PDF (5.8 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Research paper | Open Access

Multi-activity ferruginated carbon quantum dots nanozyme improves wheat seedling growth and Cd tolerance

Zhiwei Lua,b,c,1Yu Lib,1Keyu ChenbSongyue ChaidGehong SubChun WubMengmeng SunbYanying WangbShiling FengeMing HaocHanbing Raob()Dengcai Liua,c()
State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
College of Science, Sichuan Agricultural University, Ya’an 625014, Sichuan, China
Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
College of Chemistry and Life Science, Chengdu Normal University, Chengdu 611130, Sichuan, China
College of Life Science, Sichuan Agricultural University, Ya’an 625014, Sichuan, China

1 These authors contributed equally to this work.

Show Author Information

Abstract

Excessive accumulation of cadmium (Cd) impairs crop growth by inducing oxidative damage through the generation of reactive oxygen species (ROS). In this study, a biocompatible ferruginated carbon quantum dots (Fe-CQDs) nanozyme is developed to target ROS, thereby reducing oxidative damage and improving the absorption and transfer of Cd ions in wheat. Notably, Fe-CQDs exhibit multi-enzyme activities mimicking peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD), enabling effective neutralization of active species such as hydroxyl radicals (•OH), hydrogen peroxide (H2O2), and superoxide anions (O2). Importantly, root application of 10 mg L−1 Fe-CQDs alleviates Cd stress and promotes wheat growth in both hydroponic and soil cultures. Specifically, the levels of O2, H2O2, and malondialdehyde (MDA) in leaf tissues decrease, whereas the non-enzyme antioxidant, reduced glutathione (GSH), increases. Cell wall thickness in the Fe-CQDs-treated group is reduced by 42.4% compared with the Cd group. Moreover, Fe-CQDs enhance the expression of genes related to antioxidants, stress resistance, Cd detoxification, and nutrient transport. Transcriptomic and metabolomic analyses show that Fe-CQDs stimulate the production of flavonoids and regulate the activity of metal transporter genes (YSL, ABC, ZIP) to maintain ROS homeostasis. These findings highlight the potential of Fe-CQDs nanozyme platforms in mitigating oxidative damage and enhancing crop growth, offering new insights into the application of nanobiotechnology in agriculture.

References

[1]

S.A. Ghuge, G.C. Nikalje, U.S. Kadam, P. Suprasanna, J.C. Hong, Comprehensive mechanisms of heavy metal toxicity in plants, detoxification, and remediation, J. Hazard. Mater. 450 (2023) 131039.

[2]

B. Pan, Y. Cai, K. Cai, J. Tian, W. Wang, Optimized silicon fertilization regime weakens Cd translocation and increases its biotransformation in rice tissues, Crop J. 12 (2024) 1041–1053.

[3]

M.G. Costa, R. de Mello Prado, L.F. Palaretti, J.P. de Souza Júnior, The effect of abiotic stresses on plant C:N:P homeostasis and their mitigation by silicon, Crop J. 12 (2024) 340–353.

[4]

Z. Guo, Q. Chen, T. Liang, B. Zhou, S. Huang, X. Cao, X. Wang, Z. Ding, J. Tu, Functionalized carbon nano-enabled plant ROS signal engineering for growth / defense balance, Nano Today 53 (2023) 102045.

[5]

M. Mukarram, P. Petrik, Z. Mushtaq, M.M.A. Khan, M. Gulfishan, A. Lux, Silicon nanoparticles in higher plants: uptake, action, stress tolerance, and crosstalk with phytohormones, antioxidants, and other signalling molecules, Environ. Pollut. 310 (2022) 119855.

[6]

J. Hu, Y. Xianyu, When nano meets plants: a review on the interplay between nanoparticles and plants, Nano Today 38 (2021) 101143.

[7]

D. Wang, N.B. Saleh, A. Byro, R. Zepp, E. Sahle-Demessie, T.P. Luxton, K.T. Ho, R.M. Burgess, M. Flury, J.C. White, C. Su, Nano-enabled pesticides for sustainable agriculture and global food security, Nat. Nanotechnol. 17 (2022) 347–360.

[8]

L. Zhao, T. Bai, H. Wei, J.L. Gardea-Torresdey, A. Keller, J.C. White, Nanobiotechnology-based strategies for enhanced crop stress resilience, Nat. Food 3 (2022) 829–836.

[9]

X. Shen, Z. Yang, X. Dai, W. Feng, P. Li, Y. Chen, Calcium hexacyanoferrate nanozyme enhances plant stress resistance by oxidative stress alleviation and heavy metal removal, Adv. Mater. 36 (2024) 2402745.

[10]

R.P. Singh, R. Handa, G. Manchanda, Nanoparticles in sustainable agriculture: an emerging opportunity, J. Controlled Release 329 (2021) 1234–1248.

[11]

Z. Li, L. Zhu, F. Zhao, J. Li, X. Zhang, X. Kong, H. Wu, Z. Zhang, Plant salinity stress response and nano-enabled plant salt tolerance, Front. Plant Sci. 13 (2022) 843994.

[12]

X. Luo, Z. Wang, C. Wang, L. Yue, M. Tao, W.H. Elmer, J.C. White, X. Cao, B. Xing, Nanomaterial size and surface modification mediate disease resistance activation in cucumber Cucumis sativus, ACS Nano 17 (2023) 4871–4885.

[13]

Q. Chen, G. Xing, X. Cao, T. Liang, L. Chen, L. Dai, L. Ci, M. Yan, Functional carbon nanodots enhance tomato tolerance to zinc deficient soils: Mechanisms and structure-function relationships, Sci. Total Environ. 953 (2024) 176113.

[14]

M. Xu, Z. Gao, Q. Zhou, Y. Lin, M. Lu, D. Tang, Terbium ion-coordinated carbon quantum dots for fluorescent aptasensing of adenosine 5′-triphosphate with unmodified gold nanoparticles, Biosens. Bioelectron. 86 (2016) 978–984.

[15]

Y. Lin, Q. Zhou, D. Tang, R. Niessner, D. Knopp, Signal-on photoelectrochemical immunoassay for aflatoxin B1 based on enzymatic product-etching MnO2 nanosheets for dissociation of carbon quantum dots, Anal. Chem. 89 (2017) 5637–5645.

[16]

V.B. Kumar, S.K. Mirsky, N.T. Shaked, E. Gazit, High quantum yield amino acid carbon quantum dots with unparalleled refractive index, ACS Nano 18 (2024) 2421–2433.

[17]

M. Pietrzak, P. Ivanova, Bimetallic and multimetallic nanoparticles as nanozyme, Sens. Actuators, B 336 (2021) 129736.

[18]

A. Kessler, J. Hedberg, E. Blomberg, I. Odnevall, Reactive oxygen species formed by metal and metal oxide nanoparticles in physiological media-a review of reactions of importance to nanotoxicity and proposal for categorization, Nanomaterials 12 (2022) 1922.

[19]

M. Wang, C. Mu, X. Lin, W. Ma, H. Wu, D. Si, C. Ge, C. Cheng, L. Zhao, H. Li, D. Zhou, Foliar application of nanoparticles reduced cd content in wheat (Triticum aestivum L.) grains via long-distance “leaf–root–microorganism” regulation, Environ. Sci. Technol. 58 (2024) 6900–6912.

[20]

M.X. Zhang, L.Y. Zhao, Y.Y. He, J.P. Hu, G.W. Hu, Y. Zhu, A. Khan, Y.C. Xiong, J.L. Zhang, Potential roles of iron nanomaterials in enhancing growth and nitrogen fixation and modulating rhizomicrobiome in alfalfa (Medicago sativa L.), Bioresour. Technol. 391 (2024) 129987.

[21]

M. Adrees, Z.S. Khan, S. Ali, M. Hafeez, S. Khalid, M.Z. ur Rehman, A. Hussain, K. Hussain, S.A. Shahid Chatha, M. Rizwan, Simultaneous mitigation of Cd and drought stress in wheat by soil application of iron nanoparticles, Chemosphere 238 (2020) 124681.

[22]

M. Sági-Kazár, K. Solymosi, Á. Solti, A. Cuypers, Iron in leaves: chemical forms, signalling, and in-cell distribution, J. Exp. Bot. 73 (2022) 1717–1734.

[23]

S. Chen, Z. Yu, Y. Wang, S. Tian, Q. Wei, D. Tang, Pioneering food analysis: transformative antioxidant testing with colorimetric assays using Co-Mn bimetallic oxide nanozyme, Anal. Chim. Acta 1333 (2025) 343389.

[24]

Z. Yu, H. Gong, M. Li, D. Tang, Hollow prussian blue nanozyme-richened liposome for artificial neural network-assisted multimodal colorimetric-photothermal immunoassay on smartphone, Biosens. Bioelectron. 218 (2022) 114751.

[25]

Z. Yu, Z. Xu, R. Zeng, M. Xu, M. Zou, D. Huang, Z. Weng, D. Tang, Tailored metal-organic framework-based nanozyme for enhanced enzyme-like catalysis, Angew. Chem. Int. Ed. (2024), https://doi.org/10.1002/anie.202420200.

[26]

Y. Yuan, H. Teng, T. Zhang, D. Wang, H. Gu, W. Lv, Toxicological effects induced by two carbamates on earthworms (Eisenia fetida): acute toxicity, arrested regeneration and underlying mechanisms, Ecotoxicol. Environ. Saf. 269 (2024) 115824.

[27]

L. Duo, Y. Wang, S. Zhao, Individual and histopathological responses of the earthworm (Eisenia fetida) to graphene oxide exposure, Ecotoxicol. Environ. Saf. 229 (2022) 113076.

[28]

D. Xu, L. Wu, H. Yao, L. Zhao, Catalase-like nanozyme: classification, catalytic mechanisms, and their applications, Small 18 (2022) 2203400.

[29]

Q. Yao, W. Li, Y. Liu, Y. Cheng, X. Xiao, D. Long, J. Zeng, D. Wu, L. Sha, X. Fan, H. Kang, H. Zhang, Y. Zhou, Y. Wang, FeCl3 and Fe2(SO4)3 differentially reduce Cd uptake and accumulation in Polish wheat (Triticum polonicum L.) seedlings by exporting Cd from roots and limiting Cd binding in the root cell walls, Environ. Pollut. 317 (2023) 120762.

[30]

L. Chen, Y. Peng, L. Zhu, Y. Huang, Z. Bie, H. Wu, CeO2 nanoparticles improved cucumber salt tolerance is associated with its induced early stimulation on antioxidant system, Chemosphere 299 (2022) 134474.

[31]

M. Yu, R. Zhuo, Z. Lu, S. Li, J. Chen, Y. Wang, J. Li, X. Han, Molecular insights into lignin biosynthesis on Cd tolerance: Morphology, transcriptome and proteome profiling in Salix matsudana, J. Hazard. Mater. 441 (2023) 129909.

[32]

Q. Dong, Y. Wu, B. Li, X. Chen, L. Peng, Z.A. Sahito, H. Li, Y. Chen, Q. Tao, Q. Xu, R. Huang, Y. Luo, X. Tang, Q. Li, C. Wang, Multiple insights into lignin-mediated Cd detoxification in rice (Oryza sativa), J. Hazard. Mater. 458 (2023) 131931.

[33]

L. Xu, F. Zhang, M. Tang, Y. Wang, J. Dong, J. Ying, Y. Chen, B. Hu, C. Li, L. Liu, Melatonin confers Cd tolerance by modulating critical heavy metal chelators and transporters in radish plants, J. Pineal Res. 69 (2020) 12659.

[34]

A. Jogawat, B. Yadav, Chhaya, O.P. Narayan, Metal transporters in organelles and their roles in heavy metal transportation and sequestration mechanisms in plants, Physiol. Plant. 173 (2021) 259–275.

[35]

W. Yang, X. Liu, S. Yu, J. Liu, L. Jiang, X. Lu, Y. Liu, J. Zhang, X. Li, S. Zhang, The maize ATP-binding cassette (ABC) transporter ZmMRPA6 confers cold and salt stress tolerance in plants, Plant Cell Rep. 43 (2023) 13.

[36]

P. Zhou, P. Zhang, M. He, Y. Cao, M. Adeel, N. Shakoor, Y. Jiang, W. Zhao, Y. Li, M. Li, I. Azeem, L. Jia, Y. Rui, X. Ma, I. Lynch, Iron-based nanomaterials reduce Cd toxicity in rice (Oryza sativa L.) by modulating phytohormones, phytochelatin, Cd transport genes and iron plaque formation, Environ. Pollut. 320 (2023) 121063.

[37]

G.L. Yang, M.M. Zheng, A.J. Tan, Y.T. Liu, D. Feng, S.M. Lv, Research on the mechanisms of plant enrichment and detoxification of Cd, Biology 10 (2021) 544.

[38]

R. Li, Y. Yang, H. Cao, X. Peng, Q. Yu, L. He, J. Chen, L. Xiang, W. Liu, Heterologous expression of the tobacco metallothionein gene NtMT2F confers enhanced tolerance to Cd stress in Escherichia coli and Arabidopsis thaliana, Plant Physiol. Biochem. 195 (2023) 247–255.

[39]

N. Upadhyay, D. Kar, S. Datta, A multidrug and toxic compound extrusion (MATE) transporter modulates auxin levels in root to regulate root development and promotes aluminium tolerance, Plant Cell Environ. 43 (2019) 745–759.

[40]

G. Gullner, T. Komives, L. Király, P. Schröder, Glutathione S-transferase enzymes in plant-pathogen interactions, Front. Plant Sci. 9 (2018) 1836.

[41]

S. ul Haq, A. Khan, M. Ali, A.M. Khattak, W.X. Gai, H.X. Zhang, A.M. Wei, Z.H. Gong, Heat shock proteins: dynamic biomolecules to counter plant biotic and abiotic stresses, Int. J. Mol. Sci. 20 (2019) 5321.

[42]

M. Manna, B. Rengasamy, A.K. Sinha, Revisiting the role of MAPK signalling pathway in plants and its manipulation for crop improvement, Plant Cell Environ. 46 (2023) 2277–2295.

[43]

X. Yan, S. Chen, Z. Pan, W. Zhao, Y. Rui, L. Zhao, AgNPs-triggered seed metabolic and transcriptional reprogramming enhanced rice salt tolerance and blast resistance, ACS Nano 17 (2022) 492–504.

[44]

Z. Wang, J. Tang, L. Zhu, Y. Feng, L. Yue, C. Wang, Z. Xiao, F. Chen, Nanomaterial-induced modulation of hormonal pathways enhances plant cell growth, Environ. Sci. Nano 9 (2022) 1578–1590.

[45]

T. Zhang, J. Wang, Y. Sun, L. Zhang, S. Zheng, Versatile roles of melatonin in growth and stress tolerance in plants, J. Plant Growth Regul. 41 (2021) 507–523.

[46]

A. Kulma, J. Szopa, Catecholamines are active compounds in plants, Plant Sci. 172 (2007) 433–440.

[47]

C. Wang, H. Yang, F. Chen, L. Yue, Z. Wang, B. Xing, Nitrogen-doped carbon quantum dots increased light conversion and electron supply to improve the corn photosystem and yield, Environ. Sci. Technol. 55 (2021) 12317–12325.

[48]

L. Li, H. Yi, Photosynthetic responses of Arabidopsis to SO2 were related to photosynthetic pigments, photosynthesis gene expression and redox regulation, Ecotoxicol. Environ. Saf. 203 (2020) 111019.

[49]

W. Liu, Y. Feng, S. Yu, Z. Fan, X. Li, J. Li, H. Yin, The flavonoid biosynthesis network in plants, Int. J. Mol. Sci. 22 (2021) 12824.

[50]

Z. Xiao, N. Fan, W. Zhu, H.L. Qian, X.P. Yan, Z. Wang, S. Rasmann, Silicon nanodots increase plant resistance against herbivores by simultaneously activating physical and chemical defenses, ACS Nano 17 (2023) 3107–3118.

[51]

R. Chaffai, A. Cherif, The Cd-induced changes in the polar and neutral lipid compositions suggest the involvement of triacylglycerol in the defense response in maize, Physiol. Mol. Biol. Plants 26 (2019) 15–23.

The Crop Journal
Pages 510-523
Cite this article:
Lu Z, Li Y, Chen K, et al. Multi-activity ferruginated carbon quantum dots nanozyme improves wheat seedling growth and Cd tolerance. The Crop Journal, 2025, 13(2): 510-523. https://doi.org/10.1016/j.cj.2025.01.016
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return