AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

Rice melatonin deficiency causes premature leaf senescence via DNA methylation regulation

Yue Lua,b,1Ahmed Ghariba,c,1Rujia Chena,b,1Hanyao Wanga,bTianyun Taoa,bZhihao Zuoa,bQing Bua,bYanze Sua,bYaoqing Lia,bYanmo Luoa,bHamdi F. El-MowafidZhichao Wanga,bQianfeng Huanga,bShuting Wanga,bYang Xua,bPengcheng Lia,bChenwu Xua,b( )Zefeng Yanga,b( )
Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agriculture College of Yangzhou University, Yangzhou 225009, Jiangsu, China
Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, Jiangsu, China
National Institute of Laser Enhanced Sciences (NILES), Cairo University, Giza 12613, Egypt
Rice Research Department, Field Crops Research Institute, Agricultural Research Center, Sakha, Kafr El-Sheikh 33717, Egypt

1 These authors contributed equally to this work.

Show Author Information

Abstract

In a study of DNA methylation changes in melatonin-deficient rice mutants, mutant plants showed premature leaf senescence during grain-filling and reduced grain yield. Melatonin deficiency led to transcriptional reprogramming, especially of genes involved in chlorophyll and carbon metabolism, redox regulation, and transcriptional regulation, during dark-induced leaf senescence. Hypomethylation of mCG and mCHG in the melatonin-deficient rice mutants was associated with the expression change of both protein-coding genes and transposable element-related genes. Changes in gene expression and DNA methylation in the melatonin-deficient mutants were compensated by exogenous application of melatonin. A decreased S-adenosyl-L-methionine level may have contributed to the DNA methylation variations in rice mutants of melatonin deficiency under dark conditions.

References

[1]

A. Distelfeld, R. Avni, A.M. Fischer, Senescence, nutrient remobilization, and yield in wheat and barley, J. Exp. Bot. 65 (2014) 3783–3798.

[2]

S. Lee, C. Masclaux–Daubresse, Current understanding of leaf senescence in rice, Int. J. Mol. Sci. 22 (2021) 4515.

[3]

M. Cohen, K. Hertweck, M. Itkin, S. Malitsky, B. Dassa, A.M. Fischer, R. Fluhr, Enhanced proteostasis, lipid remodeling, and nitrogen remobilization define barley flag leaf senescence, J. Exp. Bot. 73 (2022) 6816–6837.

[4]

H.R. Woo, H.J. Kim, P.O. Lim, H.G. Nam, Leaf senescence: systems and dynamics aspects, Annu. Rev. Plant Biol. 70 (2019) 347–376.

[5]

D. Liebsch, O. Keech, Dark–induced leaf senescence: new insights into a complex light-dependent regulatory pathway, New Phytol. 212 (2016) 563–570.

[6]

M.V. Mickelbart, P.M. Hasegawa, J. Bailey–Serres, Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability, Nat. Rev. Genet. 16 (2015) 237–251.

[7]

X. Yu, Y. Xu, S. Yan, Salicylic acid and ethylene coordinately promote leaf senescence, J. Integr. Plant Biol. 63 (2021) 823–827.

[8]

Y. Zhang, T.T. Ji, T.T. Li, Y.Y. Tian, L.F. Wang, W.C. Liu, Jasmonic acid promotes leaf senescence through MYC2–mediated repression of CATALASE2 expression in Arabidopsis, Plant Sci. 299 (2020) 110604.

[9]

S. He, F. Zhi, Y. Min, R. Ma, A. Ge, S. Wang, J. Wang, Z. Liu, Y. Guo, M. Chen, The MYB59 transcription factor negatively regulates salicylic acid- and jasmonic acid-mediated leaf senescence, Plant Physiol. 192 (2023) 488–503.

[10]

C. Lim, K. Kang, Y. Shim, Y. Sakuraba, G. An, N.C. Paek, Rice ETHYLENE RESPONSE FACTOR 101 promotes leaf senescence through jasmonic acid-mediated regulation of OsNAP and OsMYC2, Front. Plant Sci. 11 (2020) 1096.

[11]

X. Feng, L. Liu, Z. Li, F. Sun, X. Wu, D. Hao, H. Hao, H.C. Jing, Potential interaction between autophagy and auxin during maize leaf senescence, J. Exp. Bot. 72 (2021) 3554–3568.

[12]

Y. Song, C. Li, Y. Zhu, P. Guo, Q. Wang, L. Zhang, Z. Wang, H. Di, Overexpression of ZmIPT2 gene delays leaf senescence and improves grain yield in maize, Front. Plant Sci. 13 (2022) 963873.

[13]

N. Glanz–Idan, M. Lach, P. Tarkowski, O. Vrobel, S. Wolf, Delayed leaf senescence by upregulation of cytokinin biosynthesis specifically in tomato roots, Front. Plant Sci. 13 (2022) 922106.

[14]

Y.L. Yang, J. Xu, L.C. Huang, Y.J. Leng, L.P. Dai, Y.C. Rao, L. Chen, Y.Q. Wang, Z.J. Tu, J. Hu, D.Y. Ren, G.H. Zhang, L. Zhu, L.B. Guo, Q. Qian, D.L. Zeng, PGL, encoding chlorophyllide a oxygenase 1, impacts leaf senescence and indirectly affects grain yield and quality in rice, J. Exp. Bot. 67 (2016) 1297–1310.

[15]

P.L. Gregersen, A. Culetic, L. Boschian, K. Krupinska, Plant senescence and crop productivity, Plant Mol. Biol. 82 (2013) 603–622.

[16]

L. Huangfu, R. Chen, Y. Lu, E. Zhang, J. Miao, Z. Zuo, Y. Zhao, M. Zhu, Z. Zhang, P. Li, Y. Xu, Y. Yao, G. Liang, C. Xu, Y. Zhou, Z. Yang, OsCOMT, encoding a caffeic acid O–methyltransferase in melatonin biosynthesis, increases rice grain yield through dual regulation of leaf senescence and vascular development, Plant Biotechnol. J. (2022) 1122–1139.

[17]

D. Zhao, Y. Yu, Y. Shen, Q. Liu, Z.W. Zhao, R. Sharma, R.J. Reiter, Melatonin synthesis and function: evolutionary history in animals and plants, Front. Endocrinol. 10 (2019) 249.

[18]

C. Sun, L. Liu, L. Wang, B. Li, C. Jin, X. Lin, Melatonin: A master regulator of plant development and stress responses, J. Integr. Plant Biol. 63 (2021) 126–145.

[19]

M.B. Arnao, J. Hernandez–Ruiz, Melatonin against environmental plant stressors: a review, Curr. Protein Pept. Sci. 22 (2021) 413–429.

[20]

Q. Gu, Q.Q. Xiao, Z.P. Chen, Y. Han, Crosstalk between melatonin and reactive oxygen species in plant abiotic stress responses: an update, Int. J. Mol. Sci. 23 (2022) 5666.

[21]

L.X. Huangfu, Z.H. Zhang, Y. Zhou, E.Y. Zhang, R.J. Chen, H.M. Fang, P.C. Li, Y. Xu, Y.L. Yao, M.Y. Zhu, S.Y. Yin, C.W. Xu, Y. Lu, Z.F. Yang, Integrated physiological, metabolomic and transcriptomic analyses provide insights into the roles of exogenous melatonin in promoting rice seed germination under salt stress, Plant Growth Regul. 95 (2021) 19–31.

[22]

M.K. Mandal, H. Suren, B. Ward, A. Boroujerdi, C. Kousik, Differential roles of melatonin in plant–host resistance and pathogen suppression in cucurbits, J. Pineal Res. 65 (2018) e12505.

[23]

N. Zhang, Q. Sun, H. Li, X. Li, Y. Cao, H. Zhang, S. Li, L. Zhang, Y. Qi, S. Ren, B. Zhao, Y.D. Guo, Melatonin improved anthocyanin accumulation by regulating gene expressions and resulted in high reactive oxygen species scavenging capacity in cabbage, Front. Plant Sci. 7 (2016) 197.

[24]

C. Luo, W. Min, M. Akhtar, X. Lu, X. Bai, Y. Zhang, L. Tian, P. Li, Melatonin enhances drought tolerance in rice seedlings by modulating antioxidant systems, osmoregulation, and corresponding gene expression, Int. J. Mol. Sci. 23 (2022) 12075.

[25]

Q. Xu, Q. Liu, Z. Chen, Y. Yue, Y. Liu, Y. Zhao, D.X. Zhou, Histone deacetylases control lysine acetylation of ribosomal proteins in rice, Nucleic Acids Res. 49 (2021) 4613–4628.

[26]

W. Wei, J.J. Tao, C.C. Yin, S.Y. Chen, J.S. Zhang, W.K. Zhang, Melatonin regulates gene expressions through activating auxin synthesis and signaling pathways, Front. Plant Sci. 13 (2022) 1057993.

[27]

M.B. Arnao, J. Hernandez–Ruiz, Melatonin and its relationship to plant hormones, Ann. Bot. 121 (2018) 195–207.

[28]

K. Back, Melatonin metabolism, signaling and possible roles in plants, Plant J. 105 (2021) 376–391.

[29]

Y. Byeon, G.H. Choi, H.Y. Lee, K. Back, Melatonin biosynthesis requires N–acetylserotonin methyltransferase activity of caffeic acid O–methyltransferase in rice, J. Exp. Bot. 66 (2015) 6917–6925.

[30]

Y. Jiang, S. Huang, L. Ma, L. Kong, S. Pan, X. Tang, H. Tian, M. Duan, Z. Mo, Effect of exogenous melatonin application on the grain yield and antioxidant capacity in aromatic rice under combined lead–cadmium stress, Antioxidants (Basel) 11 (2022) 776.

[31]

S. Ahmad, M. Kamran, X. Zhou, I. Ahmad, X. Meng, T. Javed, A. Iqbal, G. Wang, W. Su, X. Wu, P. Ahmad, Q. Han, Melatonin improves the seed filling rate and endogenous hormonal mechanism in grains of summer maize, Physiol. Plant 172 (2021) 1059–1072.

[32]

Y. Lu, D.X. Zhou, Y. Zhao, Understanding epigenomics based on the rice model, Theor. Appl. Genet. 133 (2020) 1345–1363.

[33]

J.A. Law, S.E. Jacobsen, Establishing, maintaining and modifying DNA methylation patterns in plants and animals, Nat. Rev. Genet. 11 (2010) 204–220.

[34]

H. Zhang, Z. Lang, J.K. Zhu, Dynamics and function of DNA methylation in plants, Nat. Rev. Mol. Cell Biol. 19 (2018) 489–506.

[35]

S. Domcke, A.F. Bardet, P.A. Ginno, D. Hartl, L. Burger, D. Schubeler, Competition between DNA methylation and transcription factors determines binding of NRF1, Nature 528 (2015) 575–579.

[36]

F. Tan, Y. Lu, W. Jiang, T. Wu, R. Zhang, Y. Zhao, D.X. Zhou, DDM1 represses noncoding RNA expression and RNA–directed DNA methylation in heterochromatin, Plant Physiol. 177 (2018) 1187–1197.

[37]

F. Tan, C. Zhou, Q.W. Zhou, S.L. Zhou, W.J. Yang, Y. Zhao, G.L. Li, D.X. Zhou, Analysis of chromatin regulators reveals specific features of rice DNA methylation pathways, Plant Physiol. 171 (2016) 2041–2054.

[38]

P.R. Satyaki, M. Gehring, DNA methylation and imprinting in plants: machinery and mechanisms, Crit. Rev. Biochem. Mol. Biol. 52 (2017) 163–175.

[39]

S.L. Zhou, X.Y. Liu, C. Zhou, Q.W. Zhou, Y. Zhao, G.L. Li, D.X. Zhou, Cooperation between the H3K27me3 chromatin mark and non-CG methylation in epigenetic regulation, Plant Physiol. 172 (2016) 1131–1141.

[40]

S. Zhou, X. Li, Q. Liu, Y. Zhao, W. Jiang, A. Wu, D.X. Zhou, DNA demethylases remodel DNA methylation in rice gametes and zygote and are required for reproduction, Mol. Plant 14 (2021) 1569–1583.

[41]

Y. Liao, G.K. Smyth, W. Shi, featureCounts: an efficient general purpose program for assigning sequence reads to genomic features, Bioinformatics 30 (2014) 923–930.

[42]

M.I. Love, W. Huber, S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol. 15 (2014) 550.

[43]

F. Krueger, S.R. Andrews, Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications, Bioinformatics 27 (2011) 1571–1572.

[44]

A. Akalin, M. Kormaksson, S. Li, F.E. Garrett-Bakelman, M.E. Figueroa, A. Melnick, C.E. Mason, methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles, Genome Biol. 13 (2012) R87.

[45]

M. Han, C.Y. Kim, J. Lee, S.K. Lee, J.S. Jeon, OsWRKY42 represses OsMT1d and induces reactive oxygen species and leaf senescence in rice, Mol. Cells 37 (2014) 532–539.

[46]

W. Xie, X. Li, S. Wang, M. Yuan, OsWRKY53 promotes abscisic acid accumulation to accelerate leaf senescence and inhibit seed germination by downregulating abscisic acid catabolic genes in rice, Front. Plant Sci. 12 (2021) 816156.

[47]

C. Liang, Y. Wang, Y. Zhu, J. Tang, B. Hu, L. Liu, S. Ou, H. Wu, X. Sun, J. Chu, C. Chu, OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice, Proc. Natl. Acad. Sci. U. S. A. 111 (2014) 10013–10018.

[48]

N. Samo, A. Ebert, J. Kopka, I. Mozgova, Plant chromatin, metabolism and development - an intricate crosstalk, Curr. Opin. Plant Biol. 61 (2021) 102002.

[49]

L. Wang, C. Feng, X.D. Zheng, Y. Guo, F.F. Zhou, D.Q. Shan, X. Liu, J. Kong, Plant mitochondria synthesize melatonin and enhance the tolerance of plants to drought stress, J. Pineal Res. 63 (2017) e12429.

[50]

N. Zhang, Q.Q. Sun, H.J. Zhang, Y.Y. Cao, S. Weeda, S.X. Ren, Y.D. Guo, Roles of melatonin in abiotic stress resistance in plants, J. Exp. Bot. 66 (2015) 647–656.

[51]

R. Li, L. Wu, Y. Shao, Q. Hu, H. Zhang, Melatonin alleviates copper stress to promote rice seed germination and seedling growth via crosstalk among various defensive response pathways, Plant Physiol. Biochem. 179 (2022) 65–77.

[52]

S.J. Feng, X.S. Liu, H. Tao, S.K. Tan, S.S. Chu, Y. Oono, X.D. Zhang, J. Chen, Z.M. Yang, Variation of DNA methylation patterns associated with gene expression in rice (Oryza sativa) exposed to cadmium, Plant Cell Environ. 39 (2016) 2629–2649.

[53]

L.F. Wang, S. Cao, P.T. Wang, K.N. Lu, Q.X. Song, F.J. Zhao, Z.J. Chen, DNA hypomethylation in tetraploid rice potentiates stress–responsive gene expression for salt tolerance, Proc. Natl. Acad. Sci. U. S. A. 118 (2021) e2023981118.

[54]

R. Lister, R.C. O'Malley, J. Tonti-Filippini, B.D. Gregory, C.C. Berry, A.H. Millar, J.R. Ecker, Highly integrated single-base resolution maps of the epigenome in Arabidopsis, Cell 133 (2008) 523–536.

[55]

S. Takuno, B.S. Gaut, Gene body methylation is conserved between plant orthologs and is of evolutionary consequence, Proc. Natl. Acad. Sci. U. S. A. 110 (2013) 1797–1802.

[56]

D. Zilberman, M. Gehring, R.K. Tran, T. Ballinger, S. Henikoff, Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription, Nat. Genet. 39 (2007) 61–69.

[57]

S. Takuno, B.S. Gaut, Body-methylated genes in Arabidopsis are functionally important and evolve slowly, Mol. Biol. Evol. 29 (2012) 219–227.

[58]

X.Y. Zhang, J. Yazaki, A. Sundaresan, S. Cokus, S.W.L. Chan, H.M. Chen, I.R. Henderson, P. Shinn, M. Pellegrini, S.E. Jacobsen, J.R. Ecker, Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis, Cell 126 (2006) 1189–1201.

[59]

T. Srikant, W. Yuan, K.W. Berendzen, A. Contreras-Garrido, H.G. Drost, R. Schwab, D. Weigel, Canalization of genome–wide transcriptional activity in Arabidopsis thaliana accessions by MET1-dependent CG methylation, Genome Biol. 23 (2022) 263.

[60]

W. Liang, J. Li, L. Sun, Y. Liu, Z. Lan, W. Qian, Deciphering the synergistic and redundant roles of CG and non-CG DNA methylation in plant development and transposable element silencing, New Phytol. 233 (2022) 722–737.

[61]

S. Kumar, T. Mohapatra, Dynamics of DNA methylation and its functions in plant growth and development, Front. Plant Sci. 12 (2021) 596236.

[62]

T. Yamauchi, Y. Johzuka–Hisatomi, R. Terada, I. Nakamura, S. Iida, The MET1b gene encoding a maintenance DNA methyltransferase is indispensable for normal development in rice, Plant Mol. Biol. 85 (2014) 219–232.

[63]

J. Wang, L. Zhou, H. Shi, M. Chern, H. Yu, H. Yi, M. He, J.J. Yin, X.B. Zhu, Y. Li, W.T. Li, J.L. Liu, J.C. Wang, X.Q. Chen, H. Qing, Y.P. Wang, G.F. Liu, W.M. Wang, P. Li, X.J. Wu, L.H. Zhu, J.M. Zhou, P.C. Ronald, S.G. Li, J.Y. Li, X.W. Chen, A single transcription factor promotes both yield and immunity in rice, Science 361 (2018) 1026–1028.

[64]

S. Corem, A. Doron–Faigenboim, O. Jouffroy, F. Maumus, T. Arazi, N. Bouché, Redistribution of CHH methylation and small interfering RNAs across the genome of tomato mutants, Plant Cell 30 (2018) 1628–1644.

[65]

L. He, C. Zhao, Q.Z. Zhang, G. Zinta, D. Wang, R. Lozano–Durán, J.K. Zhu, Pathway conversion enables a double-lock mechanism to maintain DNA methylation and genome stability, Proc. Natl. Acad. Sci. U. S. A. 118 (2021) e2107320118.

[66]

M. Groth, G. Moissiard, M. Wirtz, H. Wang, C. Garcia–Salinas, P.A. Ramos–Parra, S. Bischof, S. Feng, S.J. Cokus, A. John, D.C. Smith, J. Zhai, C.J. Hale, J.A. Long, R. Hell, R.I. Diaz de la Garza, S.E. Jacobsen, MTHFD1 controls DNA methylation in Arabidopsis, Nat. Commun. 7 (2016) 11640.

[67]

Y. Lu, Q. Bu, M. Chuan, X.Y. Cui, Y. Zhao, D.X. Zhou, Metabolic regulation of the plant epigenome, Plant J. 114 (2023) 1001–1013.

[68]

W.X. Li, Y.Y. Han, F. Tao, K. Chong, Knockdown of SAMS genes encoding S-adenosyl-L-methionine synthetases causes methylation alterations of DNAs and histones and leads to late flowering in rice, J. Plant Physiol. 168 (2011) 1837–1843.

[69]

J. Fulnecek, R. Matyasek, I. Votruba, A. Holy, K. Krizova, A. Kovarik, Inhibition of SAH-hydrolase activity during seed germination leads to deregulation of flowering genes and altered flower morphology in tobacco, Mol. Genet. Genomics 285 (2011) 225–236.

[70]

S. Roje, S-Adenosyl-L-methionine: Beyond the universal methyl group donor, Phytochemistry 67 (2006) 1686–1698.

The Crop Journal
Pages 721-731
Cite this article:
Lu Y, Gharib A, Chen R, et al. Rice melatonin deficiency causes premature leaf senescence via DNA methylation regulation. The Crop Journal, 2024, 12(3): 721-731. https://doi.org/10.1016/j.cj.2024.04.004

131

Views

0

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 26 January 2024
Revised: 31 March 2024
Accepted: 22 April 2024
Published: 13 May 2024
© 2024 Crop Science Society of China and Institute of Crop Science, CAAS.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return