AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

The effect of abiotic stresses on plant C:N:P homeostasis and their mitigation by silicon

Milton Garcia Costa( )Renato de Mello PradoLuiz Fabiano PalarettiJonas Pereira de Souza Júnior
Department of Agricultural Production Science, School of Agricultural and Veterinarian Sciences, São Paulo State University, Jaboticabal, Brazil
Show Author Information

Abstract

In crop plants, various environmental stresses affect the balance of carbon, nitrogen, and phosphorus (C:N:P), leading to biochemical and physiological alterations and reductions in yield. Silicon (Si) is a beneficial element that alleviates plant stress. Most studies involving silicon have focused on physiological responses, such as improvements in photosynthetic processes, water use efficiency, and antioxidant defense systems. But recent research suggests that stressed plants facing either limited or excessive resources (water, light, nutrients, and toxic elements), strategically employ Si to maintain C:N:P homeostasis, thereby minimizing biomass losses. Understanding the role of Si in mitigating the impact of abiotic stresses on plants by regulating C:N:P homeostasis holds great potential for advancing sustainable agricultural practices in crop production. This review presents recent advances in characterizing the influence of environmental stresses on C:N:P homeostasis, as well as the role of Si in preserving C:N:P equilibrium and attenuating biological damage associated with abiotic stress. It underscores the beneficial effects of Si in sustaining C:N:P homeostasis and increasing yield via improved nutritional efficiency and stress mitigation.

References

[1]

J. Cooke, M.R. Leishman, Consistent alleviation of abiotic stress with silicon addition: a meta-analysis, Funct. Ecol. 30 (2016) 1340–1357.

[2]

A. Raza, J. Tabassum, Z. Zahid, S. Charagh, S. Bashir, R. Barmukh, R.S.A. Khan, F. Barbosa, C. Zhang, H. Chen, W. Zhuang, R.K. Varshney, Advances in “Omics” approaches for improving toxic metals/metalloids tolerance in plants, Front. Plant Sci. 12 (2022) 794373.

[3]

R.A. Mir, B.A. Bhat, H. Yousuf, S.T. Islam, A. Raza, M.A. Rizvi, S. Charagh, M. Albaqami, P.A. Sofi, S.M. Zargar, Multidimensional role of silicon to activate resilient plant growth and to mitigate abiotic stress, Front. Plant Sci. 13 (2022) 819658.

[4]

A.C. Hurtado, D.A. Chiconato, R. de M. Prado, G. da S. Sousa Junior, D. Olivera Viciedo, M. de C. Piccolo, Silicon application induces changes C: N: P stoichiometry and enhances stoichiometric homeostasis of sorghum and sunflower plants under salt stress, Saudi J. Biol. Sci. 27 (2020) 3711–3719.

[5]

J.R. Rocha, R. de M. Prado, M. de C. Piccolo, Mitigation of water deficit in two cultivars of Panicum maximum by the application of silicon, Water Air Soil Pollut. 233 (2022) 63.

[6]

J.R. Rocha, R. de Mello Prado, M. de Cássia Piccolo, New outcomes on how silicon enables the cultivation of Panicum maximum in soil with water restriction, Sci. Rep. 12 (2022) 1897.

[7]

D. Tian, P.B. Reich, H.Y.H. Chen, Y. Xiang, Y. Luo, Y. Shen, C. Meng, W. Han, S. Niu, Global changes alter plant multi-element stoichiometric coupling, New Phytol. 221 (2019) 807–817.

[8]

M.G. Costa, M.M. dos Santos Sarah, R. de Mello Prado, L.F. Palaretti, M. de Cássia Piccolo, J.P. de Souza Júnior, Impact of Si on C, N, and P stoichiometric homeostasis favors nutrition and stem dry mass accumulation in sugarcane cultivated in tropical soils with different water regimes, Front. Plant Sci. 13 (2022) 949909.

[9]

A.S.B. Oliveira Filho, R. de M. Prado, G.C.M. Teixeira, A.M.S. Rocha, J.P. Souza Junior, M. Cássia Piccolo, J.R. Rocha, Silicon attenuates the effects of water deficit in sugarcane by modifying physiological aspects and C: N: P stoichiometry and its use efficiency, Agric. Water Manage. 255 (2021) 107006.

[10]

A.S.B. Oliveira Filho, R. de M. Prado, G.C.M. Teixeira, M. Cássia Piccolo, A.M.S. Rocha, Water deficit modifies C: N: P stoichiometry affecting sugarcane and energy cane yield and its relationships with silicon supply, Sci. Rep. 11 (2021) 20916.

[11]

G.C.M. Teixeira, R.M. Prado, A.M.S. Rocha, M. Cássia Piccolo, Root- and foliar-applied silicon modifies C: N: P ratio and increases the nutritional efficiency of pre-sprouted sugarcane seedlings under water deficit, PLoS ONE 15 (2020) e0240847.

[12]

G.C.M. Teixeira, R. de M. Prado, A.M.S. Rocha, M. de C. Piccolo, Silicon as a sustainable option to increase biomass with less water by inducing carbon: nitrogen: phosphorus stoichiometric homeostasis in sugarcane and energy cane, Front. Plant Sci. 13 (2022) 826512.

[13]

Y. Peng, K.J. Niklas, S. Sun, The relationship between relative growth rate and whole-plant C : N : P stoichiometry in plant seedlings grown under nutrient-enriched conditions, J. Plant Ecol. 4 (2011) 147–156.

[14]

A.R. Martin, M. Doraisami, S.C. Thomas, Global patterns in wood carbon concentration across the world’s trees and forests, Nat. Geosci. 11 (2018) 915–920.

[15]

Y. Yang, B.-R. Liu, S.-S. An, Ecological stoichiometry in leaves, roots, litters and soil among different plant communities in a desertified region of Northern China, Catena 166 (2018) 328–338.

[16]

J. Sardans, A. Rivas-Ubach, J. Peñuelas, The C: N: P stoichiometry of organisms and ecosystems in a changing world: a review and perspectives, Perspect. Plant Ecol. Evol. Syst. 14 (2012) 33–47.

[17]

R.M. Prado, Mineral Nutrition of Tropical Plants, Springer, Cham, Switzerland, 2021.

[18]

E. Takahashi, J.F. Ma, Y. Miyake, The possibility of silicon as an essential element for higher plants, Comment Agric. Food Chem. 2 (1990) 99–102.

[19]

R. Mandlik, V. Thakral, G. Raturi, S. Shinde, M. Nikolić, D.K. Tripathi, H. Sonah, R. Deshmukh, Significance of silicon uptake, transport, and deposition in plants, J. Exp. Bot. 71 (2020) 6703–6718.

[20]

M.S. Camargo, G. Rocha, G.J. Baltieri, Silicate fertilization in sugarcane: Silicon availability, uptake, and recovery index over two consecutive cycles, J. Soil Sci. Plant Nutr. 21 (2021) 2403–2411.

[21]

J.F. Ma, N. Yamaji, Silicon uptake and accumulation in higher plants, Trends Plant Sci. 11 (2006) 392–397.

[22]

Y.H. Kim, A.L. Khan, M. Waqas, I.J. Lee, Silicon regulates antioxidant activities of crop plants under abiotic-induced oxidative stress: a review, Front. Plant Sci. 8 (2017) 510.

[23]

J. Pavlovic, L. Kostic, P. Bosnic, E.A. Kirkby, M. Nikolic, Interactions of silicon sith essential and beneficial elements in plants, Front. Plant Sci. 12 (2021) 1224.

[24]

K. Bansal, V. Hooda, N. Verma, T. Kharewal, N. Tehri, V. Dhull, A. Gahlaut, Stress alleviation and crop improvement using silicon nanoparticles in agriculture: a review, Silicon 14 (2022) 10173–10186.

[25]

S.M. Shivaraj, R. Mandlik, J.A. Bhat, G. Raturi, R. Elbaum, L. Alexander, D.K. Tripathi, R. Deshmukh, H. Sonah, Outstanding questions on the beneficial role of silicon in crop plants, Plant Cell Physiol. 63 (2022) 4–18.

[26]

P.M. da Silva Liber, C.N.S. Lopes, P.E. Campos, M.G. Teodoro, J.P. de Costa, R. de Souza Júnior, M. Prado, The synergistic effects of soil-applied boron and foliar-applied silicon on cotton fiber quality and yield, BMC Plant Biol. 23 (2023) 520.

[27]

J.P. de Souza Junior, R. de M. Prado, C.N. Silva Campos, G. da S. Sousa Junior, M. G. Costa, S. de Pádua Teixeira, P.L. Gratão, Silicon modulate the non-enzymatic antioxidant defence system and oxidative stress in a similar way as boron in boron-deficient cotton flowers, Plant Physiol. Biochem. 197 (2023) 107594.

[28]

H. Etesami, B.R. Jeong, Silicon (Si): Review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants, Ecotoxicol. Environ. Saf. 147 (2018) 881–896.

[29]

J.S. de Carvalho, J.J. Frazão, R. de Mello Prado, J.P. de Souza Júnior, M.G. Costa, Silicon modifies C: N: P stoichiometry and improves the physiological efficiency and dry matter mass production of sorghum grown under nutritional sufficiency, Sci. Rep. 12 (2022) 16082.

[30]

M.G. Costa, R. de M. Prado, M.M. Santos Sarah, L.F. Palaretti, M. de C. Piccolo, J. P. Souza Júnior, New approaches to the effects of Si on sugarcane ratoon under irrigation in quartzipsamments, eutrophic red oxisol, and dystrophic red oxisol, BMC Plant Biol. 23 (2023) 51.

[31]
R. de M. Prado, G.P. da Silva, Ecological response to global change: changes in C: N: P stoichiometry in environmental adaptations of plants, in: Plant Ecology - Traditional Approaches to Recent Trends, IntechOpen, London, UK, 2017, pp. 147–163.
[32]

J.A. Raven, The transport and function of silicon in plants, Biol. Rev. 58 (1983) 179–207.

[33]

J. Schoelynck, K. Bal, H. Backx, T. Okruszko, P. Meire, E. Struyf, Silica uptake in aquatic and wetland macrophytes: a strategic choice between silica, lignin and cellulose?, New Phytol. 186 (2010) 385–391.

[34]

L.F. Lata-Tenesaca, R. Mello Prado, M. Cássia Piccolo, D.L. Silva, J.L.F. Silva, Silicon modifies C:N: P stoichiometry, and increases nutrient use efficiency and productivity of quinoa, Sci. Rep. 11 (2021) 9893.

[35]

J.R. Rocha, R.M. Prado, G.C.M. Teixeira, A.S.B. de Oliveira Filho, Si fertigation attenuates water stress in forages by modifying carbon stoichiometry, favouring physiological aspects, J. Agron Crop Sci. 207 (2021) 631–643.

[36]

J.P. Souza Júnior, T.L. Oliveira, R. Mello Prado, K.R. Oliveira, M.B. Soares, Analyzing the role of silicon in leaf C:N: P stoichiometry and its effects on nutritional efficiency and dry weight production in two sugarcane cultivars, J. Soil Sci. Plant Nutr. 22 (2022) 2687–2694.

[37]

J.J. Frazão, R. de M. Prado, J.P. Souza Júnior, D.R. Rossatto, Silicon changes C:N: P stoichiometry of sugarcane and its consequences for photosynthesis, biomass partitioning and plant growth, Sci. Rep. 10 (2020) 12492.

[38]

M.G. Costa, R. de M. Prado, M.M. Santos Sarah, J.P. Souza Júnior, A.E.S. de Souza, Silicon, by promoting a homeostatic balance of C:N: P and nutrient use efficiency, attenuates K deficiency, favoring sustainable bean cultivation, BMC Plant Biol. 23 (2023) 213.

[39]

Q. Hao, S. Yang, Z. Song, Z. Li, F. Ding, C. Yu, G. Hu, H. Liu, Silicon affects plant stoichiometry and accumulation of C, N, and P in grasslands, Front. Plant Sci. 11 (2020) 1304.

[40]

C.C. de Faria Melo, D. Silva Amaral, R. de Mello Prado, A. de Moura Zanine, D. de Jesus Ferreira, M. de Cássia Piccolo, Nanosilica modulates C:N: P stoichiometry attenuating phosphorus toxicity more than deficiency in Megathyrsus maximus cultivated in an Oxisol and Entisol, Sci. Rep. 13 (2023) 10284.

[42]
https://www-webofscience.ez87.periodicos.capes.gov.br/wos/woscc/basic-search, Web of Science Core Collection, Web of Science, 2023.
[43]

X. Xu, L. Yuan, Q. Xie, The circadian clock ticks in plant stress responses, Stress Biol. 2 (2022) 15.

[44]

H. Hillebrand, J.M. Cowles, A. Lewandowska, D.B. van de Waal, C. Plum, Think ratio! A stoichiometric view on biodiversity–ecosystem functioning research, Basic Appl. Ecol. 15 (2014) 465–474.

[45]

X. Chen, H.Y.H. Chen, Plant mixture balances terrestrial ecosystem C:N: P stoichiometry, Nat. Commun. 12 (2021) 4562.

[46]

M. Abbas, A. Ebeling, Y. Oelmann, R. Ptacnik, C. Roscher, A. Weigelt, W.W. Weisser, W. Wilcke, H. Hillebrand, Biodiversity effects on plant stoichiometry, PLoS ONE 8 (2013) e58179.

[47]

J. Huang, P. Wang, Y. Niu, H. Yu, F. Ma, G. Xiao, X. Xu, Changes in C:N: P stoichiometry modify N and P conservation strategies of a desert steppe species Glycyrrhiza uralensis, Sci. Rep. 8 (2018) 12668.

[48]

L.X. Zhang, Y.F. Bai, X.G. Han, Differential responses of N: P stoichiometry of Leymus chinensis and Carex korshinskyi to N additions in a steppe ecosystem in Nei Mongol, J. Integr. Plant Biol. 46 (2004) 259–270.

[49]

A. Rivas-Ubach, J. Sardans, M. Pérez-Trujillo, M. Estiarte, J. Peñuelas, Strong relationship between elemental stoichiometry and metabolome in plants, Proc. Natl. Acad. Sci. U. S. A. 109 (2012) 4181–4186.

[50]

S. Güsewell, N : P ratios in terrestrial plants: variation and functional significance, New Phytol. 164 (2004) 243–266.

[51]

W. Koerselman, A.F.M. Meuleman, The vegetation N: P ratio: a new tool to detect the nature of nutrient limitation, J. Appl. Ecol. 33 (1996) 1441.

[52]

M.F. Seleiman, N. Al-Suhaibani, N. Ali, M. Akmal, M. Alotaibi, Y. Refay, T. Dindaroglu, H.H. Abdul-Wajid, M.L. Battaglia, Drought stress impacts on plants and different approaches to alleviate its adverse effects, Plants 10 (2021) 259.

[53]

M.G. Mostofa, A. Ghosh, Z.G. Li, M.N. Siddiqui, M. Fujita, L.S.P. Tran, Methylglyoxal - a signaling molecule in plant abiotic stress responses, Free Radic. Biol. Med. 122 (2018) 96–109.

[54]

D. Niu, C. Zhang, P. Ma, H. Fu, J.J. Elser, Responses of leaf C:N: P stoichiometry to water supply in the desert shrub Zygophyllum xanthoxylum, Plant Biol. 21 (2019) 82–88.

[55]

D.O. Viciedo, R. de M. Prado, C.A. Martinez, E. Habermann, M. de C. Piccolo, A. C. Hurtado, R.F. Barreto, K.P. Calzada, Changes in soil water availability and air-temperature impact biomass allocation and C:N: P stoichiometry in different organs of Stylosanthes capitata Vogel, J. Environ. Manage. 278 (2021) 111540.

[56]

Q. Zhang, J. Zhou, X. Li, Z. Yang, Y. Zheng, J. Wang, W. Lin, J. Xie, Y. Chen, Y. Yang, Are the combined effects of warming and drought on foliar C:N:P: K stoichiometry in a subtropical forest greater than their individual effects?, For. Ecol. Manage. 448 (2019) 256–266.

[57]

W. Sun, F. Shi, H. Chen, Y. Zhang, Y. Guo, R. Mao, Relationship between relative growth rate and C:N: P stoichiometry for the marsh herbaceous plants under water-level stress conditions, Glob. Ecol. Conserv. 25 (2021) e01416.

[58]

S.V.K. Jagadish, D.A. Way, T.D. Sharkey, Plant heat stress: concepts directing future research, Plant Cell Environ. 44 (2021) 1992–2005.

[59]

V. Ferreira, A.L. Gonçalves, D.L. Godbold, C. Canhoto, Effect of increased atmospheric CO2 on the performance of an aquatic detritivore through changes in water temperature and litter quality, Glob. Chang Biol. 16 (2010) 3284–3296.

[60]

O.K. Atkin, D. Bruhn, V.M. Hurry, M.G. Tjoelker, The hot and the cold: unravelling the variable response of plant respiration to temperature, Funct. Plant Biol. 32 (2005) 87.

[61]

A. Del Pozo, P. Pérez, D. Gutiérrez, A. Alonso, R. Morcuende, R. Martínez-Carrasco, Gas exchange acclimation to elevated CO2 in upper-sunlit and lower-shaded canopy leaves in relation to nitrogen acquisition and partitioning in wheat grown in field chambers, Environ. Exp. Bot. 59 (2007) 371–380.

[62]

A.B. Samarakoon, R.M. Gifford, Soil water content under plants at high CO2 concentration and interactions with the direct CO2 effects: a species comparison, J. Biogeogr. 22 (1995) 193.

[63]

A. Gargallo-Garriga, J. Sardans, M. Pérez-Trujillo, M. Oravec, O. Urban, A. Jentsch, J. Kreyling, C. Beierkuhnlein, T. Parella, J. Peñuelas, Warming differentially influences the effects of drought on stoichiometry and metabolomics in shoots and roots, New Phytol. 207 (2015) 591–603.

[64]

D.O. Viciedo, R.M. Prado, C.A. Martínez, E. Habermann, M. de C. Piccolo, Short-term warming and water stress affect Panicum maximum Jacq. stoichiometric homeostasis and biomass production, Sci. Total Environ. 681 (2019) 267–274.

[65]

D. Olivera-Viciedo, K.S. Oliveira, R. de Mello Prado, E. Habermann, C.A. Martínez, A. de Moura Zanine, Silicon uptake and utilization on Panicum maximum grass modifies C:N: P stoichiometry under warming and soil water deficit, Soil Tillage Res. 235 (2024) 105884.

[66]

K. Ivushkin, H. Bartholomeus, A.K. Bregt, A. Pulatov, B. Kempen, L. de Sousa, Global mapping of soil salinity change, Remote Sens. Environ. 231 (2019) 111260.

[67]

N. Munir, M. Hasnain, U. Roessner, Z. Abideen, Strategies in improving plant salinity resistance and use of salinity resistant plants for economic sustainability, Crit. Rev. Environ. Sci. Technol. 52 (2022) 2150–2196.

[68]

Z. Wang, J. Lu, M. Yang, H. Yang, Q. Zhang, Stoichiometric characteristics of carbon, nitrogen, and phosphorus in leaves of differently aged lucerne (Medicago sativa) stands, Front. Plant Sci. 6 (2015) 1062.

[69]

X.G. Wang, C.A. Wuyunna, Y.T. Busso, F.J. Song, G.W.H. Zhang, Responses of C: N: P stoichiometry of plants from a Hulunbuir grassland to salt stress, drought and nitrogen addition, Phyton-Int. J. Exp. Bot. 87 (2018) 123–132.

[70]

R. Hidri, O. Metoui-Ben Mahmoud, A. Debez, C. Abdelly, J.M. Barea, R. Azcon, Modulation of C:N: P stoichiometry is involved in the effectiveness of a PGPR and AM fungus in increasing salt stress tolerance of Sulla carnosa Tunisian provenances, Appl. Soil Ecol. 143 (2019) 161–172.

[71]

L. Wang, G. Zhao, M. Li, M. Zhang, L. Zhang, X. Zhang, L. An, S. Xu, C:N: P stoichiometry and leaf traits of Halophytes in an arid saline environment, northwest China, PLoS ONE 10 (2015) e0119935.

[72]

M.I. Hussain, D.A. Lyra, M. Farooq, N. Nikoloudakis, N. Khalid, Salt and drought stresses in safflower: a review, Agron. Sustain. Dev. 36 (2016) 4.

[73]

J.J. Rios, M.C. Martínez-Ballesta, J.M. Ruiz, B. Blasco, M. Carvajal, Silicon-mediated improvement in plant salinity tolerance: the role of aquaporins, Front. Plant Sci. 8 (2017) 948.

[74]

M.A. Ahanger, N.S. Tomar, M. Tittal, S. Argal, R.M. Agarwal, Plant growth under water/salt stress: ROS production; antioxidants and significance of added potassium under such conditions, Physiol. Mol. Biol. Plants 23 (2017) 731–744.

[75]

H.C. Sousa, G.G. de Sousa, P.B.C. Cambissa, C.I.N. Lessa, G.F. Goes, F.D.B. da Silva, F. da S. Abreu, T.V. de A. Viana, Gas exchange and growth of zucchini crop subjected to salt and water stress, Rev. Bras. Eng. Agric. Ambient. 26 (2022) 815–822.

[76]
R. Munns, Plant adaptations to salt and water stress: differences and commonalities, in: I. Turkan (Ed.), Advances in Botanical Research, Academic Press, London, UK, 2011, pp. 1–32.
[77]

Q. Liao, S. Gu, S. Kang, T. Du, L. Tong, J.D. Wood, R. Ding, Mild water and salt stress improve water use efficiency by decreasing stomatal conductance via osmotic adjustment in field maize, Sci. Total Environ. 805 (2022) 150364.

[78]

S. Landi, J.F. Hausman, G. Guerriero, S. Esposito, Poaceae vs. abiotic stress: focus on drought and salt stress, recent insights and perspectives, Front. Plant Sci. 8 (2017) 1214.

[79]

D. Hu, G. Lv, Y. Qie, H. Wang, F. Yang, L. Jiang, Response of morphological characters and photosynthetic characteristics of Haloxylon ammodendron to water and salt stress, Sustainability 13 (2021) 388.

[80]

A.C. Hurtado, D.A. Chiconato, R. de M. Prado, G. da S. Sousa Junior, G. Felisberto, Silicon attenuates sodium toxicity by improving nutritional efficiency in sorghum and sunflower plants, Plant Physiol. Biochem. 142 (2019) 224–233.

[81]

C.J. Prychid, P.J. Rudall, M. Gregory, Systematics and biology of silica bodies in monocotyledons, Bot. Rev. 69 (2003) 377–440.

[82]

N. Kido, R. Yokoyama, T. Yamamoto, J. Furukawa, H. Iwai, S. Satoh, K. Nishitani, The matrix polysaccharide (1;3,1;4)-β-D-Glucan is involved in silicon-dependent strengthening of rice cell wall, Plant Cell Physiol. 56 (2015) 1679.

[83]

S. Głazowska, L. Baldwin, J. Mravec, C. Bukh, T.H. Hansen, M.M. Jensen, J.U. Fangel, W.G.T. Willats, M. Glasius, C. Felby, J.K. Schjoerring, The impact of silicon on cell wall composition and enzymatic saccharification of Brachypodium distachyon, Biotechnol. Biofuels 11 (2018) 171.

[84]

C. He, L. Wang, J. Liu, X. Liu, X. Li, J. Ma, Y. Lin, F. Xu, Evidence for ‘silicon’ within the cell walls of suspension-cultured rice cells, New Phytol. 200 (2013) 700–709.

[85]
R.J.P. Williams, Introduction to silicon chemistry and biochemistry, in: D.E. Maeve O’Connor (Ed.), Novartis Foundation Symposia, Wiley, Nova Jersey, UK, 2007, pp. 24–39.
[86]

H. Sheng, S. Chen, Plant silicon-cell wall complexes: Identification, model of covalent bond formation and biofunction, Plant Physiol. Biochem. 155 (2020) 13–19.

[87]

S.C. Fry, B.H.W.A. Nesselrode, J.G. Miller, B.R. Mewburn, Mixed-linkage (1→3,1→4)-β- <scp>d</scp> -glucan is a major hemicellulose of Equisetum (horsetail) cell walls, New Phytol. 179 (2008) 104–115.

[88]

S. Hussain, L. Shuxian, M. Mumtaz, I. Shafiq, N. Iqbal, M. Brestic, M. Shoaib, Q. Sisi, W. Li, X. Mei, C. Bing, M. Zivcak, A. Rastogi, M. Skalicky, V. Hejnak, L. Weiguo, Y. Wenyu, Foliar application of silicon improves stem strength under low light stress by regulating lignin biosynthesis genes in soybean (Glycine max (L.) Merr.), J. Hazard Mater. 401 (2021) 123256.

[89]

R. de C.F. Alvarez, R. de M. Prado, G. Felisberto, A.C.F. Deus, R.L.L. de Oliveira, Effects of soluble silicate and nanosilica application on rice nutrition in an Oxisol, Pedosphere 28 (2018) 597–606.

[90]

C.M. Franck, J. Westermann, A. Boisson-Dernier, Plant malectin-like receptor kinases: from cell wall integrity to immunity and beyond, Annu. Rev. Plant Biol. 69 (2018) 301–328.

[91]

K. Hématy, C. Cherk, S. Somerville, Host–pathogen warfare at the plant cell wall, Curr. Opin. Plant Biol. 12 (2009) 406–413.

[92]

X. Wu, Y. Yu, S.R. Baerson, Y. Song, G. Liang, C. Ding, J. Niu, Z. Pan, R. Zeng, Interactions between nitrogen and silicon in rice and their effects on resistance toward the brown planthopper Nilaparvata lugens, Front. Plant Sci. 8 (2017) 28.

[93]

C. Haddad, M. Arkoun, F. Jamois, A. Schwarzenberg, J.C. Yvin, P. Etienne, P. Laîné, Silicon promotes growth of Brassica napus L. and delays leaf senescence Induced by nitrogen starvation, Front. Plant Sci. 9 (2018) 516.

[94]

T. Gou, L. Yang, W. Hu, X. Chen, Y. Zhu, J. Guo, H. Gong, Silicon improves the growth of cucumber under excess nitrate stress by enhancing nitrogen assimilation and chlorophyll synthesis, Plant Physiol. Biochem. 152 (2020) 53–61.

[95]

P. Mehrabanjoubani, A. Abdolzadeh, H.R. Sadeghipour, M. Aghdasi, Silicon affects transcellular and apoplastic uptake of some nutrients in plants, Pedosphere 25 (2015) 192–201.

[96]

M. Greger, T. Landberg, M. Vaculík, Silicon influences soil availability and accumulation of mineral nutrients in various plant species, Plants 7 (2018) 41.

[97]

R. Esteban, I. Ariz, C. Cruz, J.F. Moran, Review: mechanisms of ammonium toxicity and the quest for tolerance, Plant Sci. 248 (2016) 92–101.

[98]

G.B. da Silva Júnior, R. de M. Prado, S.L.O. Silva, C.N.S. Campos, L.G. Castellanos, L.C.N. dos Santos, R.F. Barreto, P.E. Teodoro, Nitrogen concentrations and proportions of ammonium and nitrate in the nutrition and growth of yellow passion fruit seedlings, J. Plant Nutr. 43 (2020) 2533–2547.

[99]

R. Ferreira Barreto, A.A. Schiavon Júnior, M.A. Maggio, R. de Mello Prado, Silicon alleviates ammonium toxicity in cauliflower and in broccoli, Sci. Hortic. 225 (2017) 743–750.

[100]

R.F. Barreto, R.M. Prado, A.J.F. Leal, M.J.B. Troleis, G.B.S. Junior, C.C. Monteiro, L.C.N. Santos, R.F. Carvalho, Mitigation of ammonium toxicity by silicon in tomato depends on the ammonium concentration, Acta Agric. Scand. B Soil Plant Sci. 66 (2016) 483–488.

[101]

C.N.S. Campos, R. de M. Prado, G. Caione, A.J. Atilde o de Lima Neto, F.L.C. Mingotte, Silicon and excess ammonium and nitrate in cucumber plants, Afr. J. Agric. Res. 11 (2016) 276–283.

[102]

C.N.S. Campos, G.B. da Silva Júnio, R. de M. Prado, C.H.O. de David, J.P. de Souza Junior, P.E. Teodoro, Silicon mitigates ammonium toxicity in plants, Agron. J. 112 (2020) 635–647.

[103]

B.S. Silva, R. de M. Prado, A.C. Hurtado, R.A. de Andrade, G.P. da Silva, Ammonia toxicity affect cations uptake and growth in papaya plants inclusive with silicon addition, Acta Biol. Colomb. 25 (2020) 345–353.

[104]

G.B. da Silva Júnior, R.M. Prado, Cid.N.S. Campos, F.B. Agostinho, S.L.O. Silva, L. C.N. Santos, L.C. González, Silicon mitigates ammonium toxicity in yellow passionfruit seedlings, Chil. J. Agric Res. 79 (2019) 425–434.

[105]

D.O. Viciedo, R. de Mello Prado, R. Lizcano Toledo, L.C.N. dos Santos, A. Calero Hurtado, L.L.T. Nedd, L. Castellanos Gonzalez, Silicon supplementation alleviates ammonium toxicity in sugar beet (Beta vulgaris L.), J. Soil Sci. Plant Nutr. 19 (2019) 413–419.

[106]

R.F. Barreto, R. de M. Prado, J.C.B. Lúcio, I. López-Díaz, E. Carrera, R.F. Carvalho, Ammonium toxicity alleviation by silicon is dependent on cytokinins in tomato cv. micro-tom, J. Plant Growth Regul. 41 (2022) 417–428.

[107]

J.P. de Souza Junior, R. de M. Prado, T. Chagas, B. de Morais, J.J. Frazão, M.M. dos Santos Sarah, K.R. de Oliveira, R.C. de Paula, Silicon fertigation and salicylic acid foliar spraying mitigate ammonium deficiency and toxicity in Eucalyptus spp. clonal seedlings, PLoS ONE 16 (2021) e0250436.

[108]

A.J.F. Leal, R.F. Barreto, R. Mello Prado, G.B. Silva Junior, C.F. Barreto, L.C.N. dos Santos, C.N.S. Campos, Silicon attenuates abiotic stress caused by ammonium toxicity but not nitrogen deficiency in cotton plants, J. Agron Crop Sci. 207 (2021) 774–781.

[109]

W.B.S. Araújo, G.C.M. Teixeira, R. de Mello Prado, A.M.S. Rocha, Silicon mitigates nutritional stress of nitrogen, phosphorus, and calcium deficiency in two forages plants, Sci. Rep. 12 (2022) 6611.

[110]

A.C. Sales, C.N.S. Campos, J.P. de Souza Junior, D.L. da Silva, K.S. Oliveira, R. de Mello Prado, L.P.R. Teodoro, P.E. Teodoro, Silicon mitigates nutritional stress in quinoa (Chenopodium quinoa Willd.), Sci. Rep. 11 (2021) 14665.

[111]

T.X. Cuong, H. Ullah, A. Datta, T.C. Hanh, Effects of silicon-based fertilizer on growth, yield and nutrient uptake of rice in tropical zone of Vietnam, Rice Sci. 24 (2017) 283–290.

[112]

A.C.F. Deus, R. de M. Prado, R. de C.F. Alvarez, R.L.L. de Oliveira, G. Felisberto, Role of silicon and salicylic acid in the mitigation of nitrogen deficiency stress in rice plants, Silicon 12 (2020) 997–1005.

[113]

F.S. Mabagala, Y.H. Geng, G.J. Cao, L.C. Wang, M. Wang, M.L. Zhang, Effect of silicon on crop yield, and nitrogen use efficiency applied under straw return treatments, Appl. Ecol. Environ. Res. 18 (2020) 5577–5590.

[114]

M. Mali, N.C. Aery, Silicon effects on nodule growth, dry-matter production, and mineral nutrition of cowpea (Vigna unguiculata), J. Plant. Nutr. Soil Sci. 171 (2008) 835–840.

[115]

S. Pati, B. Pal, S. Badole, G.C. Hazra, B. Mandal, Effect of silicon fertilization on growth, yield, and nutrient uptake of rice, Commun. Soil Sci. Plant Anal. 47 (2016) 284–290.

[116]

A.C. Buchelt, R. de M. Prado, G. Caione, M. de Almeida Carneiro, F.A. Litter, Effects of silicon fertigation on dry matter production and crude protein contents of a pasture, J. Soil Sci. Plant Nutr. 21 (2021) 3402–3413.

[117]

J. Garcia Neto, R. de M. Prado, J.P. de Souza Júnior, S.L.O. Silva, T.P. Farias, J.Z. de Souza, Silicon leaf spraying increases biofortification production, ascorbate content and decreases water loss post-harvest from land cress and chicory leaves, J. Plant Nutr. 45 (2022) 1283–1290.

[118]

M.M.M. dos Santos, G.P. da Silva, R. de M. Prado, J.S. Pinsetta Junior, B.H. Mattiuz, H. Braun, Biofortification of tomato with stabilized alkaline silicate and silicic acid, nanosilica, and potassium silicate via leaf increased ascorbic acid content and fruit firmness, J. Plant Nutr. 45 (2022) 896–903.

[119]

H. Sheng, J. Ma, J. Pu, L. Wang, Cell wall-bound silicon optimizes ammonium uptake and metabolism in rice cells, Ann. Bot. 122 (2018) 303–313.

[120]

A.Y. Hu, S.N. Xu, D.N. Qin, W. Li, X.Q. Zhao, Role of silicon in mediating phosphorus imbalance in plants, Plants 10 (2020) 51.

[121]

L. Kostic, N. Nikolic, D. Bosnic, J. Samardzic, M. Nikolic, Silicon increases phosphorus (P) uptake by wheat under low P acid soil conditions, Plant Soil 419 (2017) 447–455.

[122]
J. Schaller, D. Puppe, Silicon biogeochemistry in terrestrial ecosystems, in: R. de M. Prado (Ed.), Benefits of Silicon in Plant Nutrition, Springer, Cham, Switzerland, 2022, pp. 1–16.
[123]

Q. Tian, P. Lu, P. Ma, H. Zhou, M. Yang, X. Zhai, M. Chen, H. Wang, W. Li, W. Bai, H. Lambers, W. Zhang, Processes at the soil–root interface determine the different responses of nutrient limitation and metal toxicity in forbs and grasses to nitrogen enrichment, J. Ecol. 109 (2021) 927–938.

[124]

J.L.F. da Silva, R. de M. Prado, Elucidating the action mechanisms of silicon in the mitigation of phosphorus deficiency and enhancement of its response in sorghum plants, J. Plant Nutr. 44 (2021) 2572–2582.

[125]

A.Y. Hu, J. Che, J.F. Shao, K. Yokosho, X.Q. Zhao, R.F. Shen, J.F. Ma, Silicon accumulated in the shoots results in down-regulation of phosphorus transporter gene expression and decrease of phosphorus uptake in rice, Plant Soil 423 (2018) 317–325.

[126]

S. Fernandes, G.P. da Silva, R.D.M. Prado, D.R. Rossatto, Association of root and leaf silicon application decreases the C/Si ratio, increasing carbon gain and dry mass production in peanut plants, Commun. Soil Sci. Plant Anal. 52 (2021) 2349–2357.

[127]

J. Schaller, J. Schoelynck, E. Struyf, P. Meire, Silicon affects nutrient content and ratios of wetland plants, Silicon 8 (2016) 479–485.

[128]

V. Minden, J. Schaller, H. Olde Venterink, Plants increase silicon content as a response to nitrogen or phosphorus limitation: a case study with Holcus lanatus, Plant Soil 462 (2021) 95–108.

[129]

M.J. Hodson, C.N. Guppy, Some thoughts on silicon and carbon trade-offs in plants, Plant Soil 477 (2022) 233–239.

[130]

S. Neu, J. Schaller, E.G. Dudel, Silicon availability modifies nutrient use efficiency and content, C:N: P stoichiometry, and productivity of winter wheat (Triticum aestivum L.), Sci. Rep. 7 (2017) 40829.

[131]

J. Schaller, C. Brackhage, M.O. Gessner, E. Bäuker, E. Gert Dudel, Silicon supply modifies C:N: P stoichiometry and growth of Phragmites australis, Plant Biol. 14 (2012) 392–396.

[132]

C. Mantovani, R. de M. Prado, K.F.L. Pivetta, Silicon foliar application on nutrition and growth of Phalaenopsis and Dendrobium orchids, Sci. Hortic. 241 (2018) 83–92.

[133]

M.A. Bukhari, Z. Ahmad, M.Y. Ashraf, M. Afzal, F. Nawaz, M. Nafees, W.N. Jatoi, N.A. Malghani, A.N. Shah, A. Manan, Silicon mitigates drought stress in wheat (Triticum aestivum L.) through improving photosynthetic pigments, biochemical and yield characters, Silicon 13 (2021) 4757–4772.

[134]

D.H.M. de Moraes, M. Mesquita, A. Magalhães Bueno, R.A. Flores, H.F.E. de Oliveira, F.S.R. de Lima, R. de M. Prado, R. Battisti, Combined effects of induced water deficit and foliar application of silicon on the gas exchange of tomatoes for processing, Agronomy 10 (2020) 1715.

[135]

M.M. Santos Sarah, R. de M. Prado, G.C.M. Teixeira, J.P. Souza Júnior, R.L.S. Medeiros, R.F. Barreto, Silicon supplied via roots or leaves relieves potassium deficiency in maize plants, Silicon 14 (2022) 773–782.

[136]

J. Feng, Q. Shi, X. Wang, M. Wei, F. Yang, H. Xu, Silicon supplementation ameliorated the inhibition of photosynthesis and nitrate metabolism by cadmium (Cd) toxicity in Cucumis sativus L., Sci. Hortic. 123 (2010) 521–530.

[137]

A. Song, P. Li, F. Fan, Z. Li, Y. Liang, The effect of silicon on photosynthesis and expression of its relevant genes in rice (Oryza sativa L.) under high-zinc stress, PLoS ONE 9 (2014) e113782.

[138]

S. Hussain, M. Mumtaz, S. Manzoor, L. Shuxian, I. Ahmed, M. Skalicky, M. Brestic, A. Rastogi, Z. Ulhassan, I. Shafiq, S.I. Allakhverdiev, H. Khurshid, W. Yang, W. Liu, Foliar application of silicon improves growth of soybean by enhancing carbon metabolism under shading conditions, Plant Physiol. Biochem. 159 (2021) 43–52.

[139]

T. Mustafa, A. Sattar, A. Sher, S. Ul-Allah, M. Ijaz, M. Irfan, M. Butt, M. Cheema, Exogenous application of silicon improves the performance of wheat under terminal heat stress by triggering physio-biochemical mechanisms, Sci. Rep. 11 (2021) 23170.

[140]

M.G. Mostofa, M.M. Rahman, M.M.U. Ansary, S.S. Keya, M. Abdelrahman, M.G. Miah, L.S. Phan Tran, Silicon in mitigation of abiotic stress-induced oxidative damage in plants, Crit. Rev. Biotechnol. 41 (2021) 918–934.

[141]

S. Farouk, K.M. Elhindi, M.A. Alotaibi, Silicon supplementation mitigates salinity stress on Ocimum basilicum L. via improving water balance, ion homeostasis, and antioxidant defense system, Ecotoxicol. Environ. Saf. 206 (2020) 111396.

[142]

H. Khattab, A. Alatawi, A. Abdulmajeed, M. Emam, H. Hassan, Roles of Si and SiNPs in improving thermotolerance of wheat photosynthetic machinery via upregulation of PsbH, PsbB and PsbD genes encoding PSⅡ core proteins, Horticulturae 7 (2021) 16.

[143]

J. Hu, Y. Li, B.R. Jeong, Silicon alleviates temperature stresses in poinsettia by regulating stomata, photosynthesis, and oxidative damages, Agronomy 10 (2020) 1419.

[144]

M.A. Bari, S.A. Prity, U. Das, M.S. Akther, S.A. Sajib, M.A. Reza, A.H. Kabir, Silicon induces phytochelatin and ROS scavengers facilitating cadmium detoxification in rice, Plant Biol. 22 (2020) 472–479.

[145]

Z. Iqbal, A. Sarkhosh, R.M. Balal, C. Gómez, M. Zubair, N. Ilyas, N. Khan, M.A. Shahid, Silicon alleviate hypoxia stress by improving enzymatic and non-enzymatic antioxidants and regulating nutrient uptake in muscadine grape (Muscadinia rotundifolia Michx.), Front. Plant Sci. 11 (2021) 618873.

[146]

K.S. Oliveira, R. de Mello Prado, M.V. Checchio, P.L. Gratão, Interaction of silicon and manganese in nutritional and physiological aspects of energy cane with high fiber content, BMC Plant Biol. 22 (2022) 374.

[147]

K.S. Oliveira, R. de Mello Prado, M.V. Checchio, P.L. Gratão, Silicon via nutrient solution modulates deficient and sufficient manganese sugar and energy cane antioxidant systems, Sci. Rep. 11 (2021) 16900.

[148]

R.J. Parecido, R.P. Soratto, F.V.C. Guidorizzi, M.J. Perdoná, H.I. Gitari, Soil application of silicon enhances initial growth and nitrogen use efficiency of Arabica coffee plants, J. Plant Nutr. 45 (2022) 1061–1071.

[149]

X. Liu, X. Tang, Z.G. Compson, D. Huang, G. Zou, F. Luan, Q. Song, X. Fang, Q. Yang, J. Liu, Silicon supply promotes differences in growth and C:N: P stoichiometry between bamboo and tree saplings, BMC Plant Biol. 23 (2023) 443.

[150]

A.F. Dutra, M.R.L. Leite, C.C.d.F. Melo, D.S. Amaral, J.L.F. da Silva, R. de M. Prado, M. de C. Piccolo, R. de S. Miranda, G.B. da Silva Júnior, T.K. dos S.A. Sousa, L.W. Mendes, A.S.F. Araújo, A.M. Zuffo, F. de Alcântara Neto, Soil and foliar Si fertilization alters elemental stoichiometry and increases yield of sugarcane cultivars, Sci. Rep. 13 (2023) 16040.

[151]

M.G. Costa, R. de Mello Prado, M.M. dos Santos Sarah, A.E.S. de Souza, J.P. de Souza Júnior, Silicon mitigates K deficiency in maize by modifying C, N, and P stoichiometry and nutritional efficiency, Sci. Rep. 13 (2023) 16929.

[152]

A.C. Buchelt, G.C.M. Teixeira, K.S. Oliveira, A.M.S. Rocha, R. de Mello Prado, G. Caione, Silicon contribution via nutrient solution in forage plants to mitigate nitrogen, potassium, calcium, magnesium, and sulfur deficiency, J. Soil Sci. Plant Nutr. 20 (2020) 1532–1548.

[153]

S. Mohanty, A.K. Nayak, C.K. Swain, B. Dhal, A. Kumar, R. Tripathi, M. Shahid, B. Lal, P. Gautam, G.K. Dash, P. Swain, Silicon enhances yield and nitrogen use efficiency of tropical low land rice, Agron. J. 112 (2020) 758–771.

[154]

M. Tegeder, C. Masclaux-Daubresse, Source and sink mechanisms of nitrogen transport and use, New Phytol. 217 (2018) 35–53.

[155]

E.S. da Silva, R. de M. Prado, A. de A.V.L. Soares, H.J. Almeida, D.M.M. Santos, Response of corn seedlings (Zea mays L.) to different concentrations of nitrogen in absence and presence of silicon, Silicon 13 (2021) 813–818.

[156]

J. Schaller, C. Brackhage, E.G. Dudel, Silicon availability changes structural carbon ratio and phenol content of grasses, Environ. Exp. Bot. 77 (2012) 283–287.

[157]

S. Khare, N.B. Singh, A. Singh, I. Hussain, K. Niharika, V. Yadav, C. Bano, R.K. Yadav, N. Amist, Plant secondary metabolites synthesis and their regulations under biotic and abiotic constraints, J. Plant Biol. 63 (2020) 203–216.

[158]

F. Tombeur, E. Laliberté, H. Lambers, M. Faucon, G. Zemunik, B.L. Turner, J. Cornelis, G. Mahy, A shift from phenol to silica-based leaf defences during long-term soil and ecosystem development, Ecol. Lett. 24 (2021) 984–995.

[159]

W. Ashfaq, S. Fuentes, G. Brodie, D. Gupta, The role of silicon in regulating physiological and biochemical mechanisms of contrasting bread wheat cultivars under terminal drought and heat stress environments, Front. Plant Sci. 13 (2022) 955490.

[160]

M.L. Ahire, P.S. Mundada, T.D. Nikam, V.A. Bapat, S. Penna, Multifaceted roles of silicon in mitigating environmental stresses in plants, Plant Physiol. Biochem. 169 (2021) 291–310.

[161]

A. Ranjan, R. Sinha, M. Bala, A. Pareek, S.L. Singla-Pareek, A.K. Singh, Silicon-mediated abiotic and biotic stress mitigation in plants: underlying mechanisms and potential for stress resilient agriculture, Plant Physiol. Biochem. 163 (2021) 15–25.

[162]

M. Irfan, M.A. Maqsood, H. ur Rehman, W. Mahboob, N. Sarwar, O.B.A. Hafeez, S. Hussain, S. Ercisli, M. Akhtar, T. Aziz, Silicon nutrition in plants under water-deficit conditions: overview and prospects, Water (Basel) 15 (2023) 739.

[163]

G.C.M. Teixeira, R.M. de Prado, A.M.S. Rocha, A.S.B. de Oliveira Filho, G.S. da Sousa Junior, P.L. Gratão, Action of silicon on the activity of antioxidant enzymes and on physiological mechanisms mitigates water deficit in sugarcane and energy cane plants, Sci. Rep. 12 (2022) 17487.

[164]

V.R. Lacerda, A.F.G. Acevedo, I.C. da S. Marques, W.J. Dellabiglia, A.K.L. Ferraz, L.S.P. Basílio, F. Broetto, Silicon as a mitigator of water deficit stress in radish crop, Sci. Hortic. 291 (2022) 110600.

[165]

G. Mastalerczuk, B. Borawska-Jarmułowicz, A. Darkalt, Changes in the physiological and morphometric characteristics and biomass distribution of forage grasses growing under conditions of drought and silicon application, Plants 12 (2022) 16.

[166]

M.A. Malik, A.H. Wani, S.H. Mir, I.U. Rehman, I. Tahir, P. Ahmad, I. Rashid, Elucidating the role of silicon in drought stress tolerance in plants, Plant Physiol. Biochem. 165 (2021) 187–195.

[167]

Y. Cao, R. Tong, Q. Tan, S. Mo, C. Ma, G. Chen, Flooding influences on the C, N and P stoichiometry in terrestrial ecosystems: a meta-analysis, Catena 215 (2022) 106287.

[168]

D. Coskun, D.T. Britto, W.Q. Huynh, H.J. Kronzucker, The role of silicon in higher plants under salinity and drought stress, Front. Plant Sci. 7 (2016) 1072.

[169]
A. Zaid, F. Gul, M.A. Ahanger, P. Ahmad, Silicon-mediated alleviation of stresses in plants, in: Plant Metabolites and Regulation under Environmental Stress, Elsevier, Amsterdam, the Netherlands, 2018, pp. 377–387.
[170]
D. Jespersen, Heat shock induced stress tolerance in plants: physiological, biochemical, and molecular mechanisms of acquired tolerance, in: Priming-Mediated Stress and Cross-Stress Tolerance in Crop Plants, Elsevier, Amsterdam, the Netherlands, 2020, pp. 161–174.
[171]
Y. Liang, M. Nikolic, R. Bélanger, H. Gong, A. Song, Silicon-mediated tolerance to drought and low-temperature stress, in: Silicon in Agriculture, Springer, Dordrecht, the Netherlands, 2015, pp. 143–159.
[172]

R.A. Slattery, D.R. Ort, Carbon assimilation in crops at high temperatures, Plant Cell Environ. 42 (2019) 2750–2758.

[173]

N.G. Smith, J.S. Dukes, Short-term acclimation to warmer temperatures accelerates leaf carbon exchange processes across plant types, Glob. Change Biol. 23 (2017) 4840–4853.

[174]
E. Bocharnikova, V. Matichenkov, Silicon-induced mitigation of low-temperature stress in sugarcane, in: Agro-Industrial Perspectives on Sugarcane Production under Environmental Stress, Springer, Singapore, 2022, pp. 215–229.
[175]

S. Muneer, Y.G. Park, S. Kim, B.R. Jeong, Foliar or subirrigation silicon supply mitigates high temperature stress in strawberry by maintaining photosynthetic and stress-responsive proteins, J. Plant Growth Regul. 36 (2017) 836–845.

[176]

M.S. Son, Y.G. Park, I. Sivanesan, C.H. Ko, B.R. Jeong, Silicon supply through subirrigation system alleviates high temperature stress in poinsettia by enhancing photosynthetic rate, Hortic. Sci. Technol. 33 (2015) 860–868.

[177]
Y. Liang, M. Nikolic, R. Bélanger, H. Gong, A. Song, Silicon-mediated tolerance to salt stress, in: Silicon in Agriculture, Springer, Dordrecht, Netherlands, 2015, pp. 123–142.
[178]

H. de S. Lemos Neto, M. de Almeida Guimarães, R.O. Mesquita, W.E. Sousa Freitas, A.B. de Oliveira, N. da Silva Dias, E. Gomes-Filho, Silicon supplementation induces physiological and biochemical changes that assist lettuce salinity tolerance, Silicon 13 (2021) 4075–4089.

[179]

M. Truscã, V. Ștefania Gâdea, A. Stoian, S.V. Vâtcã, Plants physiology in response to the saline stress interconnected effects, Not. Bot. Horti. Agrobot. Cluj Napoca 50 (2022) 12677.

[180]

R. Berni, R. Mandlik, J. Hausman, G. Guerriero, Silicon-induced mitigatory effects in salt-stressed hemp leaves, Physiol. Plant. 171 (2021) 476–482.

[181]

K. Peña-Calzada, D. Olivera-Viciedo, A. Calero-Hurtado, R. de Mello Prado, E. Habermann, L.F. Lata Tenesaca, G. Ajila, R. de Oliveira, J.C. Rodríguez, P. Lupino Gratão, Silicon mitigates the negative impacts of salt stress in soybean plants, J. Sci. Food Agric. 103 (2023) 4360–4370.

[182]

P. Dhiman, N. Rajora, S. Bhardwaj, S.S. Sudhakaran, A. Kumar, G. Raturi, K. Chakraborty, O.P. Gupta, B.N. Devanna, D.K. Tripathi, R. Deshmukh, Fascinating role of silicon to combat salinity stress in plants: an updated overview, Plant Physiol. Biochem. 162 (2021) 110–123.

[183]

K. Lesharadevi, T. Parthasarathi, S. Muneer, Silicon biology in crops under abiotic stress: a paradigm shift and cross-talk between genomics and proteomics, J. Biotechnol. 333 (2021) 21–38.

[184]

F. Xu, Y. Liang, X. Wang, Y. Guo, K. Tang, F. Feng, Synergic mitigation of saline-alkaline stress in wheat plant by silicon and Enterobacter sp. FN0603, Front. Microbiol. 13 (2023) 1100232.

[185]

Y. Arif, P. Singh, A. Bajguz, P. Alam, S. Hayat, Silicon mediated abiotic stress tolerance in plants using physio-biochemical, omic approach and cross-talk with phytohormones, Plant Physiol. Biochem. 166 (2021) 278–289.

[186]

X. Lu, Z. Qin, H. Lambers, S. Tang, J. Kaal, E. Hou, Y. Kuang, Nitrogen addition increases aboveground silicon and phytolith concentrations in understory plants of a tropical forest, Plant Soil 477 (2021) 25–39.

The Crop Journal
Pages 340-353
Cite this article:
Costa MG, de Mello Prado R, Palaretti LF, et al. The effect of abiotic stresses on plant C:N:P homeostasis and their mitigation by silicon. The Crop Journal, 2024, 12(2): 340-353. https://doi.org/10.1016/j.cj.2023.11.012

170

Views

1

Downloads

5

Crossref

3

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 12 August 2023
Revised: 24 November 2023
Accepted: 29 November 2023
Published: 10 January 2024
© 2024 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return