AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (7.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

A polygalacturonase gene OsPG1 modulates water homeostasis in rice

Qinwen Zoua,1Ranran Tua,1Jiajun Wua,1Tingting HuangbZhihao SunaZheyan RuanbHongyu CaoaShihui YangaXihong Shenb( )Guanghua Hea( )Hong Wanga( )
Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
State Key Laboratory of Rice Biology and Breeding, Key Laboratory for Zhejiang Super Rice Research, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401, Zhejiang, China

1 These authors contributed equally to this work.

Show Author Information

Abstract

A dynamic plant architecture is the basis of plant adaptation to changing environments. Although many genes regulating leaf rolling have been identified, genes directly associated with water homeostasis are largely unknown. Here, we isolated a rice mutant, dynamic leaf rolling 1 (dlr1), characterized by ‘leaf unfolding in the morning-leaf rolling at noon-leaf unfolding in the evening’ during a sunny day. Water content was decreased in rolled leaves and water sprayed on leaves caused reopening, indicating that in vivo water deficiency induced the leaf rolling. Map-based cloning and expression tests demonstrated that an A1400G single base mutation in Oryza sativa Polygalacturonase 1 (OsPG1)/PHOTO-SENSITIVE LEAF ROLLING 1 (PSL1) was responsible for the dynamic leaf rolling phenotype in the dlr1 mutant. OsPG1 encodes a polygalacturonase, one of the main enzymes that degrade demethylesterified homogalacturonans in plant cell walls. OsPG1 was constitutively expressed in various tissues and was enriched in stomata. Mutants of the OsPG1 gene exhibited defects in stomatal closure and decreased stomatal density, leading to reduced transpiration and excessive water loss under specific conditions, but had normal root development. Further analysis revealed that mutation of OsPG1 led to reduced pectinase activity in the leaves and increased demethylesterified homogalacturonans in guard cells. Our findings reveal a mechanism by which OsPG1 modulates water homeostasis to control dynamic leaf rolling, providing insights for plants to adapt to environmental variation.

References

[1]

P. Xu, A. Ali, B. Han, X. Wu, Current advances in molecular basis and mechanisms regulating leaf morphology in rice, Front. Plant Sci. 9 (2018) 1528.

[2]

A. Kadioglu, R. Terzi, N. Saruhan, A. Saglam, Current advances in the investigation of leaf rolling caused by biotic and abiotic stress factors, Plant Sci. 182 (2012) 42–48.

[3]

B. Wang, S. Smith, J. Li, Genetic regulation of shoot architecture, Annu. Rev. Plant Biol. 69 (2018) 437–468.

[4]

A. Cal, M. Sanciangco, M. Rebolledo, D. Luquet, R. Torres, K. McNally, A. Henry, Leaf morphology, rather than plant water status, underlies genetic variation of rice leaf rolling under drought, Plant Cell Environ. 42 (2019) 1532–1544.

[5]

J. Moon, S. Hake, How a leaf gets its shape, Curr. Opin. Plant Biol. 14 (2011) 24–30.

[6]

J. Itoh, K. Nonomura, K. Ikeda, S. Yamaki, Y. Inukai, H. Yamagishi, H. Kitano, Y. Nagato, Rice plant development: from zygote to spikelet, Plant Cell Physiol. 46 (2005) 23–47.

[7]

L. Li, Z. Shi, L. Li, G. Shen, X. Wang, L. An, J. Zhang, Overexpression of ACL1 (Abaxially Aurled Leaf 1) increased bulliform cells and induced abaxial curling of leaf blades in rice, Mol. Plant 3(2010) 807–817.

[8]

Y. Xu, Y. Wang, Q. Long, J. Huang, Y. Wang, K. Zhou, M. Zheng, J. Sun, H. Chen, S. Chen, L. Jiang, C. Wang, J. Wan, Overexpression of OsZHD1, a zinc finger homeodomain class homeobox transcription factor, induces abaxially curled and drooping leaf in rice, Planta 239 (2014) 803–816.

[9]

J. Fang, T. Guo, Z. Xie, Y. Chun, J. Zhao, L. Peng, S. Zafar, S. Yuan, L. Xiao, X. Li, The URL1-ROC5-TPL2 transcriptional repressor complex represses the ACL1 gene to modulate leaf rolling in rice, Plant Physiol. 185 (2021) 1722–1744.

[10]

Y. Xu, W. Kong, F. Wang, J. Wang, Y. Tao, W. Li, Z. Chen, F. Fan, Y. Jiang, Q. Zhu, J. Yang, Heterodimer formed by ROC8 and ROC5 modulates leaf rolling in rice, Plant Biotechnol. J. 19 (2021) 2662–2672.

[11]

L. Zhou, S. Chen, M. Cai, S. Cui, Y. Ren, X. Zhang, T. Liu, C. Zhou, X. Jin, L. Zhang, M. Wu, S. Zhang, Z. Cheng, X. Zhang, C. Lei, Q. Lin, X. Guo, J. Wang, Z. Zhao, L. Jiang, S. Zhu, J. Wan, ESCRT-Ⅲ component OsSNF7.2 modulates leaf rolling by trafficking and endosomal degradation of auxin biosynthetic enzyme OsYUC8 in rice, J. Integr. Plant Biol. 65 (2023) 1408–1422.

[12]

J. Wang, J. Xu, L. Wang, M. Zhou, J. Nian, M. Chen, X. Lu, X. Liu, Z. Wang, J. Cen, Y. Liu, Z. Zhang, D. Zeng, J. Hu, L. Zhu, G. Dong, D. Ren, Z. Gao, L. Shen, Q. Zhang, Q. Li, L. Guo, S. Yu, Q. Qian, G. Zhang, SEMI-ROLLED LEAF 10 stabilizes catalase isozyme B to regulate leaf morphology and thermotolerance in rice (Oryza sativa L.), Plant Biotechnol J. 21 (2023) 819–838.

[13]

L. Fang, F. Zhao, Y. Cong, X. Sang, Q. Du, D. Wang, Y. Li, Y. Ling, Z. Yang, G. He, Rolling-leaf14 is a 2OG-Fe (Ⅱ) oxygenase family protein that modulates rice leaf rolling by affecting secondary cell wall formation in leaves, Plant Biotechnol J. 10 (2012) 524–532.

[14]

W. Li, M. Zhang, P. Gan, L. Qiao, S. Yang, H. Miao, G. Wang, M. Zhang, W. Liu, H. Li, C. Shi, K. Chen, CLD1/SRL1 modulates leaf rolling by affecting cell wall formation, epidermis integrity and water homeostasis in rice, Plant J. 92 (2017) 904–923.

[15]

J. Xiang, G. Zhang, Q. Qian, H. Xue, Semi-rolled leaf1 encodes a putative glycosylphosphatidylinositol-anchored protein and modulates rice leaf rolling by regulating the formation of bulliform cells, Plant Physiol. 159 (2012) 1488–1500.

[16]

Y. Woo, H. Park, M. Su’udi, J. Yang, J. Park, K. Back, Y. Park, G. An, Constitutively wilted 1, a member of the rice YUCCA gene family, is required for maintaining water homeostasis and an appropriate root to shoot ratio, Plant Mol. Biol. 65 (2007) 125–136.

[17]

N. Yu, Y. Liang, Q. Wang, X. Peng, Z. He, X. Hou, Transcriptomic analysis of OsRUS1 overexpression rice lines with rapid and dynamic leaf rolling morphology, Sci. Rep. 12 (2022) 6736.

[18]

G. Zhang, X. Hou, L. Wang, J. Xu, J. Chen, X. Fu, N. Shen, J. Nian, Z. Jiang, J. Hu, L. Zhu, Y. Rao, Y. Shi, D. Ren, G. Dong, Z. Gao, L. Guo, Q. Qian, S. Luan, PHOTO-SENSITIVE LEAF ROLLING 1 encodes a polygalacturonase that modifies cell wall structure and drought tolerance in rice, New Phytol. 229 (2021) 890–901.

[19]

E. Bonnin, C. Garnier, M. Ralet, Pectin-modifying enzymes and pectin-derived materials: applications and impacts, Appl. Microbiol. Biot. 98 (2013) 519–532.

[20]

O. Markovič, Š. Janeček, Pectin degrading glycoside hydrolases of family 28: sequence-structural features, specificities and evolution, Protein Eng. Des. Sel. 14 (2001) 615–631.

[21]

Y. Shi, B. Li, D. Grierson, K. Chen, Insights into cell wall changes during fruit softening from transgenic and naturally occurring mutants, Plant Physiol. 192 (2023) 1671–1683.

[22]

S. Posé, C. Paniagua, M. Cifuentes, R. Blanco-Portales, M. Quesada, J. Mercado, Insights into the effects of polygalacturonase FaPG1 gene silencing on pectin matrix disassembly, enhanced tissue integrity, and firmness in ripe strawberry fruits, J. Exp. Bot. 64 (2013) 3803–3815.

[23]

R. Atkinson, P. Sutherland, S. Johnston, K. Gunaseelan, I. Hallett, D. Mitra, D. Brummell, R. Schröder, J. Johnston, R. Schaffer, Down-regulation of POLYGALACTURONASE1 alters firmness, tensile strength and water loss in apple (Malus × domestica) fruit, BMC Plant Biol. 12 (2012) 129.

[24]

H. Yoshioka, H. Hayama, M. Tatsuki, Y. Nakamura, Cell wall modifications during softening in melting type peach “Akatsuki” and non-melting type peach “Mochizuki”, Postharvest Biol. Technol. 60 (2011) 100–110.

[25]

M. Ogawa, P. Kay, S. Wilson, S. Swain, ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE1 (ADPG1), ADPG2, and QUARTET2 are polygalacturonases required for cell separation during reproductive development in Arabidopsis, Plant Cell 21 (2009) 216–233.

[26]

C. Xiao, W. Barnes, M. Zamil, H. Yi, V. Puri, C. Anderson, Activation tagging of Arabidopsis POLYGALACTURONASE INVOLVED IN EXPANSION 2 promotes hypocotyl elongation, leaf expansion, stem lignification, mechanical stiffening, and lodging, Plant J. 89 (2017) 1159–1173.

[27]

C. Xiao, C. Somerville, C. Anderson, POLYGALACTURONASE INVOLVED IN EXPANSION1 functions in cell elongation and flower development in Arabidopsis, Plant Cell 26 (2014) 1018–1035.

[28]

H. Liu, Y. Ma, N. Chen, S. Guo, H. Liu, X. Guo, K. Chong, Y. Xu, Overexpression of stress-inducible OsBURP16, the β subunit of polygalacturonase 1, decreases pectin content and cell adhesion and increases abiotic stress sensitivity in rice, Plant Cell Environ. 37 (2013) 1144–1158.

[29]

Y. Cao, Y. Zhang, Y. Chen, N. Yu, S. Liaqat, W. Wu, D. Chen, S. Cheng, X. Wei, L. Cao, Y. Zhang, Q. Liu, OsPG1 encodes a polygalacturonase that determines cell wall architecture and affects resistance to bacterial blight pathogen in rice, Rice 14 (2021) 36.

[30]

H. Wang, R. Tu, Z. Ruan, D. Wu, Z. Peng, X. Zhou, Q. Liu, W. Wu, L. Cao, S. Cheng, L. Sun, X. Zhan, X. Shen, STRIPE3, encoding a human dNTPase SAMHD1 homolog, regulates chloroplast development in rice, Plant Sci. 323 (2022) 111395.

[31]

Y. Xing, N. Wang, T. Zhang, Q. Zhang, D. Du, X. Chen, X. Lu, Y. Zhang, M. Zhu, M. Liu, X. Sang, Y. Li, Y. Ling, G. He, SHORT-ROOT 1 is critical to cell division and tracheary element development in rice roots, Plant J. 105 (2021) 1179–1191.

[32]

H. Wang, R. Tu, Z. Ruan, C. Chen, Z. Peng, X. Zhou, L. Sun, Y. Hong, D. Chen, Q. Liu, W. Wu, X. Zhan, X. Shen, Z. Zhou, L. Cao, Y. Zhang, S. Cheng, Photoperiod and gravistimulation-associated Tiller Angle Control 1 modulates dynamic changes in rice plant architecture, Theor. Appl. Genet. 136 (2023) 160.

[33]

Z. Wang, X. Tian, Q. Zhao, Z. Liu, X. Li, Y. Ren, J. Tang, J. Fang, Q. Xu, Q. Bu, The E3 ligase DROUGHT HYPERSENSITIVE negatively regulates cuticular wax biosynthesis by promoting the degradation of transcription factor ROC4 in rice, Plant Cell 30 (2018) 228–244.

[34]

W. Lucas, A. Groover, R. Lichtenberger, K. Furuta, S. Yadav, Y. Helariutta, X. He, H. Fukuda, J. Kang, S. Brady, J. Patrick, J. Sperry, A. Yoshida, A. López-Millán, M. Grusak, P. Kachroo, The plant vascular system: evolution, development and functions, J. Integr. Plant Biol. 55 (2013) 294–388.

[35]

L. Hocq, J. Pelloux, V. Lefebvre, Connecting homogalacturonan-type pectin remodeling to acid growth, Trends Plant Sci. 22 (2017) 20–29.

[36]

B. Zhang, C. Zhang, C. Liu, A. Fu, S. Luan, A Golgi-localized manganese transporter functions in pollen tube tip growth to control male fertility in Arabidopsis, Plant Commun. 2 (2021) 100178.

[37]

D. Mohnen, Pectin structure and biosynthesis, Curr. Opin. Plant Biol. 11 (2008) 266–277.

[38]

T. Sakai, T. Sakamoto, J. Hallaert, E. Vandamme, Pectin, pectinase, and protopectinase - production, properties, and applications, Adv. Appl. Microbiol. 39 (1993) 213–294.

[39]

R. Pierik, C. Fankhauser, L. Strader, N. Sinha, Architecture and plasticity: optimizing plant performance in dynamic environments, Plant Physiol. 187 (2021) 1029–1032.

[40]

H. Zhang, Y. Zhao, J. Zhu, Thriving under stress: how plants balance growth and the stress response, Dev. Cell 55 (2020) 529–543.

[41]

J. Alvarez, J. Rocha, S. Machado, Bulliform cells in Loudetiopsis chrysothrix (Nees) Conert and Tristachya leiostachya Nees (Poaceae): structure in relation to function, Braz. Arch. Biol. Technol. 51 (2008) 113–119.

[42]

C. Maurel, T. Simonneau, M. Sutka, The significance of roots as hydraulic rheostats, J. Exp. Bot. 61 (2010) 3191–3198.

[43]

C. Ribeiro, D. Conde, K. Balmant, C. Dervinis, M. Johnson, A. McGrath, P. Szewczyk, F. Unda, C. Finegan, H. Schmidt, B. Miles, D. Drost, E. Novaes, C. Gonzalez-Benecke, G. Peter, J. Burleigh, T. Martin, S. Mansfield, G. Chang, N. Wickett, M. Kirst, The uncharacterized gene EVE contributes to vessel element dimensions in Populus, Proc. Natl. Acad. Sci. U. S. A. 117 (2020) 5059–5066.

[44]

P. Rudall, E. Chen, E. Cullen, Evolution and development of monocot stomata, Am. J. Bot. 104 (2017) 1122–1141.

[45]

R. Spiegelhalder, M. Raissig, Morphology made for movement: formation of diverse stomatal guard cells, Curr. Opin. Plant Biol. 63 (2021) 102090.

[46]

P. Hsu, G. Dubeaux, Y. Takahashi, J. Schroeder, Signaling mechanisms in abscisic acid-mediated stomatal closure, Plant J. 105 (2021) 307–321.

[47]

S. Li, J. Zhang, L. Liu, Z. Wang, Y. Li, L. Guo, Y. Li, X. Zhang, S. Ren, B. Zhao, N. Zhang, Y. Guo, SlTLFP8 reduces water loss to improve water-use efficiency by modulating cell size and stomatal density via endoreduplication, Plant Cell Environ. 43 (2020) 2666–2679.

[48]

M. Haworth, G. Marino, A. Materassi, A. Raschi, C. Scutt, M. Centritto, The functional significance of the stomatal size to density relationship: Interaction with atmospheric [CO(2)] and role in plant physiological behaviour, Sci. Total Environ. 863 (2023) 160908.

[49]

P. Franks, I. Cowan, G. Farquhar, A study of stomatal mechanics using the cell pressure probe, Plant Cell Environ. 21 (1998) 94–100.

[50]

S. Amsbury, L. Hunt, N. Elhaddad, A. Baillie, M. Lundgren, Y. Verhertbruggen, H. Scheller, J. Knox, A. Fleming, J. Gray, Stomatal function requires pectin de-methyl-esterification of the guard cell wall, Curr. Biol. 26 (2016) 2899–2906.

[51]

L. Jones, J. Milne, D. Ashford, M. McCann, S. McQueen-Mason, A conserved functional role of pectic polymers in stomatal guard cells from a range of plant species, Planta 221 (2005) 255–264.

[52]

I. Shtein, Y. Shelef, Z. Marom, E. Zelinger, A. Schwartz, Z. Popper, B. Bar-On, S. Harpaz-Saad, Stomatal cell wall composition: distinctive structural patterns associated with different phylogenetic groups, Ann. Bot. 119 (2017) 1021–1033.

[53]

D. Cosgrove, Growth of the plant cell wall, Nat. Rev. Mol. Cell Biol. 6 (2005) 850–861.

[54]

Y. Rui, C. Xiao, H. Yi, B. Kandemir, J. Wang, V. Puri, C. Anderson, POLYGALACTURONASE INVOLVED IN EXPANSION3 functions in seedling development, rosette growth, and stomatal dynamics in Arabidopsis thaliana, Plant Cell 29 (2017) 2413–2432.

[55]

R. Caine, E. Harrison, J. Sloan, P. Flis, S. Fischer, M. Khan, P. Nguyen, L. Nguyen, J. Gray, H. Croft, The influences of stomatal size and density on rice abiotic stress resilience, New Phytol. 237 (2023) 2180–2195.

[56]

P. Franks, D. Beerling, Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time, Proc. Natl. Acad. Sci. U. S. A. 106 (2009) 10343–10347.

The Crop Journal
Pages 79-91
Cite this article:
Zou Q, Tu R, Wu J, et al. A polygalacturonase gene OsPG1 modulates water homeostasis in rice. The Crop Journal, 2024, 12(1): 79-91. https://doi.org/10.1016/j.cj.2023.12.007

221

Views

2

Downloads

1

Crossref

0

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 27 September 2023
Revised: 22 November 2023
Accepted: 29 December 2023
Published: 24 January 2024
© 2023 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return