AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Full Length Article | Open Access

Unsteady aerodynamic noise prediction of contra-rotating open rotor using meshless method

Zhiliang HONGaMeng SUaHaitao ZHANGbZerui XUaLin DUcLingfeng CHENa,( )
College of Safety Science and Engineering, Civil Aviation University of China, Tianjin 300300, China
Civil Aviation Administration of China, Beijing 100710, China
Research Institute of Aero-Engine, Beihang University, Beijing 100191, China

Peer review under responsibility of Editorial Committee of CJA.

Show Author Information

Abstract

The Contra-Rotating Open Rotor (CROR) design confronts significant noise challenges despite being one of the possible options for future green aeroengines. To efficiently estimate the noise emitted from a CROR, a three-dimensional unsteady prediction model based on the meshless method is presented. The unsteady wake flow and the aerodynamic load fluctuations on the blade are solved through the viscous vortex particle method, the blade element momentum theory and vortex lattice method. Then, the acoustic field is obtained through the Farassat’s formulation 1A. Validation of this method is conducted on a CROR, and a mesh-based method, e.g., Nonlinear Harmonic (NLH) method, is also employed for comparison. It is found that the presented method is three times faster than NLH method while maintaining a comparable precision. A thorough parametric analysis is also carried out to illustrate the effects of rotational speed, rotor-rotor spacing and rear rotor diameter on the noise level. The rotor speed is found to be the most influencing factor, and by optimizing the speed difference between the front and rear rotors, a notable noise reduction can be expected. The current findings not only contribute to a deeper comprehension of the CROR’s aeroacoustic properties but also offer an effective tool for engineering applications.

References

1
Strack WC, Knip G, Weisbrich AL, et al. Technology and benefits of aircraft counter rotation propellers. Washington D.C.: NASA; 1981. Report No.: NASA-TM-82983.
2

Dickson N, ICAO noise standards. ICAO symposium on aviation and climate change; 2013.

3
Soulat L, Kernemp I, Moreau S, et al. Assessment and comparison of tonal noise models for Counter-Rotating Open Rotors. Reston: AIAA; 2013. Report No.: AIAA-2013-2201.
4
Bellocq P, Sethi V, Cerasi L, et al. Advanced open rotor performance modelling for multidisciplinary optimization assessments. New York: ASME; 2010. Report No.: GT2010-22963.
5

Tormen D, Giannattasio P, Zanon A, et al. Semi-analytical tip vortex model for fast prediction of contrarotating open rotor noise. AIAA J 2021;59(5):1629–44.

6
Zhang C. A hybrid numerical analysis method for aerodynamic and noise characteristics of typical open rotor configurations [dissertation]. Shanghai: Shanghai Jiao Tong University; 2019 [Chinese].
7
Dittmar JH, Stang DB. Noise reduction for model counterrotation propeller at cruise by reducing aft-propeller diameter. Washington D.C.: NASA; 1987. Report No.: NASA-TM-88936.
8

Fujii S, Nishiwaki H, Takeda K. Noise and performance of a counter-rotation propeller. J Aircr 1986;23(9):719–24.

9

Liu Z, Bu C, Kong XX, et al. Computational investigation of noise interaction for a nano counter-rotating rotor in a static condition. Int J Comp Mat Sci Eng 2018;7(1):1850004.

10
Colin Y, Caruelle B, Parry AB. Computational strategy for predicting CROR noise at low-speed Part Ⅲ: Investigation of noise radiation with the Ffowcs-Williams Hawkings analogy. Reston: AIAA; 2012. Report No.: AIAA-2012-2223.
11
Delattre G, Falissard F. Influence of torque ratio on counter rotating open rotor interaction noise. Reston: AIAA; 2014. Report No.: AIAA-2014-2969.
12

He L, Ning W. Efficient approach for analysis of unsteady viscous flows in turbomachines. AIAA J 1998;36(11):2005–12.

13

Envia E. Aeroacoustic analysis of a high-speed open rotor. Int J Aeroacoust 2015;14(3–4):569–606.

14
Ferrante P, Vilmin S, Hirsch C, et al. Integrated ‘‘CFD-acoustic” computational approach to the simulation of a contra rotating open rotor at angle of attack. Reston: AIAA; 2013. Report No.: AIAA-2013-2242.
15

Deconinck T, Capron A, Hirsch C, et al. Prediction of near-and far-field noise generated by contra-rotating open rotors. Int J Aeroacoust 2012;11(2):177–96.

16

Beaumier P. Numerical tools developed at ONERA for the aerodynamic assessment of propellers and counter-rotating open rotors. 28th congress of the international council of the aeronautical sciences. 2012.

17

Gardarein P. Calculs aérodynamiques des hélices rapides transoniques. 28eme colloque d’aerodynamique appliquée. 1991.

18

Le Bouar G, Costes M, Leroy-Chesneau A, et al. Numerical simulations of unsteady aerodynamics of helicopter rotor in manoeuvring flight conditions. Aerosp Sci Technol 2004;8(1):11–25.

19
Rodriguez B. Blade vortex interaction and vortex ring state captured by a fully time marching unsteady wake model coupled with a comprehensive dynamics code. 2010.
20

Zhao H, Ding ZW, Leng G, et al. Flight dynamics modeling and analysis for a Mars helicopter. Chin J Aeronaut 2023;36(9):221–30.

21

Tan JF, Wang HW. Panel/full-span free-wake coupled method for unsteady aerodynamics of helicopter rotor blade. Chin J Aeronaut 2013;26(3):535–43.

22

Tan J, Sun Y, Barakos GN. Unsteady loads for coaxial rotors in forward flight computed using a vortex particle method. Aeronaut J 2018;122(1251):693–714.

23

Singh P, Friedmann PP. Application of vortex methods to coaxial rotor wake and load calculations in hover. J Aircr 2018;55(1):373–81.

24
Alvarez EJ, Ning A. Development of a vortex particle code for the modeling of wake interaction in distributed propulsion. Reston: AIAA; 2018. Report No.: AIAA-2018-3646.
25

Betz A. Das maximum der theoretisch möglichen ausnützung des windes durch windmotoren. Zeitschrift fur gesamte Turbinewesen 1920;20:307–9.

26

Glauert H. Aerodynamic theory. Aeronaut J 1930;34(233):409–14.

27
Ingram G. Wind turbine blade analysis using the blade element momentum method. version 1.1 [dissertation]. Durham: Durham University; 2011.
28
Drela M. XFOIL: An analysis and design system for low Reynolds number airfoils. Low Reynolds number aerodynamics: Proceedings of the conference Notre Dame. 1989. p. 1–12.
29
Alvarez EJ, Ning A. Reviving the vortex particle method: A stable formulation for meshless large eddy simulation. 2022 Jun 8 [cited 2023 Nov 17]. Available from: http://arxiv.org/abs/2206.03658.
30
Alvarez EJ. Reformulated vortex particle method and meshless large eddy simulation of multirotor air-craft [dissertation]. Provo: Brigham Young University; 2022.
31

Greengard LF. The rapid evaluation of potential fields in particle systems. Cambridge: The MIT Press; 1988.

32

Cheng H, Greengard L, Rokhlin V. A fast adaptive multipole algorithm in three dimensions. J Comput Phys 1999;155(2):468–98.

33

Deng S, Jiang C, Wang YJ, et al. Acceleration of unsteady vortex lattice method via dipole panel fast multipole method. Chin J Aeronaut 2021;34(2):265–78.

34

Ffowcs Williams JE, Hawkings DL. Sound generation by turbulence and surfaces in arbitrary motion. Philos Trans R Soc Lond Ser A Math Phys Sci 1969;264:321–42.

35
Farassat F. Derivation of formulations 1 and 1A of Farassat. Washington D.C.: NASA; 2007. Report No.: NASA/TM-2007-214853.
36
Farassat F, Dunn M, Tinetti A, et al. Open rotor noise prediction methods at NASA Langley: A technology review. Reston: AIAA; 2009. Report No.: AIAA-2009-3133.
37

Chen SY, Zhao QJ, Ma YY. An adaptive integration surface for predicting transonic rotor noise in hovering and forward flights. Chin J Aeronaut 2019;32(9):2047–58.

38
Neto PM. Surrogate modelling of propeller noise in unsteady load conditions [dissertation]. Koverhar: Univer-sidade da Beira Interior; 2021.
39

Alvarez EJ, Schenk A, Critchfield T, et al. Rotor-on-rotor aeroacoustic interactions of multirotor in hover. Proceedings of the vertical flight society 76th annual forum. 2020.

40

Alvarez EJ, Ning A. High-fidelity modeling of multirotor aerodynamic interactions for aircraft design. AIAA J 2020;58(10):4385–400.

41
Alvarez EJ, Mehr J, Ning A. FLOWUnsteady: An interactional aerodynamics solver for multirotor aircraft and wind energy. Reston: AIAA; 2022. Report No.: AIAA-2022-3218.
42
Zawodny NS, Boyd Jr DD, Burley CL. Acoustic characterization and prediction of representative, small-scale rotary-wing unmanned aircraft system components. Washington, D.C.: NASA; 2016. Report No.: NASA/NF-1676L-22587.
43

Sinnige T, van Arnhem N, Stokkermans TCA, et al. Wingtip-mounted propellers: Aerodynamic analysis of interaction effects and comparison with conventional layout. J Aircr 2019;56(1):295–312.

44

Sinnige T, de Vries R, Della Corte B, et al. Unsteady pylon loading caused by propeller-slipstream impingement for tip-mounted propellers. J Aircr 2018;55(4):1605–18.

45

Tong H, Li L, Wang LF, et al. Investigation of rotor–stator interaction broadband noise using a RANS-informed analytical method. Chin J Aeronaut 2021;34(10):53–66.

46

Shu W, Chen C, Du L, et al. Interaction tonal noise generated by contra-rotating open rotors. Chin J Aeronaut 2023;36(4):134–47.

47

Smith DA, Filippone A, Bojdo N. Noise reduction of a Counter Rotating Open Rotor through a locked blade row. Aerosp Sci Technol 2020;98:105637.

48

Moshkov PA, Samokhin VF. Integral model of noise of an engine-propeller power plant. J Eng Phys Thermophys 2018;91(2):332–8.

49

Sharma A, Chen HN. Prediction of aerodynamic tonal noise from open rotors. J Sound Vib 2013;332(16):3832–45.

50

Negulescu CA. Airbus AI-PX7 CROR design features and aerodynamics. SAE Int J Aerosp 2013;6(2):626–42.

Chinese Journal of Aeronautics
Pages 144-165
Cite this article:
HONG Z, SU M, ZHANG H, et al. Unsteady aerodynamic noise prediction of contra-rotating open rotor using meshless method. Chinese Journal of Aeronautics, 2024, 37(8): 144-165. https://doi.org/10.1016/j.cja.2024.05.018

24

Views

0

Crossref

0

Web of Science

0

Scopus

Altmetrics

Received: 14 September 2023
Revised: 08 October 2023
Accepted: 17 November 2023
Published: 23 May 2024
© 2024 Chinese Society of Aeronautics and Astronautics.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return