AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Macro electrochemical milling and its hybrid variants

Ningsong QUa,( )Xiaolong FANGaJunzhong ZHANGaHuanghai KONGaYang LIUbMinglu WANGcXiaokang YUEdYuehong MAaZhihao SHENaJiajie CHENa
College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
School of Mechanical Engineering, Jiangsu University, Zhenjiang 212003, China
School of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
School of Mechanical Engineering, Hefei University of Technology, Hefei 230009, China

Peer review under responsibility of Editorial Committee of CJA.

Show Author Information

Abstract

Macro electromechanical milling has recently attracted increasing attention because numerous large thin-walled structures composed of difficult-to-cut materials are employed in the aerospace field. This paper reviews recent developments in state-of-the-art macro electromechanical milling. The fundamental aspects of material removal mechanisms, such as the generation and breakdown behaviors of passive oxide films of typical difficult-to-cut materials, were discussed. Rapid methods for breaking down passive films are summarized, and simulation methods for the machining process coupling multiple physical fields are introduced. Specific electrochemical milling methods, including fly mode electrochemical milling and sink electrochemical milling, are classified. Efforts made to improve process performance, such as the material removal rate, surface quality, and machining accuracy, are discussed. In addition, the main hybrid electrochemical milling methods, including electrochemical discharge milling, mechano-electrochemical milling, and electrochemical mill grinding, are also presented.

References

1

Wang DY, Li JZ, He B, et al. Analysis and control of inter-electrode gap during leveling process in counter-rotating electrochemical machining. Chin J Aeronaut 2019;32(11):2557–65.

2

Pramanik A. Developments in the non-traditional machining of particle reinforced metal matrix composites. Int J Mach Tool Manu 2014;86:44–61.

3

Wang JT, Xu ZY, Zhu D. Improving profile accuracy and surface quality of blisk by electrochemical machining with a micro inter-electrode gap. Chin J Aeronaut 2023;36(4):523–37.

4

Wu XY, Li SJ, Jia Z, et al. Using WECM to remove the recast layer and reduce the surface roughness of WEDM surface. J Mater Process Technol 2019;268:140–8.

5

Liu J, Hui LB, Jia DQ, et al. An electrochemical machining method for aero-engine blades based on four-directional synchronous feeding of cathode tools. Chin J Aeronaut 2023;36(9):380–91.

6

Wang J, Xu ZY, Wang JT, et al. Electrochemical machining on blisk channels with a variable feed rate mode. Chin J Aeronaut 2021;34(6):151–61.

7

Ge ZH, Chen WW, Zhu YW. Simulation and experimental study on improving electrochemical machining stability of highly convex structures on casing surfaces using backwater pressure. Chin J Mech Eng 2022;35(1):98.

8

Lei GP, Zhu D, Li JB. Optimization of flow field in electrochemical trepanning of integral cascades (Ti6Al4V). Chin J Aeronaut 2022;35(10):354–64.

9

Schuster R, Kirchner V, Allongue P, et al. Electrochemical micromachining. Science 2000;289(5476):98–101.

10

Hackert-Oschätzchen M, Meichsner G, Zinecker M, et al. Micro machining with continuous electrolytic free jet. Precis Eng-J Int Soc Precis Eng Nanotechnol 2012;36(4):612–9.

11

Clare AT, Speidel A, Bisterov I, et al. Precision enhanced electrochemical jet processing. CIRP Ann-Manuf Technol 2018;67(1):205–8.

12

Rajurkar KP, Zhu D, McGeough JA, et al. New developments in electro-chemical machining. CIRP Ann-Manuf Technol 1999;48(2):567–79.

13
Kozak J, Osman HM, Dabrowski L. Theoretical and Experimental Investigations for Profile Electrolytic Machining with Rotating Electrode. In: Davies BJ, editor. In: Proceedings of the Twenty-Seventh International Matador Conference, 1988; Palgrave, London. Berlin: Springer; 1988. p. 281-6.
14

Kozak J. Mathematical models for computer simulation of electrochemical machining processes. J Mater Process Technol 1998;76(1–3):170–5.

15

Ruszaj A, Zybura-Skrabalak M. The mathematical modelling of electrochemical machining with flat ended universal electrodes. J Mater Process Technol 2001;109(3):333–8.

16

Liu GD, Zhu YL, Liu SG, et al. Research on conductive-material-filled electrodes for sidewall insulation performance in micro electrochemical machining. Adv Manuf 2023;11(3):509–22.

17

Dai XY, Hu GY, Liu K, et al. Research on milling performance of titanium alloy in a new hybrid process combining short electric arc and electrochemical machining. J Braz Soc Mech Sci Eng 2023;45(1):18.

18

Ringgaard K, Mohammadi Y, Merrild C, et al. Optimization of material removal rate in milling of thin-walled structures using penalty cost function. Int J Mach Tools Manuf 2019;145:103430.

19

Schultze JW, Lohrengel MM. Stability, reactivity and breakdown of passive films. Problems of recent and future research. Electrochim Acta 2000;45(15–16):2499–513.

20

Liu GD, Tong H, Li Y, et al. Passivation behavior of S136H steel in neutral electrolytes composed of NaClO3 and NaNO3 and its influence on micro electrochemical machining performance. Mater Today Commun 2021;29:102762.

21

Zhao L, Zhang Y, Bian HW, et al. Investigation of electrochemical dissolution behavior of Ni(γ)/Ni3Al(γ') and Co(γ)/Co3Al(γ') superalloys in NaNO3 solution. Corrosion Sci 2022;208:110622.

22

Wang JT, Xu ZY, Wang J, et al. Anodic dissolution characteristics of Inconel 718 in C6H5K3O7 and NaNO3 solutions by pulse electrochemical machining. Corrosion Sci 2021;183:109335.

23

Nascimento CB, Donatus U, Rios CT, et al. Electronic properties of the passive films formed on CoCrFeNi and CoCrFeNiAl high entropy alloys in sodium chloride solution. J Mater Res Technol-JMRT 2020;9(6):13879–92.

24

He B, Wang DY, Zhang J, et al. Investigation of electrochemical dissolution behavior of near-α TA15 titanium alloy in NaCl solution with low-frequency pulse current. J Electrochem Soc 2022;169(4):043515.

25

Cui YW, Chen LY, Chu YH, et al. Metastable pitting corrosion behavior and characteristics of passive film of laser powder bed fusion produced Ti-6Al-4V in NaCl solutions with different concentrations. Corrosion Sci 2023;215:111017.

26

Wang YD, Xu ZY, Zhang A. Electrochemical dissolution behavior of Ti-45Al-2Mn-2Nb+0.8 vol% TiB2 XD alloy in NaCl and NaNO3 solutions. Corrosion Sci 2019;157:357–69.

27

Wang YD, Xu ZY, Zhang A. Anodic characteristics and electrochemical machining of two typical γ-TiAl alloys and its quantitative dissolution model in NaNO3 solution. Electrochim Acta 2020;331:135429.

28

Mazzarolo A, Curioni M, Vicenzo A, et al. Anodic growth of titanium oxide: electrochemical behaviour and morphological evolution. Electrochim Acta 2012;75:288–95.

29

Hizume S, Natsu W. Mechanism clarification and realization of scanning electrochemical machining of titanium alloys. J Adv Mech Des Syst Manuf 2021;15(5):0055.

30

Baehre D, Ernst A, Weisshaar K, et al. Electrochemical dissolution behavior of titanium and titanium-based alloys in different electrolytes. Procedia CIRP 2016;42:137–42.

31

Frankel GS. Pitting corrosion of metals: A review of the critical factors. J Electrochem Soc 1998;145(6):2186–98.

32

Liu WD, Ao SS, Li Y, et al. Jet electrochemical machining of TB6 titanium alloy. Int J Adv Manuf Technol 2017;90(5–8):2397–409.

33

Walther B, Schilm J, Michaelis A, et al. Electrochemical dissolution of hard metal alloys. Electrochim Acta 2007;52(27):7732–7.

34

Xu ZY, Wang YD. Electrochemical machining of complex components of aero-engines: developments, trends, and technological advances. Chin J Aeronaut 2021;34(2):28–53.

35

Liu WD, Ao SS, Li Y, et al. Effect of anodic behavior on electrochemical machining of TB6 titanium alloy. Electrochim Acta 2017;233:190–200.

36

Wang YY, Qu NS. Effect of breakdown behavior of passive films on the electrochemical jet milling of titanium alloy TC4 in sodium nitrate solution. Int J Electrochem Sci 2019;14(2):1116–31.

37

Kong HH, Qu NS, Kong WJ. Multiphysics simulation and experimental investigation on jet electrochemical milling of Ti-6Al-4V alloy. J Electrochem Soc 2022;169(9):093502.

38

Liu WD, Luo Z, Li Y, et al. Investigation on parametric effects on groove profile generated on Ti1023 titanium alloy by jet electrochemical machining. Int J Adv Manuf Technol 2019;100(9–12):2357–70.

39

Wang DY, Zhu ZW, He B, et al. Effect of the breakdown time of a passive film on the electrochemical machining of rotating cylindrical electrode in NaNO3 solution. J Mater Process Technol 2017;239:251–7.

40

Speidel A, Mitchell-Smith J, Bisterov I, et al. Oscillatory behaviour in the electrochemical jet processing of titanium. J Mater Process Technol 2019;273:116264.

41

Liu Y, Qu NS. Electrochemical milling of TB6 titanium alloy in NaNO3 solution. J Electrochem Soc 2019;166(2):E35–49.

42

Speidel A, Mitchell-Smith J, Walsh DA, et al. Electrolyte jet machining of titanium alloys using novel electrolyte solutions. Procedia CIRP 2016;42:367–72.

43

Miyoshi K, Kunieda M. Fabrication of micro rods of cemented carbide by electrolyte jet turning. Procedia CIRP 2016;42:373–8.

44

Han W, Kunieda M. Fabrication of tungsten micro-rods by ECM using ultra-short-pulse bipolar current. CIRP Ann-Manuf Technol 2017;66(1):193–6.

45

Xue JB, Dong BY, Zhao YH. Significance of waveform design to achieve bipolar electrochemical jet machining of passivating material via regulation of electrode reaction kinetics. Int J Mach Tools Manuf 2022;177:103886.

46

Yoneda K, Kunieda M. Numerical analysis of cross sectional shape of micro-indents formed by the electrochemical jet machining (ECJM). J Jpn Soc Mech Eng 1995;29(62):1–8.

47

Kozak J, Rajurkar KP, Balkrishna R. Study of electrochemical jet machining process. J Manuf Sci Eng-Trans ASME 1996;118(4):490–8.

48

Zhang JZ, Zhao CH, Qu NS, et al. Enhancement of surface quality in the electrochemical milling of 316L using a novel cathode structure. Precis Eng-J Int Soc Precis Eng Nanotechnol 2022;78:134–45.

49

Wang ML, Qu NS. Investigation on material removal mechanism in mechano-electrochemical milling of TC4 titanium alloy. J Mater Process Technol 2021;295:117206.

50

Hinduja S, Pattavanitch J. Experimental and numerical investigations in electro-chemical milling. CIRP J Manuf Sci Technol 2016;12:79–89.

51

Zhang JZ, Shen ZH, Qu NS. Modelling and experimental investigation of flat surface achieved by large rectangular electrochemical jet milling. Int J Adv Manuf Technol 2022;121(11–12):7933–48.

52

Hackert-Oschätzchen M, Paul R, Martin A, et al. Study on the dynamic generation of the jet shape in Jet Electrochemical Machining. J Mater Process Technol 2015;223:240–51.

53

Liu WD, Kunieda M, Luo Z. Three-dimensional simulation and experimental investigation of electrolyte jet machining with the inclined nozzle. J Mater Process Technol 2021;297:117244.

54

Zhang JZ, Zhao CH, Qu NS, et al. Improving surface quality through macro electrochemical jet milling with novel cathode tool. J Mater Process Technol 2022;309:117731.

55

Mitchell-Smith J, Speidel A, Gaskell J, et al. Energy distribution modulation by mechanical design for electrochemical jet processing techniques. Int J Mach Tools Manuf 2017;122:32–46.

56

Liu Y, Qu NS. Experimental and numerical investigations of reducing stray corrosion and improving surface smooth in macro electrolyte jet machining titanium alloys. J Electrochem Soc 2020;167(8):083502.

57

Liu Y, Qu NS. Obtaining high surface quality in electrolyte jet machining TB6 titanium alloy via enhanced product transport. J Mater Process Technol 2020;276:116381.

58

Wang ML, Qu NS. Macro electrolyte jet machining of TC4 titanium alloy using negative-incidence jet form. J Mater Process Technol 2021;294:117148.

59

Wang ML, Qu NS. Improving performance of macro electrolyte jet machining of TC4 titanium alloy: experimental and numerical studies. Chin J Aeronaut 2022;35(8):280–94.

60

Wang ML, Qu NS. Improving material removal rate in macro electrolyte jet machining of TC4 titanium alloy through back-migrating jet channel. J Manuf Process 2021;71:489–500.

61

Natsu W, Ikeda T, Kunieda M. Generating complicated surface with electrolyte jet machining. Precis Eng-J Int Soc Precis Eng Nanotechnol 2007;31(1):33–9.

62

Speidel A, Mitchell-Smith J, Bisterov I, et al. The dependence of surface finish on material precondition in electrochemical jet machining. Procedia CIRP 2018;68:477–82.

63

Kawanaka T, Kunieda M. Mirror-like finishing by electrolyte jet machining. CIRP Ann-Manuf Technol 2015;64(1):237–40.

64

Mitchell-Smith J, Speidel A, Clare AT. Advancing electrochemical jet methods through manipulation of the angle of address. J Mater Process Technol 2018;255:364–72.

65

Kong HH, Qu NS. Flat jet electrochemical milling of TC4 alloy with tailoring backward parallel flow. Chin J Aeronaut 2023;37(4):574–92.

66

Mishra K, Dey D, Sarkar BR, et al. Experimental investigation into electrochemical milling of Ti6Al4V. J Manuf Process 2017;29:113–23.

67

Wang XD, Qu NS, Fang XL. Reducing stray corrosion in jet electrochemical milling by adjusting the jet shape. J Mater Process Technol 2019;264:240–8.

68

Liu Y, Qu NS. Investigation on the performance of macro electrochemical machining of the end face of cylindrical parts. Int J Mech Sci 2020;169:105333.

69

Ming PM, Li XC, Zhang XM, et al. Study on kerosene submerged jet electrolytic micromachining. Procedia CIRP 2018;68:432–7.

70

Li XC, Ming PM, Zhang XM, et al. Kerosene-submerged horizontal jet electrochemical machining with high localization. J Electrochem Soc 2019;166(13):E453–64.

71

Li XC, Ming PM, Zhang XM, et al. Study on kerosene-submerged jet electrochemical machining and optimization of the electrochemical machining parameters. Int J Electrochem Sci 2021;16(1):151030.

72

Wang MH, Bao ZY, Qiu GZ, et al. Fabrication of micro-dimple arrays by AS-EMM and EMM. Int J Adv Manuf Technol 2017;93(1–4):787–97.

73

Wang MH, Shang YC, He KL, et al. Optimization of nozzle inclination and process parameters in air-shielding electrochemical micromachining. Micromachines 2019;10(12):846.

74

Wang MH, Tong WJ, Qiu GZ, et al. Multiphysics study in air-shielding electrochemical micromachining. J Manuf Process 2019;43:124–35.

75

Guo C, Qian J, Reynaerts D. Electrochemical machining with scanning micro electrochemical flow cell (SMEFC). J Mater Process Technol 2017;247:171–83.

76

Guo C, Qian J, Reynaerts D. A three-dimensional FEM model of channel machining by scanning micro electrochemical flow cell and jet electrochemical machining. Precis Eng-J Int Soc Precis Eng Nanotechnol 2018;52:507–19.

77

Guo C, Qian J, Reynaerts D. Fabrication of mesoscale channel by scanning micro electrochemical flow cell (SMEFC). Micromachines 2017;8(5):143.

78

Guo C, Qian J, Reynaerts D. Deterministic removal strategy for machine vision assisted scanning micro electrochemical flow cell. J Manuf Process 2018;34:167–78.

79

Liu GX, Zhang YJ, Natsu W. Influence of electrolyte flow mode on characteristics of electrochemical machining with electrolyte suction tool. Int J Mach Tools Manuf 2019;142:66–75.

80

Liu GX, Luo HP, Zhang YJ, et al. Pulse electrochemical machining of large lead ball nut raceway using a spherical cathode. Int J Adv Manuf Technol 2016;85(1–4):191–200.

81

Zhang CY, Zhang YJ, Chen XL, et al. Investigation on the ECM cut-in of large-lead ball nut raceway. Procedia CIRP 2018;68:736–9.

82

Liu Y, Qu NS. Improvements to machining surface quality by controlling the flow direction of electrolyte during electrochemical sinking and milling of titanium alloy. Sci China-Technol Sci 2020;63(12):2698–708.

83

Wang QQ, Zhang JZ, Qu NS, et al. Optimizing the cathode structure in electrochemical milling. Procedia CIRP 2022;113:488–94.

84

Skoczypiec S. Discussion of ultrashort voltage pulses electrochemical micromachining: a review. Int J Adv Manuf Technol 2016;87(1–4):177–87.

85

Chen W, Han FZ, Wang JH. Influence of pulse waveform on machining accuracy in electrochemical machining. Int J Adv Manuf Technol 2018;96:1367–75.

86

Vanderauwera W, Vanloffelt M, Perez R, et al. Investigation on the performance of macro electrochemical milling. Procedia CIRP 2013;6:356–61.

87

Niu S, Qu NS, Fu SX, et al. Investigation of inner-jet electrochemical milling of nickel-based alloy GH4169/Inconel 718. Int J Adv Manuf Technol 2017;93(5–8):2123–32.

88

Zawistowski F. New system of electrochemical form machining using universal rotating tools. Int J Mach Tools Manuf 1990;30(3):475–83.

89

Li HS, Niu S, Zhang QL, et al. Investigation of material removal in inner-jet electrochemical grinding of GH4169 alloy. Sci Rep 2017;7:3482.

90

Niu S, Qu NS, Yue XK, et al. Effect of tool-sidewall outlet hole design on machining performance in electrochemical mill-grinding of Inconel 718. J Manuf Process 2019;41:10–22.

91

Li J, Li HS, Hu XY, et al. Simulation analysis and experimental validation of cathode tool in electrochemical mill-grinding of Ti6Al4V. Appl Sci-Basel 2020;10(6):1941.

92

Yue XK, Ma X, Li HS, et al. Distribution of the electric field and flow field in rotary sinking electrochemical milling with one-sided constraint. Int J Adv Manuf Technol 2022;121(1–2):459–69.

93

Niu S, Qu NS, Li HS. Investigation of electrochemical mill-grinding using abrasive tools with bottom insulation. Int J Adv Manuf Technol 2018;97(1–4):1371–82.

94

Li HS, Fu SX, Zhang QL, Niu S, Qu NS. Simulation and experimental investigation of inner-jet electrochemical grinding of GH4169 alloy. Chin J Aeronaut 2018;31(3):608–16.

95

Yue XK, Qu NS, Niu S, Li HS. Improving the machined bottom surface in electrochemical mill-grinding by adjusting the electrolyte flow field. J Mater Process Technol 2020;276:116413.

96

Ge YC, Zhu ZW, Ma Z, et al. Tool design and experimental study on electrochemical turning of nickel-Based cast superalloy. J Electrochem Soc 2018;165(5):E162–70.

97

Ge YC, Zhu ZW, Ma Z, et al. Large allowance electrochemical turning of revolving parts using a universal cylindrical electrode. J Mater Process Technol 2018;258:89–96.

98

Kozak J, Chuchro M, Ruszaj A, et al. The computer aided simulation of electrochemical process with universal spherical electrodes when machining sculptured surfaces. J Mater Process Technol 2000;107(1–3):283–7.

99

Xu ZY, Liu J, Xu Q, et al. The tool design and experiments on electrochemical machining of a blisk using multiple tube electrodes. Int J Adv Manuf Technol 2015;79(1–4):531–9.

100

Zong YW, Liu J, Zhu D. Study of voltage regulation strategy in electrochemical machining of blisk channels using tube electrodes. Int J Adv Manuf Technol 2021;114(11–12):3489–501.

101

Gan WM, Wu XF, Chen ZW, et al. Flow field numerical simulation and optimization of spiral blade cathode in NC electrochemical machining. J Nanjing U Aeronaut Astronautics 2014;46(5):738–43.

102

Xu B, Gan WM, He YF, et al. Cathode design and experimental study of large cutting depth NC electrochemical milling. J Nanjing U Aeronaut Astronautics 2020;52(1):93–101 [Chinese].

103

Zhang CY, Yao JL, Zhang CY, et al. Electrochemical milling of narrow grooves with high aspect ratio using a tube electrode. J Mater Process Technol 2020;282:116695.

104

Lauwers B, Klocke F, Klink A, et al. Hybrid processes in manufacturing. CIRP Ann-Manuf Technol 2014;63(2):561–83.

105

Arab J, Dixit P. Gas bubbles entrapment mechanism in the electrochemical discharge machining involving multi-tip array electrodes. J Manuf Process 2023;99:38–52.

106

Yue XK, Ma YH, Qu NS, et al. Experimental investigation of rotary sinking electrochemical discharge milling with high-conductivity salt solution and non-pulsed direct current. Chin J Aeronaut 2023;36(2):388–401.

107

Lu JJ, Guan JM, Dong BY, et al. Control principle of anodic discharge for enhanced performance in jet-electrochemical discharge machining of semiconductor 4H-SiC. J Manuf Process 2023;92:435–52.

108

Singh T, Dvivedi A. Developments in electrochemical discharge machining: a review on electrochemical discharge machining, process variants and their hybrid methods. Int J Mach Tools Manuf 2016;105:1–13.

109

Wüthrich R, Fascio V. Machining of non-conducting materials using electrochemical discharge phenomenon - an overview. Int J Mach Tools Manuf 2005;45(9):1095–108.

110

Nguyen MD, Rahman M, Wong YS. Simultaneous micro-EDM and micro-ECM in low-resistivity deionized water. Int J Mach Tools Manuf 2012;54:55–65.

111

Nguyen MD, Rahman M, Wong YS. Modeling of radial gap formed by material dissolution in simultaneous micro-EDM and micro-ECM drilling using deionized water. Int J Mach Tools Manuf 2013;66:95–101.

112

Nguyen MD, Rahman M, Wong YS. Enhanced surface integrity and dimensional accuracy by simultaneous micro-ED/EC milling. CIRP Ann-Manuf Technol 2012;61(1):191–4.

113

Liu JW, Yue TM, Guo ZN. An analysis of the discharge mechanism in electrochemical discharge machining of particulate reinforced metal matrix composites. Int J Mach Tools Manuf 2010;50(1):86–96.

114

Liu Y, Fang XL, Qu NS, et al. Simultaneous gas electrical discharge and electrochemical jet micromachining of titanium alloy in high-conductivity salt solution. J Mater Process Technol 2023;317:118000.

115

Ma YH, Qu NS, Yue XK, et al. Electrochemical discharge machining grooves without recast layer in 20 wt% NaCl solution. Int J Adv Manuf Technol 2022;121(7–8):5413–25.

116

Zhou SC, Liu ZD, Han YX, et al. An electrochemical discharge ablation compound milling method utilizing electrolyte-oxygen aerosol medium. Int J Adv Manuf Technol 2023:1–12.

117

Sabahi N, Razfar MR, Hajian M. Experimental investigation of surfactant-mixed electrolyte into electrochemical discharge machining (ECDM) process. J Mater Process Technol 2017;250:190–202.

118

Sabahi N, Razfar MR. Investigating the effect of mixed alkaline electrolyte (NaOH + KOH) on the improvement of machining efficiency in 2D electrochemical discharge machining (ECDM). Int J Adv Manuf Technol 2018;95(1–4):643–57.

119

Chen ZH, Liu Y, Wang TB, et al. Ultrasonic assisted electrochemical discharge milling of complex glass microstructure with high-quality. J Manuf Process 2023;94:94–106.

120

Singh T, Dvivedi A, Shanu A, et al. Experimental investigations of energy channelization behavior in ultrasonic assisted electrochemical discharge machining. J Mater Process Technol 2021;293:117084.

121
Chen YC, Wang X, Liao DT, et al. Feasibility study on new composite machining of milling-electrolytic. In: Proceedings of the 14th National conference on non-traditonal machining, 2011; SuZhou China. Harbin Institute of Technology Press, 2011. p. 584-6 [Chinese].
122

Van Camp D, Bouquet J, Qian J, et al. Investigation on hybrid mechano-electrochemical milling of Ti6Al4V. Procedia CIRP 2018;68:156–61.

123

Van Camp D, Qian J, Vleugels J, et al. Experimental investigation of the process behaviour in Mechano-Electrochemical Milling. CIRP Ann-Manuf Technol 2018;67(1):217–20.

124

Van Camp D, Qian J, Vetrano MR, et al. Investigation of working gap phenomena in Mechano-Electrochemical Milling. Procedia CIRP 2020;95:672–7.

125

Wang ML, Liu T, Qu NS. Interaction between electrochemical machining and conventional milling in mechano-electrochemical milling of TC4 titanium alloy. J Electrochem Soc 2022;169(5):053506.

126

Goswami RN, Mitra S, Sarkar S. Experimental investigation on electrochemical grinding (ECG) of alumina-aluminum interpenetrating phase composite. Int J Adv Manuf Technol 2009;40(7–8):729–41.

127

Maksoud TMA, Brooks AJ. Electrochemical grinding of ceramic form tooling. J Mater Process Technol 1995;55(2):70–5.

128

Łupak M, Zaborski S. Simulation of energy consumption in electrochemical grinding of hard-to-machine materials. J Appl Electrochem 2009;39(1):101–6.

129

Zaborski S, Lupak M, Poros D. Wear of cathode in abrasive electrochemical grinding of hardly machined materials. J Mater Process Technol 2004;149(1–3):414–8.

130

Wang F, Zhao JS, Kang M. Investigation of inner-jet electrochemical face grinding of thin-walled rotational parts. Int J Adv Manuf Technol 2021;115(9–10):3269–87.

131

Ming PM, Zhu D, Xu ZY. Electrochemical grinding for unclosed internal cylinder surface. Key Eng Mater 2008;359:360–4.

132

Zhu D, Zeng YB, Xu ZY, et al. Precision machining of small holes by the hybrid process of electrochemical removal and grinding. CIRP Ann-Manuf Technol 2011;60(1):247–50.

133
Atkinson J. Workpiece surface hardness as an indicator of process regime in peripheral electrochemical grinding. In: Hinduja S, Fan KC, editors. Proceedings of the 35th International MATADOR Conference: Formerly The International Machine Tool Design and Research Conference, 2007 July 18-20; Taipei, China. London: Springer; 2007. p. 89-94.
134
Atkinson J, Noble CF. The surface finish resulting from peripheral electrochemical grinding. In: Davies BJ, editor. In: Proceedings of the Twenty-second International Machine Tool Design and Research Conference, 1981 Sep 16-18; Manchester, UK. London Palgrave; 1982. p. 371–8.
135
Atkinson J, Noble CF. Residual stresses in workpieces after peripheral electrochemical grinding. In: Davies BJ, editor. In: Proceedings of the Nineteenth International Machine Tool Design and Research Conference, 1978 Sep 13-15; Manchester, UK. London Palgrave; 1979. p. 525–32.
136

Tehrani AF, Atkinson J. Overcut in pulsed electrochemical grinding. Proc Inst Mech Eng Part B-J Eng Manuf 2000;214(4):259–69.

137

Gaikwad KS, Joshi SS. Modeling of material removal rate in micro-ECG process. J Manuf Sci Eng-Trans ASME 2008;130(3):034502.

138

Sapre P, Mall A, Joshi SS. Analysis of electrolytic flow effects in micro-electrochemical grinding. J Manuf Sci Eng-Trans ASME 2013;135(1):011012.

139

Niu S, Qu NS, Yue XK, et al. Combined rough and finish machining of Ti-6Al-4V alloy by electrochemical mill-grinding. Mach Sci Technol 2020;24(4):621–37.

140

Curtis DT, Soo SL, Aspinwall DK, et al. Electrochemical superabrasive machining of a nickel-based aeroengine alloy using mounted grinding points. CIRP Ann-Manuf Technol 2009;58(1):173–6.

141

Gan WM, Zhu HS, Su C, et al. Electrochemical grinding of unparallel-ruled surface. Trans Nanjing Univ Aeronaut Astronautics 2005;22(3):216–23.

142

Mogilnikov VA, Chmir MY, Timofeev YS, et al. Diamond-ECM grinding of sintered hard alloys of WC-Ni. Procedia CIRP 2016;42:143–8.

143

Li SS, Wu YB, Nomura M, et al. Fundamental machining characteristics of ultrasonic-assisted electrochemical grinding of Ti-6Al-4V. J Manuf Sci Eng-Trans ASME 2018;140(7):071009.

144

Li SS, Wu YB, Nomura M. Fundamental investigation of ultrasonic assisted pulsed electrochemical grinding of Ti-6Al-4V. Mater Sci Forum 2016;874:279–84.

145

Wu YB, Li SS, Nomura M, et al. Ultrasonic assisted electrolytic grinding of titanium alloy Ti-6Al-4V. Int J Nanomanuf 2017;13(2):152–60.

146

Yehia HM, Hakim M, Ahmed E-A. Effect of the Al2O3 powder addition on the metal removal rate and the surface roughness of the electrochemical grinding machining. Proc Inst Mech Eng Part B-J Eng Manuf 2020;234(12):1538–48.

147

Wang F, Zhou J, Wu SY, et al. Study on material removal mechanism of photocatalytic-assisted electrochemical milling-grinding SiCp/Al. Int J Adv Manuf Technol 2023;124(3–4):817–32.

148

Chen ZJ, Zhan SD, Zhao YH. Electrochemical jet-assisted precision grinding of single-crystal SiC using soft abrasive wheel. Int J Mech Sci 2021;195:106239.

149

Saxena KK, Qian J, Reynaerts D. A tool-based hybrid laser-electrochemical micromachining process: Experimental investigations and synergistic effects. Int J Mach Tools Manuf 2020;155:103569.

150

De Silva AKM, Pajak PT, McGeough JA, et al. Thermal effects in laser assisted jet electrochemical machining. CIRP Ann-Manuf Technol 2011;60(1):243–6.

151

Wang YF, Zhang WW. Theoretical and experimental study on hybrid laser and shaped tube electrochemical machining (Laser-STEM) process. Int J Adv Manuf Technol 2021;112(5–6):1601–15.

152

Wang YF, Yang Y, Li YL, et al. Profile characteristics and evolution in combined laser and electrochemical machining. J Electrochem Soc 2022;169(9):093505.

153

Malik A, Manna A. Investigation on the laser-assisted jet electrochemical machining process for improvement in machining performance. Int J Adv Manuf Technol 2018;96(9–12):3917–32.

154

Pajak PT, Desilva AKM, Harrison DK, et al. Precision and efficiency of laser assisted jet electrochemical machining. Precis Eng-J Int Soc Precis Eng Nanotechnol 2006;30(3):288–98.

155

DeSilva AKM, Pajak PT, Harrison DK, et al. Modelling and experimental investigation of laser assisted jet electrochemical machining. CIRP Ann-Manuf Technol 2004;53(1):179–82.

156

Sun AX, Jin X, Chang YB. Research on the process optimization model of micro-clearance electrolysis-assisted laser machining based on BP neural network and ant colony. Int J Adv Manuf Technol 2017;88(9–12):3485–98.

157

Tangwarodomnukun V. Cavity formation and surface modeling of laser milling process under a thin-flowing water layer. Appl Surf Sci 2016;386:51–64.

158

Tangwarodomnukun V, Wuttisarn T. Evolution of milled cavity in the multiple laser scans of titanium alloy under a flowing water layer. Int J Adv Manuf Technol 2017;92(1–4):293–302.

159

Zhou J, Huang YX, Zhao YW, et al. Study on water-assisted laser ablation mechanism based on water layer characteristics. Opt. Commun 2019;450:112–21.

160

Zhu H, Wang J, Yao P, et al. Heat transfer and material ablation in hybrid laser-waterjet microgrooving of single crystalline germanium. Int J Mach Tools Manuf 2017;116:25–39.

161

Ahmed N, Darwish S, Alahmari AM. Laser ablation and laser-hybrid ablation processes: a review. Mater Manuf Process 2016;31(9):1121–42.

162

Skoczypiec S. Application of laser and electrochemical interaction in sequential and hybrid micromachining processes. Bull Pol Acad Sci-Tech Sci 2015;63(1):305–14.

163

Malik A, Manna A. Multi-response optimization of laser-assisted jet electrochemical machining parameters based on gray relational analysis. J Braz Soc Mech Sci Eng 2018;40(3):1–21.

164

Sun AX, Hu YL, Hao B. Research on theoretical model of combined micro-machining of laser and electrolysis of thermal barrier coated turbine blade film cooling holes. Int J Electrochem Sci 2016;11(11):9704–22.

165

Yang Y, Wang YF, Gui YJ, et al. Fabrication of microgrooves by synchronous hybrid laser and shaped tube electrochemical milling. Materials 2021;14(24):7714.

Chinese Journal of Aeronautics
Pages 1-35
Cite this article:
QU N, FANG X, ZHANG J, et al. Macro electrochemical milling and its hybrid variants. Chinese Journal of Aeronautics, 2024, 37(8): 1-35. https://doi.org/10.1016/j.cja.2023.12.015

21

Views

2

Crossref

2

Web of Science

2

Scopus

Altmetrics

Received: 12 August 2023
Revised: 18 September 2023
Accepted: 14 November 2023
Published: 14 December 2023
© 2023 Chinese Society of Aeronautics and Astronautics.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return