Bailey Jr., W.A., Clark Jr., T.D., 1987. A simulation analysis of demand and fleet size effects on taxicab service rates. In: Proceedings of the 19th Conference on Winter Simulation, pp. 838–844.
Chen, Y., Jiang, W., Fu, H., Liu, G., 2021, December. Spatio-temporal dynamic multigraph attention network for ride-hailing demand prediction. In: International Conference on Neural Information Processing. Springer, Cham, pp. 133–144.
Ebel, P., Göl, I.E., Lingenfelder, C., Vogelsang, A., 2020. Destination prediction based on partial trajectory data. In: 2020 IEEE Intelligent Vehicles Symposium (Ⅳ). IEEE, pp. 1149–1155.
Fang, X., Huang, J., Wang, F., Zeng, L., Liang, H., Wang, H., 2020. Constgat: contextual spatial-temporal graph attention network for travel time estimation at Baidu maps. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2697–2705.
Fu, T.Y., Lee, W.C., 2019. Deepist: deep image-based spatio-temporal network for travel time estimation. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, pp. 69–78.
Fu, K., Meng, F., Ye, J., Wang, Z., 2020. Compacteta: a fast inference system for travel time prediction. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 3337–3345.
Holler, J., Vuorio, R., Qin, Z., Tang, X., Jiao, Y., Jin, T., et al., 2019. Deep reinforcement learning for multi-driver vehicle dispatching and repositioning problem. In: 2019 IEEE International Conference on Data Mining (ICDM). IEEE, pp. 1090–1095.
Hong, H., Lin, Y., Yang, X., Li, Z., Fu, K., Wang, Z., et al., 2020. Heteta: heterogeneous information network embedding for estimating time of arrival. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2444–2454.
Jia, H., Fang, J., Tan, N., Liu, X., Huo, Z., Ma, N., et al., 2020, July. Context-aware route recommendation with weight learning through deep neural networks. In: 2020 American Control Conference (ACC). IEEE, pp. 4040–4045.
Jin, J., Zhou, M., Zhang, W., Li, M., Guo, Z., Qin, Z., et al., 2019. Coride: joint order dispatching and fleet management for multi-scale ride-hailing platforms. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, pp. 1983–1992.
Lin, X., Wang, Y., Xiao, X., Li, Z., Bhowmick, S.S., 2019, November. Path travel time estimation using attribute-related hybrid trajectories network. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, pp. 1973–1982.
Liu, H., Tong, Y., Zhang, P., Lu, X., Duan, J., Xiong, H., 2019a. Hydra: a personalized and context-aware multi-modal transportation recommendation system. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2314–2324.
Long, J., Shelhamer, E., Darrell, T., 2015. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440.
Mao, X., Cai, T., Peng, W., Wan, H., 2021. Estimated time of arrival prediction via modeling the spatial-temporal interactions between links and crosses. In: Proceedings of the 29th International Conference on Advances in Geographic Information Systems, pp. 658–661.
Qin, Z.T., Zhu, H., Ye, J., 2021. Reinforcement learning for ridesharing: a survey. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC). IEEE, pp. 2447–2454.
Rong, H., Zhou, X., Yang, C., Shafiq, Z., Liu, A., 2016. The rich and the poor: a Markov decision process approach to optimizing taxi driver revenue efficiency. In: Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, pp. 2329–2334.
Ronneberger, O., Fischer, P., Brox, T., 2015. U-net: convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, pp. 234–241.
Sun, Y., Wang, Y., Fu, K., Wang, Z., Yan, Z., Zhang, C., Ye, J., 2021. FMA-ETA: estimating travel time entirely based on FFN with attention. In: ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, pp. 3355–3359.
Tong, Y., Chen, Y., Zhou, Z., Chen, L., Wang, J., Yang, Q., et al., 2017. The simpler the better: a unified approach to predicting original taxi demands based on large-scale online platforms. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1653–1662.
Wang, Y., Zheng, Y., Xue, Y., 2014. Travel time estimation of a path using sparse trajectories. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 25–34.
Wang, Z., Fu, K., Ye, J., 2018. Learning to estimate the travel time. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 858–866.
Wang, D., Zhang, J., Cao, W., Li, J., Zheng, Y., 2018. When will you arrive? estimating travel time based on deep neural networks. In: Thirty-Second AAAI Conference on Artificial Intelligence.
Wu, F., Wu, L., 2019, July. DeepETA: a spatial-temporal sequential neural network model for estimating time of arrival in package delivery system. Proc. AAAI Conf. Artif. Intell. 33 (No. 01), 774–781.
Xu, Z., Li, Z., Guan, Q., Zhang, D., Li, Q., Nan, J., et al., 2018. Large-scale order dispatch in on-demand ride-hailing platforms: a learning and planning approach. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 905–913.
Xue, A.Y., Zhang, R., Zheng, Y., Xie, X., Huang, J., Xu, Z., 2013. Destination prediction by sub-trajectory synthesis and privacy protection against such prediction. In: 2013 IEEE 29th International Conference on Data Engineering (ICDE). IEEE, pp. 254–265.
Yao, H., Wu, F., Ke, J., Tang, X., Jia, Y., Lu, S., et al., 2018, April. Deep multi-view spatialtemporal network for taxi demand prediction. Proc. AAAI Conf. Artif. Intell. 32 (1).
Yuen, C.F., Singh, A.P., Goyal, S., Ranu, S., Bagchi, A., 2019. Beyond shortest paths: route recommendations for ride-sharing. In: The World Wide Web Conference, pp. 2258–2269.
Zhang, J., Zheng, Y., Qi, D., Li, R., Yi, X., 2016. DNN-based prediction model for spatiotemporal data. In: Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 1–4.