The continued expansion of the world population, increasingly inconsistent climate and shrinking agricultural resources present major challenges to crop breeding. Fortunately, the increasing ability to discover and manipulate genes creates new opportunities to develop more productive and resilient cultivars. Many genes have been described in papers as being beneficial for yield increase. However, few of them have been translated into increased yield on farms. In contrast, commercial breeders are facing gene decidophobia, i.e., puzzled about which gene to choose for breeding among the many identified, a huge chasm between gene discovery and cultivar innovation. The purpose of this paper is to draw attention to the shortfalls in current gene discovery research and to emphasise the need to align with cultivar innovation. The methodology dictates that genetic studies not only focus on gene discovery but also pay good attention to the genetic backgrounds, experimental validation in relevant environments, appropriate crop management, and data reusability. The close of the gaps should accelerate the application of molecular study in breeding and contribute to future global food security.
D.K. Ray, N. Ramankutty, N.D. Mueller, P.C. West, J.A. Foley, Recent patterns of crop yield growth and stagnation, Nat. Commun. 3 (2012) 1293.
M.J. Hawkesford, J.L. Araus, R. Park, D. Calderini, D. Miralles, T. Shen, J. Zhang, M.A.J. Parry, Prospects of doubling global wheat yields, Food Energy Secur. 2 (2013) 34–48.
D. Xiong, J. Flexas, J. Huang, K. Cui, F. Wang, C. Douthe, M. Lin, Why high yield QTLs failed in preventing yield stagnation in rice? Crop Environ. 1 (2022) 103–107.
G. Rizzo, J.P. Monzon, F.A. Tenorio, R. Howard, K.G. Cassman, P. Grassini, Climate and agronomy, not genetics, underpin recent maize yield gains in favorable environments, Proc. Natl. Acad. Sci. U. S. A. 119 (2022) e2113629119.
K.P. Voss-Fels, A. Stahl, L.T. Hickey, Q&A: modern crop breeding for future food security, BMC Biol. 17 (2019) 18.
C. Feuillet, P. Langridge, R. Waugh, Cereal breeding takes a walk on the wild side, Trends Genet. 24 (2008) 24–32.
R. Bernardo, Bandwagons I, too, have known, Theor. Appl. Genet 129 (2016) 2323–2332.
M. Khaipho-Burch, M. Cooper, J. Crossa, N. de Leon, J. Holland, R. Lewis, S. McCouch, S.C. Murray, I. Rabbi, P. Ronald, J. Ross-Ibarra, D. Weigel, E.S. Buckler, Scale up trials to validate modified crops’ benefits, Nature 621 (2023) 470–473.
C.R. Simmons, H.R. Lafitte, K.S. Reimann, N. Brugière, K. Roesler, M.C. Albertsen, T.W. Greene, J.E. Habben, Successes and insights of an industry biotech program to enhance maize agronomic traits, Plant Sci. 307 (2021) 110899.
E.A. Boyle, Y.I. Li, J.K. Pritchard, An expanded view of complex traits: from polygenic to omnigenic, Cell 169 (2017) 1177–1186.
X. Liu, Y.I. Li, K. Pritchard, Trans effects on gene expression can drive omnigenic inheritance, Cell 177 (2019) 1022–1034.e6.
D.A. DeRaad, M.E. Cobos, A. Alkishe, U. Ashraf, K.M. Ahadji-Dabla, C. Nuñez-Penichet, A.T. Peterson, Genome-environment association methods comparison supports omnigenic adaptation to ecological niche in malaria vector mosquitoes, Mol. Ecol. 30 (2021) 6468–6485.
D.J. Weiner, A. Nadig, K.A. Jagadeesh, K.K. Dey, B.M. Neale, E.B. Robinson, K.J. Karczewski, L.J. O’Connor, Polygenic architecture of rare coding variation across 394,783 exomes, Nature 614 (2023) 492–499.
A. Li, C. Hao, Z. Wang, S. Geng, M. Jia, F. Wang, X. Han, X. Kong, L. Yin, S. Tao, Z. Deng, R. Liao, G. Sun, K. Wang, X. Ye, C. Jiao, H. Lu, Y. Zhou, D. Liu, X. Fu, X. Zhang, L. Mao, Wheat breeding history reveals synergistic selection of pleiotropic genomic sites for plant architecture and grain yield, Mol. Plant 15 (2022) 504–519.
S.D Tanksley, J.C. Nelson, Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines, Theor. Appl. Genet. 92 (1996) 191–203.
M.L. Nuccio, M. Paul, N.J. Bate, J. Cohen, S.R Cutler, Where are the drought tolerant crops? An assessment of more than two decades of plant biotechnology effort in crop improvement, Plant Sci. 273 (2018) 110–119.
H. Zhang, Y. Zhao, J.K. Zhu, Thriving under stress: how plants balance growth and the stress response, Dev. Cell 55 (2020) 529–543.
H. Nelissen, H. Sprenger, K. Demuynck, J. De Block, T. Van Hautegem, A. De Vliegher, D. Inzé, From laboratory to field: yield stability and shade avoidance genes are massively differentially expressed in the field, Plant Biotechnol. J. 18 (2020) 1112–1114.
C.M. Donald, Breeding of crop ideotypes, Euphytica 17 (1968) 385–403.
D.R. Knott, Effects of selection for F2 plant yield on subsequent generations in wheat, Can. J. Plant Sci. 52 (1972) 721–726.
A. Pedró, R. Savin, G.A. Slafer, Crop productivity as related to single-plant traits at key phenological stages in durum wheat, Field Crops Res. 138 (2012) 42–51.
X.Q. Huang, H. Coster, M.W. Ganal, M.S. Roder, Advanced backcross QTL analysis for the identifcation of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.), Theor. Appl. Genet. 106 (2003) 1379–1389.
F. Zhang, Y. Shi, J. Ali, J. Xu, Z. Li, Breeding by selective introgression: theory, practices, and lessons learned from rice, Crop J. 9 (2021) 646–657.
T. He, C. Li, Harness the power of genomic selection and the potential of germplasm in crop breeding for global food security in the era with rapid climate change, Crop J. 8 (2020) 688–700.
H. Aberkane, T. Payne, M. Kishi, M. Smale, A. Amri, N. Jamora, Transferring diversity of goat grass to farmers’ fields through the development of synthetic hexaploid wheat, Food Secur. 12 (2020) 1017–1033.
M. Hao, L. Zhang, S. Ning, L. Huang, Z. Yuan, B. Wu, Z. Yan, S. Dai, B. Jiang, Y. Zheng, D. Liu, The resurgence of introgression breeding, as exemplified in wheat improvement, Front. Plant Sci. 11 (2020) 252.
H. Wan, F. Yang, J. Li, Q. Wang, Z. Liu, Y. Tang, W. Yang, Genetic improvement and application practices of synthetic hexaploid wheat, Genes 14 (2023) 283.
M. Tester, P. Langridge, Breeding technologies to increase crop production in a changing world, Science 327 (2010) 818–822.
M.D. Zurbriggen, M.R. Hajirezaei, N. Carrillo, Engineering the future. Development of transgenic plants with enhanced tolerance to adverse environments, Biotechnol. Genet. Eng. Rev. 27 (2010) 33–56.
M.K. van Ittersum, K.G. Cassman, P. Grassini, J. Wolf, P. Tittonell, Z. Hochman, Yield gap analysis with local to global relevance-a review, Field Crops Res. 143 (2013) 4–17.
D.B. Lobell, K.G. Cassman, C.B. Field, Crop yield gaps: their importance, magnitudes, and causes, Annu. Rev. Environ. Resour. 34 (2009) 179–204.
N. Senapati, M.A. Semenov, N.G. Halford, M.J. Hawkesford, S. Asseng, M. Cooper, F. Ewert, M.K. van Ittersum, P. Martre, J.E. Olesen, M. Reynolds, R.P. Rötter, H. Webber, Global wheat production could benefit from closing the genetic yield gap, Nat. Food 3 (2022) 532–541.
D. Zamir, Where have all the crop phenotypes gone? PLoS Biol. 11 (2013) e1001595.
M. Gerullis, R. Pieruschka, S. Fahrner, L. Hartl, U. Schurr, T. Heckelei, From genes to policy: mission-oriented governance of plant-breeding research and technologies, Front. Plant Sci. 14 (2023) 1235175.