AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Full Length Article | Open Access

Cooperative guidance law with maneuverability awareness: A decentralized solution

Shuyang XUaXun SONGb,( )Chaoyong LIa
College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
Beijing Institute of Electronic System Engineering, Beijing 100074, China

Peer review under responsibility of Editorial Committee of CJA.

Show Author Information

Abstract

In this paper, we propose a cooperative guidance law aimed to achieve coordinated impact angles with limited observation on target information. The primary challenge lies in establishing an appropriate communication graph among all missiles and devising an algorithm to estimate target acceleration information during engagements. To address this, we propose a specific communication topology and employ a numerical integration-based estimation method. Additionally, a distributed algorithm is introduced to facilitate consensus on target acceleration estimation. Building upon these foundations, we design an optimal-control-based distributed guidance law for each missile. Performance of the proposed guidance law is validated through numerical simulations.

Electronic Supplementary Material

Download File(s)
cja-37-7-450_ESM.pdf (110.3 KB)

References

1

Song TL, Shin SJ, Cho H. Impact angle control for planar engagements. IEEE Trans Aerosp Electron Syst. 1999;35(4):1439-44.

2

Ryoo CK, Cho H, Tahk MJ. Time-to-go weighted optimal guidance with impact angle constraints. IEEE Trans Contr Syst Technol. 2006;14(3):483-92.

3

Ratnoo A, Ghose D. Impact angle constrained interception of stationary targets. J Guid Contr Dyn. 2008;31(6):1817-22.

4

Jeon IS, Lee JI, Tahk MJ. Impact-time-control guidance law for anti-ship missiles. IEEE Trans Contr Syst Technol. 2006;14(2):260-6.

5

Lee JI, Jeon IS, Tahk MJ. Guidance law to control impact time and angle. IEEE Trans Aerosp Electron Syst. 2007;43(1):301-10.

6

Shaferman V, Shima T. Linear quadratic guidance laws for imposing a terminal intercept angle. J Guid Contr Dyn. 2008;31(5):1400-12.

7

Bardhan R, Ghose D. Nonlinear differential games-based impact-angle-constrained guidance law. J Guid Contr Dyn. 2015;38(3):384-402.

8
Perelman A, Shima T, Rusnak I. Cooperative differential gamesstrategies for active aircraft protection from a homing missile.Reston: AIAA; 2010. Report No.: AIAA-2010-7878.
9

Shalumov V, Shima T. Weapon-target-allocation strategies in multiagent target-missile-defender engagement. J Guid Contr Dyn. 2017;40(10):2452-64.

10

Shaferman V, Shima T. Cooperative optimal guidance laws for imposing a relative intercept angle. J Guid Contr Dyn. 2015;38(8):1395-408.

11

Shaferman V, Shima T. Cooperative differential games guidance laws for imposing a relative intercept angle. J Guid Contr Dyn. 2017;40(10):2465-80.

12

Chen S, Yang Y, Ma DY, et al. Cooperative guidance law with impact angle coordination: A Nash approach. IEEE Trans Aerosp Electron Syst. 2022;58(5):3924-31.

13

Kang S, Wang JN, Li G, et al. Optimal cooperative guidance law for salvo attack: An MPC-based consensus perspective. IEEE Trans Aerosp Electron Syst. 2018;54(5):2397-410.

14

Jiang H, An Z, Yu YN, et al. Cooperative guidance with multiple constraints using convex optimization. Aerosp Sci Technol. 2018;79:426-40.

15

Zhang TT, Yang JY. Cooperative guidance for simultaneous attack: A fully distributed, adaptive, and optimal approach. Int J Contr. 2020;93(8):1765-74.

16

Zhang Y, Tang SJ, Guo J. Two-stage cooperative guidance strategy using a prescribed-time optimal consensus method. Aerosp Sci Technol. 2020;100:105641.

17
Ghosh S, Ghose D, Raha S. Capturability of augmented proportional navigation (APN) guidance with nonlinear engagementdynamics. 2013 American control conference. Piscataway: IEEEPress; 2013. p. 7–12.
18

Pan SW, Su HY, Chu J, et al. Applying a novel extended Kalman filter to missile–target interception with APN guidance law: A benchmark case study. Contr Eng Pract. 2010;18(2):159-67.

19

Berg R. Estimation and prediction for maneuvering target trajectories. IEEE Trans Autom Contr. 1983;28(3):294-304.

20

Watson GA, Blair WD. Interacting acceleration compensation algorithm for tracking maneuvering targets. IEEE Trans Aerosp Electron Syst. 1995;31(3):1152-9.

21

Song TL. Observability of target tracking with range-only measurements. IEEE J Ocean Eng. 1999;24(3):383-7.

22

Ding XJ, Wang JN, Wang CY, et al. Cooperative estimation and guidance strategy using bearings-only measurements. J Guid Contr Dyn. 2023;46(4):761-9.

23

Dong W, Wang CY, Wang JN, et al. Fixed-time terminal angle-constrained cooperative guidance law against maneuvering target. IEEE Trans Aerosp Electron Syst. 2022;58(2):1352-66.

24

Hou ZW, Liu L, Wang YJ, et al. Terminal impact angle constraint guidance with dual sliding surfaces and model-free target acceleration estimator. IEEE Trans Contr Syst Technol. 2017;25(1):85-100.

25

Fonod R, Shima T. Multiple model adaptive evasion against a homing missile. J Guid Contr Dyn. 2016;39(7):1578-92.

26

Fonod R, Shima T. Estimation enhancement by cooperatively imposing relative intercept angles. J Guid Contr Dyn. 2017;40(7):1711-25.

27

Shaferman V, Shima T. Cooperative multiple-model adaptive guidance for an aircraft defending missile. J Guid Contr Dyn. 2010;33(6):1801-13.

28

Tahk MJ. A tutorial on linear quadratic optimal guidance for missile applications. J Korea Soc Ind Appl Math. 2015;19(3):217-34.

29
Bryson AEApplied optimal control: Optimization, estimation andcontrol. New York: Taylor & Francis; 1975. p. 177–201.
30

Ryoo CK, Cho H, Tahk MJ. Optimal guidance laws with terminal impact angle constraint. J Guid Contr Dyn. 2005;28(4):724-32.

31

Park BG, Kwon HH, Kim YH, et al. Composite guidance scheme for impact angle control against a nonmaneuvering moving target. J Guid Contr Dyn. 2016;39(5):1132-9.

32

Li CY, Qu ZH, Qi DL, et al. Distributed finite-time estimation of the bounds on algebraic connectivity for directed graphs. Autom J IFAC. 2019;107(C):289-95.

33

Chen TF, Chen WT, Chen GP, et al. Recursive formulation of the WKB solution for linear time-varying dynamic systems. Acta Mechanica. 2021;232(3):907-20.

Chinese Journal of Aeronautics
Pages 450-457
Cite this article:
XU S, SONG X, LI C. Cooperative guidance law with maneuverability awareness: A decentralized solution. Chinese Journal of Aeronautics, 2024, 37(7): 450-457. https://doi.org/10.1016/j.cja.2024.03.040

64

Views

1

Crossref

1

Web of Science

1

Scopus

Altmetrics

Received: 26 July 2023
Revised: 19 September 2023
Accepted: 02 November 2023
Published: 30 March 2024
© 2024 Chinese Society of Aeronautics and Astronautics.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return