AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Genome assembly of KA105, a new resource for maize molecular breeding and genomic research

Ting Lia,bShutu Xua,b( )Jiawen Zhaoa,cYapeng Wanga,bJun Zhanga,bXin Weia,bJianzhou Qua,bRuisu Yua,bXinghua Zhanga,bChuang Maa,c( )Jiquan Xuea,b( )
The Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Northwest A&F University, Yangling 712100, Shaanxi, China
Maize Engineering & Technology Research Centre, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
Show Author Information

Abstract

Superior inbred lines are central to maize breeding as sources of natural variation. Although many elite lines have been sequenced, less sequencing attention has been paid to newly developed lines. We constructed a genome assembly of the elite inbred line KA105, which has recently been developed by an artificial breeding population named Shaan A and has shown desirable characteristics for breeding. Its pedigree showed genetic divergence from B73 and other lines in its pedigree. Comparison with the B73 reference genome revealed extensive structural variation, 58 presence/absence variation (PAV) genes, and 1023 expanded gene families, some of which may be associated with disease resistance. A network-based integrative analysis of stress-induced transcriptomes identified 13 KA105-specific PAV genes, of which eight were induced by at least one kind of stress, participating in gene modules responding to stress such as drought and southern leaf blight disease. More than 200,000 gene pairs were differentially correlated between KA105 and B73 during kernel development. The KA105 reference genome and transcriptome atlas are a resource for further germplasm improvement and surveys of maize genomic variation and gene function.

References

[1]

D. Jackson, F. Tian, Z. Zhang, Maize genetics, genomics, and sustainable improvement, Mol. Breed. 42 (2022) 2.

[2]

L.T. Hickey, A. N. Hafeez, H. Robinson, S.A. Jackson, S.C.M. Leal-Bertioli, M. Tester, C. Gao, I.D. Godwin, B.J. Hayes, B.B.H. Wulff, Breeding crops to feed 10 billion, Nat. Biotechnol. 37 (2019) 744–754.

[3]

R.K. Varshney, A. Bohra, J. Yu, A. Graner, Q. Zhang, M.E. Sorrells, Designing future crops: genomics-assisted breeding comes of age, Trends Plant Sci. 26 (2021) 631–649.

[4]

M. Thudi, R. Palakurthi, J.C. Schnable, A. Chitikineni, S. Dreisigacker, E. Mace, R. K. Srivastava, C.T. Satyavathi, D. Odeny, V.K. Tiwari, H.M. Lam, Y.B. Hong, V.K. Singh, G. Li, Y. Xu, X. Chen, S. Kaila, H. Nguyen, S. Sivasankar, S.A. Jackson, T.J. Close, W. Shubo, R.K. Varshney, Genomic resources in plant breeding for sustainable agriculture, J. Plant Physiol. 257 (2021) 153351.

[5]

A. Bohra, U. Chand Jha, I.D. Godwin, R. Kumar Varshney, Genomic interventions for sustainable agriculture, Plant Biotechnol. J. 18 (2020) 2388–2405.

[6]

P.S. Schnable, D. Ware, R.S. Fulton, J.C. Stein, F. Wei, S. Pasternak, C. Liang, J. Zhang, L. Fulton, T.A. Graves, P. Minx, A.D. Reily, L. Courtney, S.S. Kruchowski, C. Tomlinson, C. Strong, K. Delehaunty, C. Fronick, B. Courtney, S.M. Rock, E. Belter, F. Du, K. Kim, R.M. Abbott, M. Cotton, A. Levy, P. Marchetto, K. Ochoa, S. M. Jackson, B. Gillam, W. Chen, L. Yan, J. Higginbotham, M. Cardenas, J. Waligorski, E. Applebaum, L. Phelps, J. Falcone, K. Kanchi, T. Thane, A. Scimone, N. Thane, J. Henke, T. Wang, J. Ruppert, N. Shah, K. Rotter, J. Hodges, E. Ingenthron, M. Cordes, S. Kohlberg, J. Sgro, B. Delgado, K. Mead, A. Chinwalla, S. Leonard, K. Crouse, K. Collura, D. Kudrna, J. Currie, R. He, A. Angelova, S. Rajasekar, T. Mueller, R. Lomeli, G. Scara, A. Ko, K. Delaney, M. Wissotski, G. Lopez, D. Campos, M. Braidotti, E. Ashley, W. Golser, H. Kim, S. Lee, J. Lin, Z. Dujmic, W. Kim, J. Talag, A. Zuccolo, C. Fan, A. Sebastian, M. Kramer, L. Spiegel, L. Nascimento, T. Zutavern, B. Miller, C. Ambroise, S. Muller, W. Spooner, A. Narechania, L. Ren, S. Wei, S. Kumari, B. Faga, M.J. Levy, L. McMahan, P.V. Buren, M.W. Vaughn, K. Ying, C.T. Yeh, S.J. Emrich, Y. Jia, A. Kalyanaraman, A.P. Hsia, W.B. Barbazuk, R.S. Baucom, T.P. Brutnell, N.C. Carpita, C. Chaparro, J.M. Chia, J.M. Deragon, J.C. Estill, Y. Fu, J.A. Jeddeloh, Y. Han, H. Lee, P. Li, D.R. Lisch, S. Liu, Z. Liu, D.H. Nagel, M.C. McCann, P. SanMiguel, A.M. Myers, D. Nettleton, J. Nguyen, B.W. Penning, L. Ponnala, K.L. Schneider, D.C. Schwartz, A. Sharma, C. Soderlund, N.M. Springer, Q. Sun, H. Wang, M. Waterman, R. Westerman, T.K. Wolfgruber, L. Yang, Y. Yu, L. Zhang, S. Zhou, Q. Zhu, J.L. Bennetzen, R.K. Dawe, J. Jiang, N. Jiang, G.G. Presting, S.R. Wessler, S. Aluru, R.A. Martienssen, S.W. Clifton, W.R. McCombie, R.A. Wing, R.K. Wilson, The B73 maize genome: complexity, diversity, and dynamics, Science 326 (2009) 1112–1115.

[7]

M.B. Hufford, A.S. Seetharam, M.R. Woodhouse, K.M. Chougule, S. Ou, J. Liu, W. A. Ricci, T. Guo, A. Olson, Y. Qiu, R. Della Coletta, S. Tittes, A.I. Hudson, A.P. Marand, S. Wei, Z. Lu, B.o. Wang, M.K. Tello-Ruiz, R.D. Piri, N.a. Wang, D.W. Kim, Y. Zeng, C.H. O’Connor, X. Li, A.M. Gilbert, E. Baggs, K.V. Krasileva, J.L. Portwood, E.K.S. Cannon, C.M. Andorf, N. Manchanda, S.J. Snodgrass, D.E. Hufnagel, Q. Jiang, S. Pedersen, M.L. Syring, D.A. Kudrna, V. Llaca, K. Fengler, R.J. Schmitz, J. Ross-Ibarra, J. Yu, J.I. Gent, C.N. Hirsch, D. Ware, R.K. Dawe, De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes, Science 373 (2021) 655–662.

[8]

Y. Jiao, P. Peluso, J. Shi, T. Liang, M.C. Stitzer, B.o. Wang, M.S. Campbell, J.C. Stein, X. Wei, C.S. Chin, K. Guill, M. Regulski, S. Kumari, A. Olson, J. Gent, K.L. Schneider, T.K. Wolfgruber, M.R. May, N.M. Springer, E. Antoniou, W.R. McCombie, G.G. Presting, M. McMullen, J. Ross-Ibarra, R.K. Dawe, A. Hastie, D.R. Rank, D. Ware, Improved maize reference genome with single-molecule technologies, Nature 546 (2017) 524–527.

[9]

X. Yang, W.P. Lee, K. Ye, C. Lee, One reference genome is not enough, Genome Biol. 20 (2019) 104.

[10]

C.N. Hirsch, C.D. Hirsch, A.B. Brohammer, M.J. Bowman, I. Soifer, O. Barad, D. Shem-Tov, K. Baruch, F. Lu, A.G. Hernandez, C.J. Fields, C.L. Wright, K. Koehler, N.M. Springer, E. Buckler, C.R. Buell, N. de Leon, S.M. Kaeppler, K.L. Childs, M.A. Mikel, Draft assembly of elite inbred line PH207 provides insights into genomic and transcriptome diversity in maize, Plant Cell 28 (2016) 2700–2714.

[11]

S. Sun, Y. Zhou, J. Chen, J. Shi, H. Zhao, H. Zhao, W. Song, M. Zhang, Y. Cui, X. Dong, H. Liu, X. Ma, Y. Jiao, B.o. Wang, X. Wei, J.C. Stein, J.C. Glaubitz, F. Lu, G. Yu, C. Liang, K. Fengler, B. Li, A. Rafalski, P.S. Schnable, D.H. Ware, E.S. Buckler, J. Lai, Extensive intraspecific gene order and gene structural variations between Mo17 and other maize genomes, Nat. Genet. 50 (2018) 1289–1295.

[12]

N. Yang, J. Liu, Q. Gao, S. Gui, L.U. Chen, L. Yang, J. Huang, T. Deng, J. Luo, L. He, Y. Wang, P. Xu, Y. Peng, Z. Shi, L. Lan, Z. Ma, X. Yang, Q. Zhang, M. Bai, S. Li, W. Li, L. Liu, D. Jackson, J. Yan, Genome assembly of a tropical maize inbred line provides insights into structural variation and crop improvement, Nat. Genet. 51 (2019) 1052–1059.

[13]

G. Haberer, N. Kamal, E. Bauer, H. Gundlach, I. Fischer, M.A. Seidel, M. Spannagl, C. Marcon, A. Ruban, C. Urbany, A. Nemri, F. Hochholdinger, M. Ouzunova, A. Houben, C.C. Schön, K.F.X. Mayer, European maize genomes highlight intraspecies variation in repeat and gene content, Nat. Genet. 52 (2020) 950–957.

[14]

C. Li, W. Song, Y. Luo, S. Gao, R. Zhang, Z.I. Shi, X. Wang, R. Wang, F. Wang, J. Wang, Y. Zhao, A. Su, S. Wang, X. Li, M. Luo, S. Wang, Y. Zhang, J. Ge, X. Tan, Y.E. Yuan, X. Bi, H. He, J. Yan, Y. Wang, S. Hu, J. Zhao, The HuangZaoSi maize genome provides insights into genomic variation and improvement history of maize, Mol. Plant 12 (2019) 402–409.

[15]

Y. Zhao, Y. Wang, D. Ma, G. Feng, Y. Huo, Z. Liu, L. Zhou, Y. Zhang, L. Xu, L. Wang, H. Zhao, J. Zhao, F. Wang, A chromosome-level genome assembly and annotation of the maize elite breeding line Dan340, GigaByte 2022 (2022) 1–15.

[16]

B. Wang, M. Hou, J. Shi, L. Ku, W. Song, C. Li, Q. Ning, X. Li, C. Li, B. Zhao, R. Zhang, H. Xu, Z. Bai, Z. Xia, H. Wang, D. Kong, H. Wei, Y. Jing, Z. Dai, H.H. Wang, X. Zhu, C. Li, X. Sun, S. Wang, W. Yao, G. Hou, Z. Qi, H.E. Dai, X. Li, H. Zheng, Z. Zhang, Y.U. Li, T. Wang, T. Jiang, Z. Wan, Y. Chen, J. Zhao, J. Lai, H. Wang, De novo genome assembly and analyses of 12 founder inbred lines provide insights into maize heterosis, Nat. Genet. 55 (2023) 312–323.

[17]

S. Nie, B.O. Wang, H. Ding, H. Lin, L.I. Zhang, Q. Li, Y. Wang, B. Zhang, A. Liang, Q.I. Zheng, H. Wang, H. Lv, K. Zhu, M. Jia, X. Wang, J. Du, R. Zhao, Z. Jiang, C. Xia, Z. Qiao, X. Li, B. Liu, H. Zhu, R. An, Y. Li, Q. Jiang, B. Chen, H. Zhang, D. Wang, C. Tang, Y. Yuan, J. Dai, J. Zhan, W. He, X. Wang, J. Shi, B. Wang, M. Gong, X. He, P. Li, L.i. Huang, H. Li, C. Pan, H. Huang, G. Yuan, H. Lan, Y. Nie, X. Li, X. Zhao, X. Zhang, G. Pan, Q. Wu, F. Xu, Z. Zhang, Genome assembly of the Chinese maize elite inbred line RP125 and its EMS mutant collection provide new resources for maize genetics research and crop improvement, Plant J. 108 (2021) 40–54.

[18]

F. Ge, J. Qu, P. Liu, L. Pan, C. Zou, G. Yuan, C. Yang, G. Pan, J. Huang, L. Ma, Y. Shen, Genome assembly of the maize inbred line A188 provides a new reference genome for functional genomics, Crop J. 10 (2022) 47–55.

[19]

G. Lin, C. He, J. Zheng, D.H. Koo, H. Le, H. Zheng, T.M. Tamang, J. Lin, Y. Liu, M. Zhao, Y. Hao, F. McFraland, B. Wang, Y. Qin, H. Tang, D.R. McCarty, H. Wei, M.J. Cho, S. Park, H. Kaeppler, S.M. Kaeppler, Y. Liu, N. Springer, P.S. Schnable, G. Wang, F.F. White, S. Liu, Chromosome-level genome assembly of a regenerable maize inbred line A188, Genome Biol. 22 (2021) 175.

[20]

C. Li, X. Xiang, Y. Huang, Y. Zhou, D. An, J. Dong, C. Zhao, H. Liu, Y. Li, Q. Wang, C. Du, J. Messing, B.A. Larkins, Y. Wu, W. Wang, Long-read sequencing reveals genomic structural variations that underlie creation of quality protein maize, Nat. Commun. 11 (2020) 17.

[21]

T. Li, J. Qu, X. Tian, Y. Lao, N. Wei, Y. Wang, Y. Hao, X. Zhang, J. Xue, S. Xu, Identification of ear morphology genes in maize (Zea mays L.) using selective sweeps and association mapping, Front. Genet. 11 (2020) 747.

[22]

Y. Lao, Y. Dong, Y. Shi, Y. Wang, S. Xu, J. Xue, X. Zhang, Evaluation of drought tolerance in maize inbred lines selected from the Shaan A group and Shaan B group, Agriculture 12 (2021) 11.

[23]

Z. Zhao, K. He, Z. Feng, Y. Li, L. Chang, X. Zhang, S. Xu, J. Liu, J. Xue, Evaluation of yield-based low nitrogen tolerance indices for screening maize (Zea mays L.) inbred lines, Agronomy 9 (2019) 240.

[24]

Z. Zhao, Y. Zhao, C. Lin, Y. Zhao, Y. Yu, Q. Meng, G. Zeng, J. Xue, Q. Yang, Precise evaluation of 48 maize inbred lines to major diseases, Sci. Agric. Sin. 54 (2021) 2510–2522 (in Chinese with English abstract).

[25]

J. Qu, S. Xu, X. Gou, H. Zhang, Q. Cheng, X. Wang, C. Ma, J. Xue, Time-resolved multiomics analysis of the genetic regulation of maize kernel moisture, Crop J. 11 (2023) 247–257.

[26]

Y. Dong, Z. Feng, T. Li, A. Farhan, X. Tian, Y. Lao, Y. Duan, L. Si, X. Zhang, J. Xue, S. Xu, Performance and stability of yield in response to plant density, year and location in maize hybrids of Northwest China, Technol. Agron. 2 (2022) 3.

[27]

A.S. Abu Almakarem, K.L. Heilman, H.L. Conger, Y.M. Shtarkman, S.O. Rogers, Extraction of DNA from plant and fungus tissues in situ, BMC Res. Notes 5 (2012) 266.

[28]

J.M. Belton, R.P. McCord, J.H. Gibcus, N. Naumova, Y. Zhan, J. Dekker, Hi-C: a comprehensive technique to capture the conformation of genomes, Methods 58 (2012) 268–276.

[29]

S. Koren, B.P. Walenz, K. Berlin, J.R. Miller, N.H. Bergman, A.M. Phillippy, Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation, Genome Res. 27 (2017) 722–736.

[30]

H. Liu, S. Wu, A. Li, J. Ruan, SMARTdenovo: a de novo assembler using long noisy reads, GigaByte 2021 (2021) 1–9.

[31]

B.J. Walker, T. Abeel, T. Shea, M. Priest, A. Abouelliel, S. Sakthikumar, C.A. Cuomo, Q. Zeng, J. Wortman, S.K. Young, A.M. Earl, Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement, PLoS ONE 9 (2014) e112963.

[32]

J.N. Burton, A. Adey, R.P. Patwardhan, R. Qiu, J.O. Kitzman, J. Shendure, Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions, Nat. Biotechnol. 31 (2013) 1119–1125.

[33]

H. Li, R. Durbin, Fast and accurate short read alignment with Burrows-Wheeler transform, Bioinformatics 25 (2009) 1754–1760.

[34]

F.A. Simão, R.M. Waterhouse, P. Ioannidis, E.V. Kriventseva, E.M. Zdobnov, BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs, Bioinformatics 31 (2015) 3210–3212.

[35]

S. Ou, J. Chen, N. Jiang, Assessing genome assembly quality using the LTR Assembly Index (LAI), Nucleic Acids Res. 46 (2018) e126.

[36]

A.R. Belcher, J.C. Zwonitzer, J.S. Cruz, M.D. Krakowsky, C.L. Chung, R. Nelson, C. Arellano, P.J. Balint-Kurti, Analysis of quantitative disease resistance to southern leaf blight and of multiple disease resistance in maize, using near-isogenic lines, Theor. Appl. Genet. 124 (2012) 433–445.

[37]

S. Chen, Y. Zhou, Y. Chen, J. Gu, fastp: an ultra-fast all-in-one FASTQ preprocessor, Bioinformatics 34 (2018) i884–i890.

[38]

D. Kim, B. Langmead, S.L. Salzberg, HISAT: a fast spliced aligner with low memory requirements, Nat. Methods 12 (2015) 357–360.

[39]

M. Pertea, G.M. Pertea, C.M. Antonescu, T.C. Chang, J.T. Mendell, S.L. Salzberg, StringTie enables improved reconstruction of a transcriptome from RNA-seq reads, Nat. Biotechnol. 33 (2015) 290–295.

[40]

J.M. Flynn, R. Hubley, C. Goubert, J. Rosen, A.G. Clark, C. Feschotte, A.F. Smit, RepeatModeler2 for automated genomic discovery of transposable element families, Proc. Natl. Acad. Sci. U. S. A. 117 (2020) 9451–9457.

[41]

S. Ou, N. Jiang, LTR_retriever: a highly accurate and sensitive program for identification of long terminal repeat retrotransposons, Plant Physiol. 176 (2018) 1410–1422.

[42]

M. Tarailo-Graovac, N. Chen, Using RepeatMasker to identify repetitive elements in genomic sequences, Curr. Protoc. Bioinformatics 25 (2009) 4.10.1–4.10.14.

[43]

J. Jurka, V.V. Kapitonov, A. Pavlicek, P. Klonowski, O. Kohany, J. Walichiewicz, Repbase Update, a database of eukaryotic repetitive elements, Cytogenet. Genome Res. 110 (2005) 462–467.

[44]

P. Neumann, P. Novák, N. Hoštáková, J. Macas, Systematic survey of plant LTR-retrotransposons elucidates phylogenetic relationships of their polyprotein domains and provides a reference for element classification, Mob. DNA 10 (2019) 1.

[45]

T.J. Wheeler, J. Clements, S.R. Eddy, R. Hubley, T.A. Jones, J. Jurka, A.F.A. Smit, R. D. Finn, Dfam: a database of repetitive DNA based on profile hidden Markov models, Nucleic Acids Res. 41 (2013) D70–D82.

[46]

S. Beier, T. Thiel, T. Münch, U. Scholz, M. Mascher, MISA-web: a web server for microsatellite prediction, Bioinformatics 33 (2017) 2583–2585.

[47]

G. Benson, Tandem repeats finder: a program to analyze DNA sequences, Nucleic Acids Res. 27 (1999) 573–580.

[48]

M. Stanke, M. Diekhans, R. Baertsch, D. Haussler, Using native and syntenically mapped cDNA alignments to improve de novo gene finding, Bioinformatics 24 (2008) 637–644.

[49]

I. Korf, Gene finding in novel genomes, BMC Bioinformatics 5 (2004) 59.

[50]

J. Keilwagen, M. Wenk, J.L. Erickson, M.H. Schattat, J. Grau, F. Hartung, Using intron position conservation for homology-based gene prediction, Nucleic Acids Res. 44 (2016) e89.

[51]

B.J. Haas, S.L. Salzberg, W. Zhu, M. Pertea, J.E. Allen, J. Orvis, O. White, C.R. Buell, J.R. Wortman, Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments, Genome Biol. 9 (2008) R7.

[52]

B.J. Haas, A.L. Delcher, S.M. Mount, J.R. Wortman, R.K. Smith Jr, L.I. Hannick, R. Maiti, C.M. Ronning, D.B. Rusch, C.D. Town, S.L. Salzberg, O. White, Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies, Nucleic Acids Res. 31 (2003) 5654–5666.

[53]

B. Langmead, S.L. Salzberg, Fast gapped-read alignment with Bowtie 2, Nat. Methods 9 (2012) 357–359.

[54]

H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis, R. Durbin, The sequence alignment/map format and SAMtools, Bioinformatics 25 (2009) 2078–2079.

[55]

A. McKenna, M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis, A. Kernytsky, K. Garimella, D. Altshuler, S. Gabriel, M. Daly, M.A. DePristo, The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data, Genome Res. 20 (2010) 1297–1303.

[56]

J. Yang, S.H. Lee, M.E. Goddard, P.M. Visscher, GCTA: a tool for genome-wide complex trait analysis, Am. J. Human Genet. 88 (2011) 76–82.

[57]

B. Browning, S. Browning, Detecting identity by descent and estimating genotype error rates in sequence data, Am. J. Human Genet. 93 (5) (2013) 840–851.

[58]

J. Lai, R. Li, X. Xu, W. Jin, M. Xu, H. Zhao, Z. Xiang, W. Song, K. Ying, M. Zhang, Y. Jiao, P. Ni, J. Zhang, D. Li, X. Guo, K. Ye, M. Jian, B. Wang, H. Zheng, H. Liang, X. Zhang, S. Wang, S. Chen, J. Li, Y. Fu, N.M. Springer, H. Yang, J. Wang, J. Dai, P.S. Schnable, J. Wang, Genome-wide patterns of genetic variation among elite maize inbred lines, Nat. Genet. 42 (2010) 1027–1030.

[59]

A.A. Golicz, P.A. Martinez, M. Zander, D.A. Patel, A.P. van de Wouw, P. Visendi, T.L. Fitzgerald, D. Edwards, J. Batley, Gene loss in the fungal canola pathogen Leptosphaeria maculans, Funct. Integr. Genomics 15 (2015) 189–196.

[60]

H. Tang, J.E. Bowers, X. Wang, R. Ming, M. Alam, A.H. Paterson, Synteny and collinearity in plant genomes, Science 320 (2008) 486–488.

[61]

L. Li, C.J. Stoeckert, D.S. Roos, OrthoMCL: identification of ortholog groups for eukaryotic genomes, Genome Res. 13 (2003) 2178–2189.

[62]

G. Yu, L.G. Wang, Y. Han, Q.Y. He, clusterProfiler: an R package for comparing biological themes among gene clusters, OMICS, J. Integr. Biol. 16 (2012) 284–287.

[63]

P. Li, X. Quan, G. Jia, J. Xiao, S. Cloutier, F.M. You, RGAugury: a pipeline for genome-wide prediction of resistance gene analogs (RGAs) in plants, BMC Genomics 17 (2016) 852.

[64]

G. Marçais, A.L. Delcher, A.M. Phillippy, R. Coston, S.L. Salzberg, A. Zimin, MUMmer4: a fast and versatile genome alignment system, PLoS Comput. Biol. 14 (2018) e1005944.

[65]
H. Li, Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM, ArXiv (2013), doi.org/10.48550/arXiv.1303.3997.
[66]

T.D. Wu, J. Reeder, M. Lawrence, G. Becker, M.J. Brauer, GMAP and GSNAP for genomic sequence alignment: enhancements to speed, accuracy, and functionality, Methods Mol. Biol. 1418 (2016) 283–334.

[67]

H. Li, Minimap2: pairwise alignment for nucleotide sequences, Bioinformatics 34 (2018) 3094–3100.

[68]

M. Goel, H. Sun, W.B. Jiao, K. Schneeberger, SyRI: finding genomic rearrangements and local sequence differences from whole-genome assemblies, Genome Biol. 20 (2019) 277.

[69]

J. Chen, B. Zeng, M. Zhang, S. Xie, G. Wang, A. Hauck, J. Lai, Dynamic transcriptome landscape of maize embryo and endosperm development, Plant Physiol. 166 (2014) 252–264.

[70]

A. Fukushima, DiffCorr: an R package to analyze and visualize differential correlations in biological networks, Gene 518 (2013) 209–214.

[71]

M.I. Love, W. Huber, S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol. 15 (2014) 550.

[72]

D.S. Fischer, F.J. Theis, N. Yosef, Impulse model-based differential expression analysis of time course sequencing data, Nucleic Acids Res. 46 (2018) e119.

[73]

P. Langfelder, S. Horvath, WGCNA: an R package for weighted correlation network analysis, BMC Bioinformatics 9 (2008) 559.

[74]

Q. Yang, Y. He, M. Kabahuma, T. Chaya, A. Kelly, E. Borrego, Y. Bian, F. El Kasmi, L. Yang, P. Teixeira, J. Kolkman, R. Nelson, M. Kolomiets, J.L. Dangl, R. Wisser, J. Caplan, X. Li, N. Lauter, P. Balint-Kurti, A gene encoding maize caffeoyl-CoA O-methyltransferase confers quantitative resistance to multiple pathogens, Nat. Genet. 49 (2017) 1364–1372.

[75]

W. Li, Y. Yu, L. Wang, Y. Luo, Y. Peng, Y. Xu, X. Liu, S. Wu, L. Jian, J. Xu, Y. Xiao, J. Yan, The genetic architecture of the dynamic changes in grain moisture in maize, Plant Biotechnol. J. 19 (2021) 1195–1205.

[76]

C. Li, Y. Yue, H. Chen, W. Qi, R. Song, The ZmbZIP22 transcription factor regulates 27-kD γ-zein gene transcription during maize endosperm development, Plant Cell 30 (2018) 2402–2424.

[77]

Y. Li, S. Ma, Q. Zhao, D. Lv, B. Wang, K. Xiao, J. Zhu, S. Li, W. Yang, X. Liu, H. Wang, X. Zhou, R. Chen, ZmGRAS11, transactivated by Opaque2, positively regulates kernel size in maize, J. Integr. Plant Biol. 63 (2021) 2031–2037.

[78]

M. Koornneef, P. Stam, Changing paradigms in plant breeding, Plant Physiol. 125 (2001) 156–159.

[79]

C. Chen, Y. Zhao, G. Tabor, H. Nian, J. Phillips, P. Wolters, Q. Yang, P. BalintKurti, A leucine-rich repeat receptor kinase gene confers quantitative susceptibility to maize southern leaf blight, New Phytol. 238 (2023) 1182–1197.

[80]

H. Jia, M. Li, W. Li, L. Liu, Y. Jian, Z. Yang, X. Shen, Q. Ning, Y. Du, R. Zhao, D. Jackson, X. Yang, Z. Zhang, A serine/threonine protein kinase encoding gene KERNEL NUMBER PER ROW6 regulates maize grain yield, Nat. Commun. 11 (2020) 988.

[81]

G. Chen, B. Zhang, J. Ding, H. Wang, C. Deng, J. Wang, Q. Yang, Q. Pi, R. Zhang, H. Zhai, J. Dong, J. Huang, J. Hou, J. Wu, J. Que, F. Zhang, W. Li, H. Min, G. Tabor, B. Li, X. Liu, J. Zhao, J. Yan, Z. Lai, Cloning southern corn rust resistant gene RppK and its cognate gene AvrRppK from Puccinia polysora, Nat. Commun. 13 (2022) 4392.

The Crop Journal
Pages 1793-1804
Cite this article:
Li T, Xu S, Zhao J, et al. Genome assembly of KA105, a new resource for maize molecular breeding and genomic research. The Crop Journal, 2023, 11(6): 1793-1804. https://doi.org/10.1016/j.cj.2023.08.006

245

Views

4

Downloads

3

Crossref

2

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 10 April 2023
Revised: 18 August 2023
Accepted: 31 August 2023
Published: 22 September 2023
© 2023 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return