Mol. Sci. 23 (2022) 7403.

[39]

F. Jeanmougin, J.D. Thompson, M. Gouy, D.G. Higgins, T.J. Gibson, Multiple sequence alignment with Clustal X, Trends Biochem. Sci. 23 (1998) 403–405.

[40]

X. Zong, S. Wang, Y. Han, Q. Zhao, P. Xu, Q. Yan, F. Wu, J. Zhang, Genome-wide profiling of the potential regulatory network of lncRNA and mRNA in Melilotus albus under salt stress, Environ. Exp. Bot. 189 (2021) 104548.

[41]

X. Liu, R. Wu, S.M. Bulley, C. Zhong, D. Li, Kiwifruit MYBS1-like and GBF3 transcription factors influence L-ascorbic acid biosynthesis by activating transcription of GDP-L-galactose phosphorylase 3, New Phytol. 234 (2022) 1782.

[42]

Q. Zeb, X. Wang, C. Hou, X. Zhang, M. Dong, S. Zhang, Q. Zhang, Z. Ren, W. Tian, H. Zhu, The interaction of CaM7 and CNGC14 regulates root hair growth in Arabidopsis, J. Integr. Plant Biol. 62 (2020) 887–896.

[43]

S. Wang, Z. Duan, J. Zhang, Establishment of hairy root transformation system of Melilotus albus induced by Agrobacterium rhizogenes, Acta Agrestia Sin. 29 (2021) 2591–2599.

[44]

H. Zheng, L.i. Jing, X. Jiang, C. Pu, S. Zhao, J. Yang, J. Guo, G. Cui, J. Tang, Y. Ma, M. Yu, X. Zhou, M. Chen, C. Lai, L. Huang, Y.e. Shen, The ERF-VII transcription factor SmERF73 coordinately regulates tanshinone biosynthesis in response to stress elicitors in Salvia miltiorrhiza, New Phytol. 231 (2021) 1940–1955.

[45]

N.Q. Dong, H.X. Lin, Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions, J. Integr. Plant Biol. 63 (2021) 180–209.

[46]

J. Mertens, J. Pollier, R. Vanden Bossche, I. Lopez-Vidriero, J.M. Franco-Zorrilla, A. Goossens, The bHLH transcription factors TSAR1 and TSAR2 regulate triterpene saponin biosynthesis in Medicago truncatula, Plant Physiol. 170 (2016) 194–210.

[47]

C.Q. Yang, X. Fang, X.M. Wu, Y.B. Mao, L.J. Wang, X.Y. Chen, Transcriptional regulation of plant secondary metabolism, J. Integr. Plant Biol. 54 (2012) 703–712.

[48]

T.K. Blackwell, L. Kretzner, E.M. Blackwood. R.N. Eisenman, H. Weintraub, Sequence-specific DNA binding by the c-Myc protein, Science 250 (1990) 1149–1151.

[49]

R. Rajput, J. Naik, R. Stracke, A. Pandey, Interplay between R2R3 MYB-type activators and repressors regulates proanthocyanidin biosynthesis in banana (Musa acuminata), New Phytol. 236 (2022) 1108–1127.

The Crop Journal
Pages 1675-1685
Cite this article:
Duan Z, Wang S, Zhang Z, et al. The MabHLH11 transcription factor interacting with MaMYB4 acts additively in increasing plant scopolin biosynthesis. The Crop Journal, 2023, 11(6): 1675-1685. https://doi.org/10.1016/j.cj.2023.06.011

257

Views

2

Downloads

3

Crossref

0

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 05 January 2023
Revised: 16 June 2023
Accepted: 27 June 2023
Published: 03 August 2023
© 2023 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return