PDF (5.9 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Research paper | Open Access

OsPPG encodes a pseudouridine-5′-phosphate glycosidase and regulates rice spikelet development

Rui Chena,bDagang TianbYarong LinbJiaqing HuangcQinqin YangaYupei Lia,bHuaqing LiubShaohua YangbJingyang ChenbShufen ZhoubFeng Wangb()Shubiao Zhanga()
Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education/Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
Fujian Key Laboratory of Genetic Engineering for Agriculture, Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, Fujian, China
Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou 350013, Fujian, China
Show Author Information

Abstract

Florets are the basic structural units of spikelets, and their morphogenesis determines the yield and quality of rice grains. However, whether and how pseudouridine-5′-phosphate glycosidase participates in rice spikelet development remains an open question. In this study, we identified a novel gene, OsPPG, which encodes a peroxisome-localized pseudouridine-5′-phosphate glycosidase and regulates the development of rice spikelets. osppg mutants exhibited abnormal sterile lemma, lemma, palea, lodicule, stamens, and pistils; male sterility; shorter panicles; and reduced plant height. OsPPG was found to regulate several OsMADS genes, thereby affecting the morphogenesis of rice spikelets. Furthermore, metabolomics revealed that the OsPPG gene was involved in the decomposition of pseudouridine via the pyrimidine metabolism pathway and may affect the jasmonic acid signaling pathway. These results suggest that OsPPG is a key regulator of rice spikelet development.

References

[1]

J. Itoh, K. Nonomura, K. Ikeda, S. Yamaki, Y. Inukai, H. Yamagishi, H. Kitano, Y. Nagato, Rice plant development: from zygote to spikelet, Plant Cell Physiol. 46 (2005) 23–47.

[2]

Z. Ali, Q. Raza, R.M. Atif, U. Aslam, M. Ajmal, G. Chung, Genetic and molecular control of floral organ identity in cereals, Int. J. Mol. Sci. 20 (2019) 2743.

[3]

G.L. Li, H.L. Zhang, J.J. Li, Z.Y. Zhang, Z.C. Li, Genetic control of panicle architecture in rice, Crop J. 9 (2021) 590–597.

[4]

H. Ashraf, F. Ghouri, F.S. Baloch, M.A. Nadeem, X. Fu, M.Q. Shahid, Hybrid rice production: A worldwide review of floral traits and breeding technology, with special emphasis on China, Plants (Basel) 13 (2024) 578.

[5]

H. Yoshida, Y. Nagato, Flower development in rice, J. Exp. Bot. 62 (2011) 4719–4730.

[6]

C. Callens, M.R. Tucker, D.B. Zhang, Z. A. Wilson, Dissecting the role of mads-box genes in monocot floral development and diversity, J. Exp. Bot. 69 (2018) 2435–2459.

[7]

D. Wu, Z. Yuan, D. Zhang, Advances in molecular mechanisms of rice spikelet organogenesis, Chin. Bull. Life Sci. 30 (2018) 1173–1183.

[8]

P.P. Maung, B. Kim, Z. Jin, S. Jang, Y.K. Lee, H.J. Koh, Identification and characterization of a novel gene controlling floral organ number in rice (Oryza sativa L.), PLoS ONE 18(2023) e0280022.

[9]

F. Wu, X.W. Shi, X.L. Lin, Y. Liu, K. Chong, G. Theißen, Z. Meng, The ABCs of flower development: mutational analysis of AP1/FUL-like genes in rice provides evidence for a homeotic (A) -function in grasses, Plant J. 89 (2017) 310–324.

[10]

H. Xiao, Y. Wang, D.F. Liu, W.M. Wang, X.B. Li, X.F. Zhao, J.C. Xu, W.X. Zhai, L.H. Zhu, Functional analysis of the rice AP3 homologue OsMADS16 by RNA interference, Plant Mol. Biol. 52 (2003) 957–966.

[11]

S. G. Yao, S. Ohmori, M. Kimizu, H. Yoshida, Unequal genetic redundancy of rice PISTILLATA orthologs, OsMADS2 and OsMADS4, in lodicule and stamen development, Plant Cell Physiol. 49 (2008) 853–857.

[12]

L. Dreni, A. Pilatone, D.P. Yun, S. Erreni, A. Pajoro, E. Caporali, D.B. Zhang, M. M. Kater, Functional analysis of all AGAMOUS subfamily members in rice reveals their roles in reproductive organ identity determination and meristem determinacy, Plant Cell 23 (2011) 2850–2863.

[13]

R.F. Cui, J.K. Han, S.Z. Zhao, K.M. Su, F. Wu, X.Q. Du, Q.J. Xu, K. Chong, G. Theissen, Z. Meng, Functional conservation and diversification of class E floral homeotic genes in rice (Oryza sativa), Plant J. 61 (2010) 767–781.

[14]

Y. Hu, W.Q. Liang, C.S. Yin, X.L. Yang, B.Z. Ping, A.X. Li, R. Jia, M.J. Chen, Z.J. Luo, Q. Cai, X.X. Zhao, D.B. Zhang, Z. Yuan, Interactions of OsMADS1 with floral homeotic genes in rice flower development, Mol. Plant 8 (2015) 1366–1384.

[15]

D. Wu, W.Q. Liang, W.W. Zhu, M.J. Chen, C. Ferrándiz, R.A. Burton, L. Dreni, D.B. Zhang, Loss of LOFSEP transcription factor function converts spikelet to leaf-like structures in rice, Plant Physiol. 176 (2018) 1646–1664.

[16]

Y. Hu, L. Wang, R. Jia, W.Q. Liang, X.L. Zhang, J. Xu, X.F. Chen, D. Lu, M.J. Chen, Z.J. Luo, J.Y. Xie, L.M. Cao, B. Xu, Y. Yu, S. Persson, D. Zhang, Z. Yuan, Rice transcription factor MADS32 regulates floral patterning through interactions with multiple floral homeotic genes, J. Exp. Bot. 72 (2021) 2434–2449.

[17]

H.M. Fang, H.L. Chen, J.N. Wang, N. Li, L. Zhang, C.X. Wei, G1 interacts with OsMADS1 to regulate the development of the sterile lemma in rice, Plants (Basel) 13(2024) 505.

[18]

X.M. You, S.S. Zhu, W.W. Zhang, J. Zhang, C.M. Wang, R.N. Jing, W.W. Chen, H.M. Wu, Y. Cai, Z.M. Feng, J.L. Hu, H.G. Yan, F. Kong, H. Zhang, M. Zheng, Y.L. Ren, Q.B. Lin, Z.J. Cheng, X. Zhang, C.L. Lei, L. Jiang, H.Y. Wang, J.M. Wan, OsPEX5 regulates rice spikelet development through modulating jasmonic acid biosynthesis, New Phytol. 224 (2019) 712–724.

[19]

H.M. Wu, D.J. Xie, Z.S. Tang, D.Q. Shi, W.C. Yang, PINOID regulates floral organ development by modulating auxin transport and interacts with MADS16 in rice, Plant Biotechnol. J. 18 (2020) 1778–1795.

[20]

J. Zong, L. Wang, L. Zhu, L.L. Bian, B. Zhang, X.F. Chen, G.Q. Huang, X.L. Zhang, J.Y. Fan, L.M. Cao, G. Coupland, W.Q. Liang, D.B. Zhang, Z. Yuan, A rice single cell transcriptomic atlas defines the developmental trajectories of rice floret and inflorescence meristems, New Phytol. 234 (2022) 494–512.

[21]

A. Banerjee, A. Roychoudhury, The gymnastics of epigenomics in rice, Plant Cell Rep. 37 (2018) 25–49.

[22]

S. Waheed, L.H. Zeng, The critical role of miRNAs in regulation of flowering time and flower development, Genes (Basel) 11 (2020) 319.

[23]

M. De Zoysa, Y.T. Yu, Posttranscriptional RNA pseudouridylation, Enzymes 41 (2017) 151–167.

[24]

M. Kazimierczyk, J. Wrzesinski, Long non-coding RNA epigenetics, Int. J. Mol. Sci. 22 (2021) 6166.

[25]

Y. Dhingra, M. Lahiri, N. Bhandari, I. Kaur, S. Gupta, M. Agarwal, S. Katiyar-Agarwal, Genome-wide identification, characterization, and expression analysis unveil the roles of pseudouridine synthase (PUS) family proteins in rice development and stress response, Physiol. Mol. Biol. Plants 29(2023) 1981–2004.

[26]

D.Y. Shi, B.C. Wang, H.Y. Li, Y. Lian, Q.Y. Ma, T. Liu, M.T. Cao, Y.W. Ma, L. Shi, W.P. Yuan, J. Shi, Y.J. Chu, Pseudouridine synthase 1 regulates erythropoiesis via transfer RNAs pseudouridylation and cytoplasmic translation. Science 27 (2024) 109265.

[27]

T. R. Breitman. Pseudouridulate synthetase of Escherichia coli: Correlation of its activity with utilization of pseudouridine for growth, J. Bacteriol. 103(1970) 263–264.

[28]

A. Preumont, K. Snoussi, V. Stroobant, J. Collet, E. Van Schaftingen, Molecular identification of pseudouridine-metabolizing enzymes, J. Biol. Chem. 283 (2008) 25238–25246.

[29]

S. Reverchon, C. Rouanet, D. Expert, W. Nasser, Characterization of indigoidine biosynthetic genes in Erwinia chrysanthemi and role of this blue pigment in pathogenicity, J. Bacteriol. 184 (2002) 654–665.

[30]

M. Chen, C. Witte, A kinase and a glycosylase catabolize pseudouridine in the peroxisome to prevent toxic pseudouridine monophosphate accumulation, Plant Cell 32 (2020) 722–739.

[31]

G. Cassin-Ross, J. Hu, Systematic phenotypic screen of Arabidopsis peroxisomal mutants identifies proteins involved in β-oxidation, Plant Physiol. 166 (2014) 1546–1559.

[32]

X.J. Li, K.J. Li, W.T. Guo, Y. Wen, C.Y. Meng, B.X. Wu, Structure characterization of Escherichia coli pseudouridine kinase psuK, Front. Microbiol. 13 (2022) 926099.

[33]

J. Lee, S.H. Kim, S. Rhee. Structure and function of the pseudouridine 5′-monophosphate glycosylase PUMY from Arabidopsis thaliana, RNA Biol. 21 (2024) 1–10.

[34]

Z.J. Chen, Y. Wu, S. Chen, H.Q. Liu, F. Wa, Morphogenesis and gene-mapping of a reproductive development mutant fro1(t) in rice, Fujian J. Agric. Sci. 25 (2010) 677–683.

[35]

L.H. Ren, Q. Luo, Y. Liu, Q.H. Rao, M.M. Huang, B.Q. Weng, T.Y. Luo, Intrusion on spinal gills of Maccullochella peelii by Ichthyophthirius multifiliis observed under scanning electron microscope, Fujian J. Agric. Sci. 6 (2018) 571–574.

[36]

K. Ikeda, H. Sunohara, Y. Nagato, Developmental course of inflorescence and spikelet in rice, Breed. Sci. 54 (2004) 147–156.

[37]

T.M. Liang, W.C. Chi, L.K. Huang, M.Y. Qu, S.B. Zhang, Z.Q. Chen, Z.J. Chen, D.G. Tian, Y.J. Gui, X.F. Chen, Z.H. Wang, W.Q. Tang, S.B. Chen, Bulked segregant analysis coupled with whole-genome sequencing (BSA-Seq) mapping identifies a novel pi21 haplotype conferring basal resistance to rice blast disease, Int. J. Mol. Sci. 21 (2020) 2162.

[38]

S.B. Chen, P. Songkumarn, J.L. Liu, G.L. Wang, A versatile zero background t-vector system for gene cloning and functional genomics, Plant Physiol. 150 (2009) 1111–1121.

[39]

J. Su, C.Q. Hu, H.L. Zhai, J.W. Yan, Z.J. Chen, F. Wang, Establishment of a highly efficient and stable transforming system mediated by Agrobacterium tumefacien in indica rice, Fujian J. Agric. Sci. 18 (2003) 209–213.

[40]

Y.M. Long, W.S. Chao, G.J. Ma, S.S. Xu, L.L. Qi, An innovative SNP genotyping method adapting to multiple platforms and throughputs, Theor. Appl. Genet. 130 (2017) 597–607.

[41]

S. Reumann, Specification of the peroxisome targeting signals type 1 and type 2 of plant peroxisomes by bioinformatics analyses, Plant Physiol. 135 (2004) 783–800.

[42]

B.K. Nelson, X. Cai, A. Nebenführ, A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants, Plant J. 51 (2007) 1126–1136.

[43]

Z.Q. Chen, W.H. Zheng, L.H. Chen, C.L. Li, T.M. Liang, Z.J. Chen, H.B. Xu, Y.J. Han, L. Kong, X. Zhao, F. Wang, Z.H. Wang, S.B. Chen, Green fluorescent protein-and Discosoma sp. red fluorescent protein-tagged organelle marker lines for protein subcellular localization in rice, Front. Plant Sci. 10 (2019) 1421.

[44]

Y.J. Wang, X.J. Liang, Y.K. Li, Y.F. Fan, Y.L. Li, Y.L. Cao, W. An, Z.G. Shi, J.H. Zhao, S.J. Guo, Changes in metabolome and nutritional quality of Lycium barbarum fruits from three typical growing areas of China as revealed by widely targeted metabolomics, Metabolites 10 (2020) 46.

[45]

R.H. Pan, J. Liu, J.P. Hu, Peroxisomes in plant reproduction and seed-related development, J. Integr. Plant Biol. 61 (2019) 784–802.

[46]

L. B. Sheard, X. Tan, H.B. Mao, J. Withers, G. Ben-Nissan, T. R. Hinds, Y. Kobayashi, F. F. Hsu, M. Sharon, J. Browse, S. Y. He, J. Rizo, G. A. Howe, N. Zheng, Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor, Nature 468 (2010) 400–405.

[47]

G. Griffiths, Jasmonates: biosynthesis, perception and signal transduction, Essays Biochem. 64 (2020) 501–512.

The Crop Journal
Pages 698-708
Cite this article:
Chen R, Tian D, Lin Y, et al. OsPPG encodes a pseudouridine-5′-phosphate glycosidase and regulates rice spikelet development. The Crop Journal, 2024, 12(3): 698-708. https://doi.org/10.1016/j.cj.2024.05.004
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return