AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

ZmDRR206 functions in maintaining cell wall integrity during maize seedling growth and defense response to external stresses

Tao ZhongaSuining DengaMang ZhuaXingming FanbMingliang XuaJianrong Yea( )
National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
Institute Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650205, Yunnan, China
Show Author Information

Abstract

Plants adaptively change their cell wall composition and structure during their growth, development, and interactions with environmental stresses. Dirigent proteins (DIRs) contribute to environmental adaptations by dynamically reorganizing the cell wall and/or by generating defense compounds. A maize DIR, ZmDRR206, was previously reported to play a dominant role in regulation of storage nutrient accumulation in endosperm during maize kernel development. Here we show that ZmDRR206 mediates maize seedling growth and disease resistance by coordinately regulating biosynthesis of cell wall components for cell-wall integrity (CWI) maintenance. Expression of ZmDRR206 was induced in maize seedlings upon pathogen infection. ZmDRR206 overexpression in maize resulted in reduced seedling growth and photosynthetic activity but increased disease resistance and drought tolerance, revealing a tradeoff between growth and defense. Consistently, ZmDRR206 overexpression reduced the contents of primary metabolites and down-regulated genes involved in photosynthesis, while increasing the contents of major cell wall components, defense phytohormones, and defense metabolites, and up-regulated genes involved in defense and cell-wall biosynthesis in seedlings. ZmDRR206-overexpressing seedlings were resistant to cell-wall stress imposed by isoxaben, and ZmDRR206 physically interacted with ZmCesA10, which is a cellulose synthase unit. Our findings suggest a mechanism by which ZmDRR206 coordinately regulates biosynthesis of cell-wall components for CWI maintenance during maize seedling growth, and might be exploited for breeding strong disease resistance in maize.

References

[1]

T. Engelsdorf, N. Gigli-Bisceglia, M. Veerabagu, J.F. McKenna, L. Vaahtera, F. Augstein, D. Van der Does, C. Zipfel, T. Hamann, The plant cell wall integrity maintenance and immune signaling systems cooperate to control stress responses in Arabidopsis thaliana, Sci Signal. 11 (2018) eaao3070.

[2]

N. Gigli-Bisceglia, T. Engelsdorf, T. Hamann, Plant cell wall integrity maintenance in model plants and crop species-relevant cell wall components and underlying guiding principles, Cell Mol. Life Sci. 77(11) (2020) 2049–2077.

[3]

L. Vaahtera, J. Schulz, T. Hamann, Cell wall integrity maintenance during plant development and interaction with the environment. Nat Plants 5 (2019) 924–932.

[4]

Y. Rui, J.R. Dinneny, A wall with integrity: surveillance and maintenance of the plant cell wall under stress. New Phytol. 225(4) (2020) 1428–1439.

[5]

E.R. Lampugnani, G.A. Khan, M. Somssich, S. Persson, Building a plant cell wall at a glance. J. Cell Sci. 131 (2018) jcs207373.

[6]

J. Ralph, C. Lapierre, W. Boerjan, Lignin structure and its engineering. Curr. Opin. Biotechnol. 56 (2019) 240–249.

[7]

L.B. Davin, N.G. Lewis, Dirigent proteins and dirigent sites explain the mystery of specificity of radical precursor coupling in lignan and lignin biosynthesis. Plant Physiol. 123 (2000) 453–462.

[8]

L.B. Davin, N.G. Lewis, An historical perspective on lignan biosynthesis: monolignol, allylphenol and hydroxycinnamic acid coupling and downstream metabolism. Phytochem Rev. 2 (2003) 257–288.

[9]

B. Pickel, M.A. Constantin, J. Pfannstiel, J. Conrad, U. Beifuss, A. Schaller. An enantio-complementary dirigent protein for the enantioselective laccase-catalyzed oxidative coupling of phenols. Angew. Chem. Int. Ed. Engl. 49 (2010) 202–204.

[10]

D.S. Dalisay, K.W. Kim, C. Lee, H. Yang, O. Rubel, B.P. Bowen, L.B. Davin, N.G. Lewis, Dirigent protein-mediated lignan and cyanogenic glucoside formation in flax seed: integrated omics and MALDI mass spectrometry imaging. J. Nat. Prod. 78 (2015) 1231–1242.

[11]

R. Gasper, I. Effenberger, P. Kolesinski, B. Terlecka, E. Hofmann, A. Schaller, Dirigent protein mode of action revealed by the crystal structure of AtDIR6. Plant Physiol. 172 (2016) 2165–2175.

[12]

H.K. Seneviratne, D.S. Dalisay, K.W. Kim, S.G. Moinuddin, H. Yang, C.M. Hartshorn, L.B. Davin, N.G. Lewis, Non-host disease resistance response in pea (Pisum sativum) pods: biochemical function of DRR206 and phytoalexin pathway localization. Phytochemistry113 (2015)140–148.

[13]

C. Paniagua, A. Bilkova, P. Jackson, S. Dabravolski, W. Riber, V. Didi, J. Houser, N. Gigli-Bisceglia, M. Wimmerova, E. Budínská, T. Hamann, J. Hejatko. Dirigent proteins in plants: modulating cell wall metabolism during abiotic and biotic stress exposure. J. Exp. Bot. 68 (2017) 3287–3301.

[14]

N. Geldner, The endodermis. Annu Rev Plant Biol. 64 (2013) 531–558.

[15]

P.S. Hosmani, T. Kamiya, J. Danku, S. Naseer, N. Geldner, M.L. Guerinot, D.E. Salt, Dirigent domain-containing protein is part of the machinery required for formation of the lignin-based Casparian strip in the root. Proc. Natl Acad. Sci. U. S. A. 110 (2013) 14498–14503.

[16]

D. Roppolo, B. De Rybel, T.V. Dénervaud, A. Pfister, J. Alassimone, J.E. Vermeer, M. Yamazaki, Y.D. Stierhof, T. Beeckman, N. Geldner, A novel protein family mediates Casparian strip formation in the endodermis. Nature 473 (2011) 380–383.

[17]

H. Funatsuki, M. Suzuki, A. Hirose, H. Inaba, T. Yamada, M. Hajika, K. Komatsu, T. Katayama, T. Sayama, M. Ishimoto, Molecular basis of a shattering resistance boosting global dissemination of soybean, Proc. Natl Acad. Sci. U. S. A. 111 (2014) 17797–17802.

[18]

T. Engelsdorf, L. Kjaer, N. Gigli-Bisceglia, L. Vaahtera, S.E. Bauer, A. Miedes, L. Wormit, I. James, A. Chairam, T.H. Molina, Functional characterization of genes mediating cell wall metabolism and responses to plant cell wall integrity impairment, BMC Plant Biol. 19 (2019) 320–332.

[19]

L. Bacete, H. Mélida, E. Miedes, A. Molina, Plant cell wall-mediated immunity: cell wall changes trigger disease resistance responses. Plant J. 93 (2018) 614–636.

[20]

E. Miedes, R.W. VanholmeBoerjan, A. Molina, The role of the secondary cell wall in plant resistance to pathogens. Front. Plant Sci. 5 (2014)358–368.

[21]

X. He, L. Zhu, G.M. Wassan, Y. Wang, Y. Miao, M. Shaban, H. Hu, H. Sun, X. Zhang, GhJAZ2 attenuates cotton resistance to biotic stresses via the inhibition of the transcriptional activity of GhbHLH171. Mol. Plant Pathol. 19 (2018) 896–908.

[22]

I. Effenberger, B. Zhang, L. Li, Q. Wang, Y. Liu, I. Klaiber, J. Pfannstiel, Q. Wang, A. Schaller, Dirigent proteins from cotton (Gossypium sp.) for the atropselective synthesis of gossypol. Angew. Chem. Int. Ed. 54 (2015) 14660–14663.

[23]

K. Yonekura-Sakakibara, M. Yamamura, F. Matsuda, E. Ono, R. Nakabayashi, S. Sugawara, T. Mori, Y. Tobimatsu, T. Umezawa, K. Saito, Seed-coat protective neolignans are produced by the dirigent protein AtDP1 and the laccase AtLAC5 in Arabidopsis. Plant Cell 33 (2021) 129–152.

[24]

Z. Chen, W. Yan, L. Sun, J. Tian, H Liao, Proteomic analysis reveals growth inhibition of soybean roots by manganese toxicity is associated with alteration of cell wall structure and lignification. J. Proteomics 143 (2016) 151–160.

[25]

Y. Li, D. Li, L.E.J. Yang, W. Liu, M. Xu, J. Ye, ZmDRR206 regulates nutrient accumulation in endosperm through its role in cell wall biogenesis during maize kernel development, Int. J. Mol. Sci. 24 (2023) 8735.

[26]

Q. Yang, G.M. Yin, Y.L. Guo, D.F. Zhang, S.J. Chen, M.L. Xu, A major QTL for resistance to Gibberella stalk rot in maize. Theor. Appl. Genet. 121 (2010) 673–687.

[27]

J. Ye, Y. Guo, D. Zhang, N. Zhang, C. Wang, M. Xu, Cytological and molecular characterization of QTL-qRfg1 which confers resistance to gibberella stalk-rot disease in maize. Mol. Plant Microbe Interact. 26 (2013)1417–1428.

[28]

Q. Zhang, T. Zhong, L.E.M. Xu, W. Dai, S. Sun, J. Ye, GT Factor ZmGT-3b is associated with regulation of photosynthesis and defense response to Fusarium graminearum infection in maize seedling, Front. Plant Sci. 12 (2021) 724133.

[29]

F. Moreira-Vilar, R. de C. Siqueira-Soares, A. Finger-Teixeira, D.M. de Oliveira, A. Ferro, G. da Rocha, M. de L. Ferrarese, W. dos Santos, O. Ferrarese-Filho, The acetyl bromide method is faster, simpler and presents best recovery of lignin in different herbaceous tissues than Klason and thioglycolic acid methods, PLoS ONE 9 (2014) e110000.

[30]

L. Denness, J.F. McKenna, C. Segonzac, A. Wormit, P. Madhou, M. Bennett, J. Mansfield, C. Zipfel, T. Hamann, Cell wall damage induced lignin biosynthesis is regulated by a reactive oxygen species- and jasmonic acid-dependent process in Arabidopsis. Plant Physiol. 156 (2011) 1364–1374.

[31]

J. Ye, T. Zhong, D. Zhang, C. Ma, L. Wang, L. Yao, Q. Zhang, M. Zhu, M. Xu, The maize auxin-regulated protein ZmAuxRP1 coordinates the balance between growth and defense. Mol. Plant 12 (2018) 360–373.

[32]

J. Chen, B. Zeng, M. Zhang, S. Xie, G. Wang, A. Hauck, J. Lai, Dynamic transcriptome landscape of maize embryo and endosperm development. Plant physiol. 972 (2014) 252–264.

[33]

J. Zhan, D. Thakare, C. Ma, A. Lloyd, N.M. Nixon, A.M. Arakaki, W.J. Burnett, K.O.Logan, D. Wang, X. Wang, RNA sequencing of laser-capture microdissected compartments of the maize kernel identifies regulatory modules associated with endosperm cell differentiation. Plant Cell 27 (2015) 513–531.

[34]

F. Li, M. Zhang, K. Guo, Z. Hu, R. Zhang, Y. Feng, X. Yi, W. Zou, L. Wang, C. Wu, High-level hemicellulosic arabinose predominately affects lignocellulose crystallinity for genetically enhancing both plant lodging resistance and biomass enzymatic digestibility in rice mutants. Plant Biotechnol. J. 13 (2015) 514–525.

[35]

A. Cano-Delgado, S. Penfield, C. Smith, M. Catley, M. Bevan, Reduced cellulose synthesis invokes lignification and defense responses in Arabidopsis thaliana. Plant J. 34 (2003) 351–362.

[36]

G. Pogorelko, V. Lionetti, D. Bellincampi, O. Zabotina, Cellwallintegrity: targeted post-synthetic modifications to reveal its role in plant growth and defense against pathogens. Plant Signal. Behav. 8 (2013) e25435.

[37]

C. Ellis, I. Karafyllidis, C. Wasternack, J.G. Turner, The Arabidopsis mutant cev1 links cell wall signaling to jasmonate and ethylene responses. Plant Cell 14 (2002)1557–1566.

[38]

B. Huot, J. Yao, B.L. Montgomery, S.Y. He, Growth-defense tradeoffs in plants: a balancing act to optimize fitness. Mol. Plant 7 (2014) 1267–1287.

[39]

V. Bischoff, S.J. Cookson, S. Wu, W.R. Scheible, Thaxtomin A affects CESA-complex density, expression of cell wall genes, cell wall composition, and causes ectopic lignification in Arabidopsis thaliana seedlings. J. Exp. Bot. 60 (2009) 955–965.

[40]

D.L. Tsang, C. Edmond, J.L. Harrington, T.S. Nuhse, Cell wall integrity controls root elongation via a general 1-aminocyclopropane-1-carboxylic acid-dependent, ethylene-independent pathway. Plant Physiol. 156 (2011) 596–604.

[41]

D. Bellincampi, F. Cervone, V. Lionetti, Plant cell wall dynamics and wall-related susceptibility in plant-pathogen interactions. Front. Plant. Sci. 5 (2014) 228.

[42]

C. Kesten, A. Menna, C. Sanchez-Rodrıguez, Regulation of cellulose synthesis in response to stress. Curr. Opin. Plant Biol. 40 (2017) 106–113.

[43]

K. Houston, M.R. Tucker, J. Chowdhury, N. Shirley, A. Little, The plant cell wall: a complex and dynamic structure as revealed by the responses of genes under stress conditions. Front. Plant. Sci. 7 (2016) 984.

[44]

M. Taylor-Teeples, L. Lin, M. De Lucas, G. Turco, T.W. Toal, A. Gaudinier, N.F. Young, G.M. Trabucco, M.T. Veling, R. Lamothe, An Arabidopsis gene regulatory network for secondary cell wall synthesis. Nature 517 (2015) 571–575.

[45]

R. Schneider, L. Tang, E.R. Lampugnani, S. Barkwill, R. Lathe, Y. Zhang, H.E. McFarlane, E. Pesquet, T. Niittyla, S.D. Mansfield, Two complementary mechanisms underpin cell wall patterning during xylem vessel development. Plant Cell 29 (2017) 2433–2449.

[46]

S. Cho, P. Purushotham, C. Fang, C. Maranas, S. Díaz-Moreno, V. Bulone, J. Zimmer, M. Kumar, B.T. Nixon, Synthesis and self-assembly of cellulose microfibrils from reconstituted cellulose synthase. Plant Physiol. 175 (2017) 146–156.

[47]

V. Escudero, L. Jorda, S. Sopena-Torres, H. Mélida, E. Miedes, A. Muñoz-Barrios, S. Swami, D. Alexander, L.S. McKee, A. Sánchez-Vallet, et al. Alteration of cell wall xylan acetylation triggers defense responses that counterbalance the immune deficiencies of plants impaired in the β-subunit of the heterotrimeric G-protein. Plant J. 92 (2017) 386–399.

[48]

C. Hernandez-Blanco, D.X. Feng, J. Hu, A. Sánchez-Vallet, L. Deslandes, F. Llorente, M. Berrocal-Lobo, H. Keller, X. Barlet, C. Sánchez-Rodríguez, Impairment of cellulose synthases required for Arabidopsis secondary cell wall formation enhances disease resistance. Plant Cell 19 (2007) 890–903.

[49]

K. Tanaka, K. Murata, M. Yamazaki, K.A. Onosato, H.H. Miyao, Three distinct rice cellulose synthase catalytic subunit genes required for cellulose synthesis in the secondary wall. Plant Physiol. 133 (2003) 73–83.

[50]

T. Kotake, T. Aohara, K. Hirano, A. Sato, Y. Kaneko, Y. Tsumuraya, H. Takatsuji, S. Kawasaki, Rice brittle culm 6 encodes a dominant-negative form of CesA protein that perturbs cellulose synthesis in secondary cell walls. J. Exp. Bot. 62 (2011) 2053–2062.

[51]

F. Li, G. Xie, J. Huang, R. Zhang, Y. Li, M. Zhang, Y. Wang, A. Li, X. Li, T. Xia, OsCESA9 conserved-site mutation leads to largely enhanced plant lodging resistance and biomass enzymatic saccharification by reducing cellulose DP and crystallinity in rice. Plant Biotechnol J. 15 (2017)1093–1104.

[52]

D. Wang, Y. Qin, J. Fang, S. Yuan, L. Peng, J. Zhao, X. Li, A missense mutation in the zinc finger domain of OsCESA7 deleteriously affects cellulose biosynthesis and plant growth in Rice. PLoS One 11 (2016) e0153993.

[53]

A. Conde, M.M. Chaves, H. Gerós, Membrane transport, sensing and signaling in plant adaptation to environmental stress. Plant Cell Physiol. 52 (2011) 1583–1602.

[54]

K. Cai, H. Gao, X. Wu, S. Zhang, Z. Han, X. Chen, G. Zhang, F. Zeng, The ability to regulate transmembrane potassium transport in root is critical for drought tolerance in barley. Int. J. Mol. Sci. 20 (2019) 4111–4119.

[55]

G. Dalcorso, S. Farinati, A. Furini, Regulatory networks of cadmium stress in plants. Plant Signal Behav. 5 (2010) 663–667.

[56]

Q. Liu, L. Luo, L. Zheng, Lignins: biosynthesis and biological functions in plants. Int. J. Mol. Sci. 19 (2018) 335–341.

[57]

M. Ohtani, T. Demura, The quest for transcriptional hubs of lignin biosynthesis: beyond the NAC-MYB-gene regulatory network model. Curr. Opin. Biotechnol. 56 (2019) 82–87.

[58]

N. Li, B. Lin, H. Wang, X. Li, F. Yang, X. Ding, J. Yan, Z. Chu, Natural variation in ZmFBL41 confers banded leaf and sheath blight resistance in maize. Nat. Genet. 51 (2019) 1540–1548.

[59]

S. Jiao, J.P. Hazebroek, M.A. Chamberlin, M. Perkins, A.S. Sandhu, R. Gupta, K.D. Simcox, L. Yinghong, A. Prall, L. Heetland, Chitinase-like1 Plays a Role in Stalk Tensile Strength in Maize. Plant Physiol. 181 (2019) 1127-1147.

[60]

M.B. Arno, J. Hernández-Ruiz, Melatonin, A new plant hormone and/or a plant master regulator?, Trends Plant Sci 24 (2019) 38–48.

[61]

Y. Fujiki, Y. Yoshikawa, T. Sato, N. Inada, M. Ito, I. Nishida, A. Watanabe, Dark-inducible genes from Arabidopsis thaliana are associated with leaf senescence and repressed by sugars. Physiol. Plant 111 (2001) 345–352.

[62]

L. Fernández-Calvino, I. Guzmán-Benito, F.J. Del Toro, L. Donaire, A.B. Castro-Sanz, V. Ruíz-Ferrer, C. Llave, Activation ofsenescence-associateddark-inducible(DIN) genes during infection contributes to enhanced susceptibility to plant viruses. Mol. Plant Pathol. 17 (2016) 3–15.

[63]

S. Yang, T. Berberich, A. Miyazaki, H. Sano, T. Kusano, Ntdin, a tobacco senescence-associated gene, is involved in molybdenum cofactor biosynthesis. Plant Cell Physiol. 44 (2003) 1037–1044.

[64]

Y.L.J. Yao, Chloroplasts at the Crossroad of Photosynthesis, Pathogen Infection and Plant Defense. Int. J. Mol. Sci. 19 (2018) 3900.

[65]

M. Carriquí, M. Roig-Oliver, T.J. Brodribb, R. Coopman, W. Gill, K. Mark, Ü. Niinemets, A.V. Perera- Castro, M. Ribas-Carbó, L. Sack, T. Tosens, M. Waite, J. Flexas. Anatomical constraints to nonstomatal diffusion conductance and photosynthesis in lycophytes and bryophytes. New Phytol. 222 (2019) 1256–1270.

[66]

M. Carriquí, M. Nadal, M.J. Clemente-Moreno, J. Gago, E. Miedes, J. Flexas, Cell wall composition strongly influences mesophyll conductance in gymnosperms. Plant J. 103 (2020) 1372–1385.

[67]

Y. Onoda, I.J. Wright, J.R. Evans, K. Hikosaka, K. Kitajima, Ü. Niinemets, H. Poorter, T. Tosens, M. Westoby, Physiological and structural tradeoffs underlying the leaf economics spectrum. New Phytol. 214 (2017) 1447–1463.

[68]

L. Veromann-Jürgenson, T. Tosens, L. Laanisto, Ü. Niinemets, Extremely thick cell walls and low mesophyll conductance: welcome to the world of ancient living! J. Exp. Bot. 68 (2017) 1639–1653.

[69]

P.V. Ellsworth, P.Z. Ellsworth, N.K. Koteyeva, A.B. Cousins, Cell wall properties in Oryza sativa influence mesophyll CO2 conductance. New Phytol. 219 (2018) 66–76.

[70]

R. Zhang, H. Hu, Y. Wang, Z. Hu, S. Ren, J. Li, B. He, Y. Wang, T. Xia, P. Chen, et al. A novel rice fragile culm 24 mutant encodes a UDP-glucose epimerase that affects cell wall property and photosynthesis. J. Exp. Bot. 71 (2020) 2956–2969.

[71]

M. Roig-Oliver, C. Rayon, R. Roulard, F. Fournet, J. Bota, J. Flexas, Reduced photosynthesis in Arabidopsis thaliana atpme17.2 and atpae11.1 mutants is associated to altered cell wall composition. Physiol. Plant 172 (2021) 1439–1451.

[72]

D.L. Court, J. Gan, Y.H. Liang, G.X. Shaw, J.E. Tropea, N. Costantino, D.S. Waugh, X. Ji, RNase Ⅲ: genetics and function; structure and mechanism. Annu. Rev. Genet. 47 (2013) 405–431.

[73]

L.C. Aguado, B.R. tenOever, RNase Ⅲ Nucleases and the Evolution of Antiviral Systems. Bioessays 40 (2018) 1700173.

The Crop Journal
Pages 1649-1664
Cite this article:
Zhong T, Deng S, Zhu M, et al. ZmDRR206 functions in maintaining cell wall integrity during maize seedling growth and defense response to external stresses. The Crop Journal, 2023, 11(6): 1649-1664. https://doi.org/10.1016/j.cj.2023.09.007

237

Views

4

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 23 July 2023
Revised: 17 September 2023
Accepted: 26 September 2023
Published: 26 October 2023
© 2023 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return