AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Haplotype variation and KASP markers for SiPSY1 – A key gene controlling yellow kernel pigmentation in foxtail millet

Rongjun Zuoa,d,1Yanyan Zhanga,1Yanbing Yangb,1Chunfang Wanga,dHui ZhiaLinlin ZhangaSha TangaYanan GuanbShunguo LicRuhong ChengcZhonglin ShangdGuanqing Jiaa( )Xianmin Diaoa,c,d( )
Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
Institute of Millet Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050035, Hebei, China
College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China

1 These authors contributed equally to this work.

Show Author Information

Abstract

Carotenoid biosynthesis and accumulation are important in determining nutritional and commercial value of crop products. Yellow pigmentation of mature kernels caused by carotenoids is considered a vital quality trait in foxtail millet, an ancient and widely cultivated cereal crop across the world. Genomic regions associated with yellow pigment content (YPC), lutein and zeaxanthin in foxtail millet grains were identified by genome-wide association analysis (GWAS), and SiPSY1 (Phytoene synthase 1 which regulates formation of the 40-carbon backbone of carotenoids) was confirmed as the main contributor to all three components by knockout and overexpression analysis. SiPSY1 was expressed in seedlings, leaves, panicles, and mature seeds, and was subcellularly localized to chloroplasts. Transcription of SiPSY1 in 15 DAP immature grains was responsible for YPC in mature seeds. Selection of SiPSY1 combined with increased YPC in mature grains during domestication of foxtail millet was confirmed. Haplotype analysis suggested that expression level of SiPSY1 could be a selection target for future breeding programs, and a KASP marker was developed for selection of favorable SiPSY1 alleles in breeding. The results of this work will benefit nutritional and commercial improvement of foxtail millet varieties, as well as other cereal crops.

References

[1]
A.J. Cuttriss, C.I. Cazzonelli, E.T. Wurtzel, B.J. Pogson, Carotenoids, in: F. Rébeillé, R. Douce (Eds.), Biosynthesis of Vitamins in Plants, Elsevier, Amsterdam, Netherlands, 2011, pp. 1–36.
[2]

C.E. Gallagher, P.D. Matthews, F. Li, E.T. Wurtzel, Gene duplication in the carotenoid biosynthetic pathway preceded evolution of the grasses, Plant Physiol. 135 (2004) 1776–1783.

[3]

C.A. Howitt, B.J. Pogson, Carotenoid accumulation and function in seeds and nongreen tissues, Plant Cell Env. 29 (2006) 435–445.

[4]

K.J. Yeum, R.M. Russell, Carotenoid bioavailability and bioconversion, Ann. Rev. Nut. 22 (2002) 483–504.

[5]

C.E. Harjes, T.R. Rocheford, L. Bai, T.P. Brutnell, C.B. Kandianis, S.G. Sowinski, A. E. Stapleton, R. Vallabhaneni, M. Williams, E.T. Wurtzel, J. Yan, E.S. Buckler, Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification, Science 319 (2008) 330–333.

[6]

J.A. Paine, C.A. Shipton, S. Chaggar, R.M. Howells, M.J. Kennedy, G. Vernon, S.Y. Wright, E. Hinchliffe, J.L. Adams, A.L. Silverstone, R. Drake, Improving the nutritional value of Golden Rice through increased pro-vitamin A content, Nat. Biotechnol. 23 (2005) 482–487.

[7]

J. Yan, C.B. Kandianis, C.E. Harjes, L. Bai, E.H. Kim, X. Yang, D.J. Skinner, Z. Fu, S. Mitchell, Q. Li, S. Fernandez, M. Zaharieva, R. Babu, Y. Fu, N. Palacios, J. Li, D. DellaPenna, T. Brutnell, E.S. Buckler, M.L. Warburton, T. Rocheford, Rare genetic variation at Zea mays crtRB1 increases β-carotene in maize grain, Nat. Genet. 42 (2010) 322–327.

[8]

R. Patil, M. Oak, A. Deshpande, S. Tamhankar, Development of a robust marker for Psy-1 homoeologs and its application in improvement of yellow pigment content in durum wheat, Mol. Breed. 38 (2018) 136.

[9]

S.J. Jang, H.B. Jeong, A. Jung, M.Y. Kang, S. Kim, S.H. Ha, J.K. Kwon, B.C. Kang, Phytoene synthase 2 can compensate for the absence of PSY1 in the control of color in Capsicum fruit, J. Exp. Bot. 71 (2020) 3417–3427.

[10]

J. Qi, X. Liu, D. Shen, H. Miao, B. Xie, X. Li, P. Zeng, S. Wang, Y. Shang, X. Gu, Y. Du, Y. Li, T. Lin, J. Yuan, X. Yang, J. Chen, H. Chen, X. Xiong, K. Huang, Z. Fei, L. Mao, L. Tian, T. Städler, S.S. Renner, S. Kamoun, W.J. Lucas, Z. Zhang, S. Huang, A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity, Nat. Genet. 45 (2013) 1510–1515.

[11]

J. Hirschberg, Carotenoid biosynthesis in flowering plants, Curr. Opin. Plant Biol. 4 (2001) 210–218.

[12]

D. DellaPenna, B.J. Pogson, Vitamin synthesis in plants: tocopherols and carotenoids, Annu. Rev. Plant Biol. 57 (2006) 711–738.

[13]

L.F. Randolph, D.B. Hand, Relation between carotenoid content and number of genes per cell in diploid and tetraploid corn, J. Agric. Res. 60 (1940) 51–64.

[14]

B. Buckner, P. San Miguel, D. Janick-Buckner, J.L. Bennetzen, The yl gene of maize codes for phytoene synthase, Genetics 143 (1996) 479–488.

[15]

K.A. Palaisa, M. Morgante, M. Williams, A. Rafalski, Contrasting effects of selection on sequence diversity and linkage disequilibrium at two phytoene synthase loci, Plant Cell 15 (2003) 1795–1806.

[16]

X. Zhou, R. Welsch, Y. Yang, D. Álvarez, M. Riediger, H. Yuan, T. Fish, J. Liu, T.W. Thannhauser, L. Li, Arabidopsis OR proteins are the major posttranscriptional regulators of phytoene synthase in controlling carotenoid biosynthesis, Proc. Nat. Acad. Sci. U. S. A. 112 (2015) 3558–3563.

[17]

Z. Fu, J. Yan, Y. Zheng, M.L. Warburton, J.H. Crouch, J. Li, Nucleotide diversity and molecular evolution of the PSY1 gene in Zea mays compared to some other grass species, Theor. Appl. Genet. 120 (2010) 709–720.

[18]

B.F. Owens, D. Mathew, C.H. Diepenbrock, T. Tiede, T. Rocheford, Genome-wide association study and pathway-level analysis of kernel color in maize, G3-Genes Genomes Genet. 9 (2019) 1945–1955.

[19]

X. Yang, Z. Wan, L. Perry, H. Lu, Q. Wang, C. Zhao, J. Li, F. Xie, J. Yu, T. Cui, T. Wang, M. Li, S. Ge, Early millet use in northern China, Proc. Nat. Acad. Sci. U. S. A. 109 (2012) 3726–3730.

[20]

D.F. Austin, Fox-tail millets (Setaria: Poaceae)-abandoned food in two hemispheres, Econ. Bot. 60 (2006) 143–158.

[21]

R. Shen, S. Yang, G. Zhao, Q. Shen, X. Diao, Identification of carotenoids in foxtail millet (Setaria italica) and the effects of cooking methods on carotenoid content, J. Cereal Sci. 61 (2015) 86–93.

[22]

Y. Yang, G. Jia, L. Deng, L. Qin, E. Chen, X. Cong, R. Zou, H. Wang, H. Zhang, B. Liu, Y. Guan, X. Diao, Y. Yin, Genetic variation of yellow pigment and its components in foxtail millet (Setaria italica (L.) P. Beauv.) from Different EcoRegions in China, J. Integr. Agric. 16 (2017) 2459–2469.

[23]

M. Liu, Z. Zhang, G. Ren, Q. Zhang, Y. Wang, P. Lu, Evaluation of selenium and carotenoid concentrations of 200 foxtail millet accessions from China and their correlation with agronomic performance, J. Integr. Agric. 15 (2015) 1449–1457.

[24]

R. Wang, J. Gao, Z. Guan, L. Mao, Chromosome location and linkage analysis of a few agronomical important traits in foxtail millet, Acta Agron. Sin. 33 (2007) 9–14 (in Chinese with English abstract).

[25]

X. Li, J. Gao, J. Song, K. Guo, S. Hou, X. Wang, Q. He, Y. Zhang, Y. Zhang, Y. Yang, J. Tang, H. Wang, S. Persson, M. Huang, L. Xu, L. Zhong, D. Li, Y. Liu, H. Wu, X. Diao, P. Chen, X. Wang, Y. Han, Multi-omics analyses of 398 foxtail millet accessions reveal genomic regions associated with domestication, metabolite traits and anti-inflammatory effects, Mol. Plant 15 (2022) 1367–1383.

[26]

J.L. Bennetzen, J. Schmutz, H. Wang, R. Percified, J. Hawkins, A.C. Pontaroli, M. Estep, L. Feng, J.N. Vaughn, J. Grimwood, J. Jenkins, K. Barry, E. Lindquist, U. Hellsten, S. Deshpande, X. Wang, X. Wu, T. Mitros, J. Triplett, X. Yang, C. Ye, M. Mauro-Herrera, L. Wang, P. Li, M. Sharma, R. Sharma, P.C. Ronald, O. Panaud, E. A. Kellogg, T.P. Brutnell, A.N. Doust, G.A. Tuskan, D. Rokhsar, K.M. Devos, Reference genome sequence of the model plant Setaria, Nat. Biotechnol. 30 (2012) 555–561.

[27]

G. Zhang, X. Liu, Z. Quan, S. Cheng, X. Xu, S. Pan, M. Xie, P. Zeng, Z. Yue, W. Wang, Y. Tao, C. Bian, C. Han, Q. Xia, X. Peng, R. Cao, X. Yang, D. Zhan, J. Hu, Y. Zhang, H. Li, H. Li, N. Li, J. Wang, C. Wang, R. Wang, T. Guo, Y. Cai, C. Liu, H. Xiang, Q. Shi, P. Huang, Q. Chen, Y. Li, J. Wang, Z. Zhao, J. Wang, Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential, Nat. Biotechnol. 30 (2012) 549–554.

[28]

G. Jia, X. Huang, H. Zhi, Y. Zhao, Q. Zhao, W. Li, Y. Chai, L. Yang, K. Liu, H. Lu, C. Zhu, Y. Lu, C. Zhou, D. Fan, Q. Weng, Y. Guo, T. Huang, L. Zhang, T. Lu, Q. Feng, H. Hao, H. Liu, P. Lu, N. Zhang, Y. Li, E. Guo, S. Wang, S. Wang, J. Liu, W. Zhang, G. Chen, B. Zhang, W. Li, Y. Wang, H. Li, B. Zhao, J. Li, X. Diao, B. Han, A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica), Nat. Genet. 45 (2013) 957–961.

[29]

P. Huang, S. Mamidi, A. Healey, J. Grimwoof, J. Jenkins, K. Barry, A. Sreedasyam, S. Shu, M. Feldman, J. Wu, Y. Yu, C. Chen, J. Johnson, H. Sakakibara, T. Kiba, T. Sakurai, D. Rokhsar, I. Baxter, J. Schmutz, T.P. Brutnell, E.A. Kellogg, The Setaria viridis genome and diversity panel enables discovery of a novel domestication gene, bioRxiv (2019) 744557.

[30]

A.N. Doust, T.P. Brutnell, H.D. Upadhyaya, J.V. Eck, Setaria as a model genetic system to accelerate yield increases in cereals, forage crops, and bioenergy grasses, Front. Plant Sci. 10 (2019) 1211.

[31]

X. Diao, J. Schnable, J.L. Bennetzen, J. Li, Initiation of Setaria as a model plant, Front. Agric. Sci. Engin. 1 (2014) 16–20.

[32]

P. Bradbury, Z. Zhang, D. Kroon, T. Casstevens, Y. Ramdoss, E. Buckler, TASSEL: software for association mapping of complex traits in diverse samples, Bioinformatics 23 (2007) 2633–2635.

[33]

G.A. Churchill, R.W. Doerge, Empirical threshold values for quantitative trait mapping, Genetics 138 (1994) 963–971.

[34]

C.M. Santos, D. Romeiro, J.P. Silva, M.F. Basso, H.B.C. Molinari, D.C. Centeno, An improved protocol for efficient transformation and regeneration of Setaria italica, Plant Cell Rep. 3 (2020) 501–510.

[35]

K. Tamura, D. Peterson, N. Peterson, MEGA5: Molecular Evolutionary Genetics Analysis (MEGA) software version 5.05 using maximum likelihood, evolutionary distance and maximum parsimony methods, Mol. Biol. Evol. 28 (2011) 2731–2739.

[36]

K.J. Livak, T.D. Schmittgen, Analysis of relative gene expression data using realtime quantitative PCR and the 2–ΔΔCT method, Methods 25 (2001) 402–408.

[37]

J. Sun, L. Qi, Y. Li, J. Chu, C. Li, PIF4–mediated activation of YUCCA8 expression integrates temperature into the auxin pathway in regulating Arabidopsis hypocotyl growth, PLoS Genet. 8 (2012) e1002594.

[38]

T. Nakagawa, T. Kurose, T. Hino, K. Tanaka, M. Kawamukai, Y. Niwa, K. Toyooka, K. Matsuoka, T. Jinbo, T. Kimura, Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation, J. Biosci. Bioeng. 104 (2007) 34–41.

[39]

S. Mamidi, A. Healey, P. Huang, J. Grimwood, J. Jenkins, K. Barry, A. Sreedasyam, S. Shu, J.T. Lovell, M. Feldman, J. Wu, Y. Yu, C. Chen, J. Johnson, H. Sakakibara, T. Kiba, T. Sakurai, R. Tavares, D.A. Nusinow, I. Baxter, J. Schmutz, T.P. Brutnell, E. A. Kellogg, A genome resource for green millet Setaria viridis enables discovery of agronomically valuable loci, Nat. Biotechnol. 38 (2020) 1203–1210.

[40]

G. Jia, S. Shi, C. Wang, Z. Niu, Y. Chai, H. Zhi, X. Diao, Molecular diversity and population structure of Chinese green foxtail (Setaria viridis (L.) Beauv.) revealed by microsatellite analysis, J. Exp. Bot. 64 (2013) 3645–3655.

[41]

G. Jia, X. Liu, J.C. Schnable, Z. Niu, C. Wang, Y. Li, S.J. Wang, S.Y. Wang, J. Liu, E. Guo, H. Zhi, X. Diao, Microsatellite variations of elite Setaria varieties released during last six decades in China, PLoS ONE 10 (2015) e0125688.

[42]

P. Librado, J. Rozas, DnaSP v5: a software for comprehensive analysis of DNA polymorphism data, Bioinformatics 25 (2009) 1451–1452.

[43]

H.J. Bandelt, P. Forster, A. Röhl, Median-joining networks for inferring intraspecific phylogenies, Mol. Biol. Evol. 16 (1999) 37–48.

[44]

S. Zhai, G. Li, Y. Sun, J. Song, J. Li, G. Song, Y. Li, H. Ling, Z. He, X. Xia, Genetic analysis of phytoene synthase 1 (Psy1) gene function and regulation in common wheat, BMC Plant Biol. 16 (2016) 228.

[45]

F. Li, R. Vallabhaneni, J. Yu, T. Rocheford, E.T. Wurtzel, The maize phytoene synthase gene family: overlapping roles for carotenogenesis in endosperm, photomorphogenesis, and thermal stress tolerance, Plant Physiol. 147 (2009) 1334–1346.

[46]

F. Li, R. Vallabhaneni, E.T. Wurtzel, PSY3, a new member of the phytoene synthase gene family conserved in the Poaceae and regulator of abiotic stress-induced root carotenogenesis, Plant Physiol. 146 (2008) 1333–1345.

[47]

X. Ye, S. Al-Babili, A. Klöti, J. Zhang, P. Lucca, P. Beyer, I. Potrykus, Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm, Science 287 (2000) 303–305.

[48]

J. Sun, N.S. Luu, Z. Chen, B. Chen, X. Cui, J. Wu, Z. Zhang, T. Lu, Generation and characterization of a foxtail millet (Setaria italica) mutant library, Front. Plant Sci. 10 (2019) 369.

[49]

Z. Fu, Y. Chai, Y. Zhou, X. Yang, M.L. Warburton, S. Xu, Y. Cai, D. Zhang, J. Li, J. Yan, Natural variation in the sequence of PSY1 and frequency of favorable polymorphisms among tropical and temperate maize germplasm, Theor. Appl. Genet. 126 (2013) 923–935.

[50]

Q. You, L. Zhang, X. Yi, Z. Zhang, W. Xu, Z. Su, SIFGD: Setaria italica functional genomics database, Mol. Plant 8 (2015) 967–970.

[51]

A. Yano, M. Takakusagi, K. Oikawa, S. Nakajo, T. Sugawara, Xanthophyll levels in foxtail millet grains according to variety and harvesting time, Plant Prod. Sci. 20 (2017) 136–143.

The Crop Journal
Pages 1902-1911
Cite this article:
Zuo R, Zhang Y, Yang Y, et al. Haplotype variation and KASP markers for SiPSY1 – A key gene controlling yellow kernel pigmentation in foxtail millet. The Crop Journal, 2023, 11(6): 1902-1911. https://doi.org/10.1016/j.cj.2023.09.008

309

Views

4

Downloads

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 03 April 2023
Revised: 25 September 2023
Accepted: 26 September 2023
Published: 26 October 2023
© 2023 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return