Article Link
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Review Article | Open Access

How machine learning informs ride-hailing services: A survey

Yang Liua,b()Ruo JiaaJieping YecXiaobo Qub()
Department of Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg, Sweden
State Key Laboratory of Automotive Safety and Energy, School of Vehicle and Mobility, Tsinghua University, Beijing, China
Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, United States
Show Author Information

Abstract

In recent years, online ride-hailing services have emerged as an important component of urban transportation system, which not only provide significant ease for residents' travel activities, but also shape new travel behavior and diversify urban mobility patterns. This study provides a thorough review of machine-learning-based methodologies for on-demand ride-hailing services. The importance of on-demand ride-hailing services in the spatio-temporal dynamics of urban traffic is first highlighted, with machine-learning-based macro-level ride-hailing research demonstrating its value in guiding the design, planning, operation, and control of urban intelligent transportation systems. Then, the research on travel behavior from the perspective of individual mobility patterns, including carpooling behavior and modal choice behavior, is summarized. In addition, existing studies on order matching and vehicle dispatching strategies, which are among the most important components of on-line ride-hailing systems, are collected and summarized. Finally, some of the critical challenges and opportunities in ride-hailing services are discussed.

References

 

Acheampong, R.A., Siiba, A., Okyere, D.K., Tuffour, J.P., 2020. Mobility-on-demand: an empirical study of internet-based ride-hailing adoption factors, travel characteristics and mode substitution effects. Transport. Res. C Emerg. Technol. 115, 102638.

 

Agarwal, S., Charoenwong, B., Cheng, S.F., Keppo, J., 2022. The impact of ride-hail surge factors on taxi bookings. Transport. Res. C Emerg. Technol. 136, 103508.

 

Al-Abbasi, A.O., Ghosh, A., Aggarwal, V., 2019. Deeppool: distributed model-free algorithm for ride-sharing using deep reinforcement learning. IEEE Trans. Intell. Transport. Syst. 20 (12), 4714–4727.

 
Bailey Jr., W.A., Clark Jr., T.D., 1987. A simulation analysis of demand and fleet size effects on taxicab service rates. In: Proceedings of the 19th Conference on Winter Simulation, pp. 838–844.
 

Besse, P.C., Guillouet, B., Loubes, J.M., Royer, F., 2017. Destination prediction by trajectory distribution-based model. IEEE Trans. Intell. Transport. Syst. 19 (8), 2470–2481.

 

Cai, P., Wang, Y., Lu, G., Chen, P., Ding, C., Sun, J., 2016. A spatiotemporal correlative knearest neighbor model for short-term traffic multistep forecasting. Transport. Res. C Emerg. Technol. 62, 21–34.

 

Campigotto, P., Rudloff, C., Leodolter, M., Bauer, D., 2016. Personalized and situationaware multimodal route recommendations: the FAVOUR algorithm. IEEE Trans. Intell. Transport. Syst. 18 (1), 92–102.

 

Castro-Neto, M., Jeong, Y.S., Jeong, M.K., Han, L.D., 2009. Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions. Expert Syst. Appl. 36 (3), 6164–6173.

 

Chen, X.M., Zahiri, M., Zhang, S., 2017. Understanding ridesplitting behavior of ondemand ride services: an ensemble learning approach. Transport. Res. C Emerg. Technol. 76, 51–70.

 
Chen, Y., Jiang, W., Fu, H., Liu, G., 2021, December. Spatio-temporal dynamic multigraph attention network for ride-hailing demand prediction. In: International Conference on Neural Information Processing. Springer, Cham, pp. 133–144.
 
Ebel, P., Göl, I.E., Lingenfelder, C., Vogelsang, A., 2020. Destination prediction based on partial trajectory data. In: 2020 IEEE Intelligent Vehicles Symposium (Ⅳ). IEEE, pp. 1149–1155.
 
Fang, X., Huang, J., Wang, F., Zeng, L., Liang, H., Wang, H., 2020. Constgat: contextual spatial-temporal graph attention network for travel time estimation at Baidu maps. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2697–2705.
 

Feng, S., Ke, J., Yang, H., Ye, J., 2022. A multi-task matrix factorized graph neural network for co-prediction of zone-based and OD-based ride-hailing demand. IEEE Trans. Intell. Transport. Syst. 23 (6), 5704–5716.

 
Fu, T.Y., Lee, W.C., 2019. Deepist: deep image-based spatio-temporal network for travel time estimation. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, pp. 69–78.
 
Fu, K., Meng, F., Ye, J., Wang, Z., 2020. Compacteta: a fast inference system for travel time prediction. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 3337–3345.
 

Gammelli, D., Peled, I., Rodrigues, F., Pacino, D., Kurtaran, H.A., Pereira, F.C., 2020. Estimating latent demand of shared mobility through censored Gaussian processes. Transport. Res. C Emerg. Technol. 120, 102775.

 

Gao, J., Li, X., Wang, C., Huang, X., 2021. BM-DDPG: an integrated dispatching framework for ride-hailing systems. IEEE Trans. Intell. Transport. Syst.

 

Gao, R., Sun, F., Xing, W., Tao, D., Fang, J., Chai, H., 2022. CTTE: customized travel time estimation via mobile crowdsensing. IEEE Trans. Intell. Transport. Syst.

 

Ge, Y., Li, H., Tuzhilin, A., 2019. Route recommendations for intelligent transportation services. IEEE Trans. Knowl. Data Eng. 33 (3), 1169–1182.

 

Geng, X., Li, Y., Wang, L., Zhang, L., Yang, Q., Ye, J., Liu, Y., 2019. Spatiotemporal multigraph convolution network for ride-hailing demand forecasting. Proc. AAAI Conf. Artif. Intell. 33, 3656–3663, 01.

 

Guo, S., Lin, Y., Li, S., Chen, Z., Wan, H., 2019. Deep spatial–temporal 3D convolutional neural networks for traffic data forecasting. IEEE Trans. Intell. Transport. Syst. 20 (10), 3913–3926.

 

Guo, X., Caros, N.S., Zhao, J., 2021. Robust matching-integrated vehicle rebalancing in ride-hailing system with uncertain demand. Transp. Res. Part B Methodol. 150, 161–189.

 

Haliem, M., Mani, G., Aggarwal, V., Bhargava, B., 2021. A distributed model-free ridesharing approach for joint matching, pricing, and dispatching using deep reinforcement learning. IEEE Trans. Intell. Transport. Syst. 22 (12), 7931–7942.

 

He, Z., Chow, C.Y., Zhang, J.D., 2020. STNN: a spatio-temporal neural network for traffic predictions. IEEE Trans. Intell. Transport. Syst. 22 (12), 7642–7651.

 
Holler, J., Vuorio, R., Qin, Z., Tang, X., Jiao, Y., Jin, T., et al., 2019. Deep reinforcement learning for multi-driver vehicle dispatching and repositioning problem. In: 2019 IEEE International Conference on Data Mining (ICDM). IEEE, pp. 1090–1095.
 
Hong, H., Lin, Y., Yang, X., Li, Z., Fu, K., Wang, Z., et al., 2020. Heteta: heterogeneous information network embedding for estimating time of arrival. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2444–2454.
 

Huang, H., Bucher, D., Kissling, J., Weibel, R., Raubal, M., 2018. Multimodal route planning with public transport and carpooling. IEEE Trans. Intell. Transport. Syst. 20 (9), 3513–3525.

 

Huang, Z., Wang, D., Yin, Y., Li, X., 2021. A spatiotemporal bidirectional attention-based ride-hailing demand prediction model: a case study in beijing during COVID-19. IEEE Trans. Intell. Transport. Syst.

 

Huang, J., Luo, Y., Fu, S., Xu, M., Hu, B., 2021. pRide: privacy-preserving online ride hailing matching system with prediction. IEEE Trans. Veh. Technol. 70 (8), 7413–7425.

 
Jia, H., Fang, J., Tan, N., Liu, X., Huo, Z., Ma, N., et al., 2020, July. Context-aware route recommendation with weight learning through deep neural networks. In: 2020 American Control Conference (ACC). IEEE, pp. 4040–4045.
 

Jiang, M., Li, C., Li, K., Liu, H., 2022. Destination prediction based on virtual POI docks in dockless bike-sharing system. IEEE Trans. Intell. Transport. Syst. 23 (3), 2457–2470.

 

Jiang, H., Wang, M., Zhao, P., Xiao, Z., Dustdar, S., 2021. A utility-aware general framework with quantifiable privacy preservation for destination prediction in LBSs. IEEE/ACM Trans. Netw. 29 (5), 2228–2241.

 

Jin, G., Cui, Y., Zeng, L., Tang, H., Feng, Y., Huang, J., 2020. Urban ride-hailing demand prediction with multiple spatio-temporal information fusion network. Transport. Res. C Emerg. Technol. 117, 102665.

 
Jin, J., Zhou, M., Zhang, W., Li, M., Guo, Z., Qin, Z., et al., 2019. Coride: joint order dispatching and fleet management for multi-scale ride-hailing platforms. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, pp. 1983–1992.
 

Ke, J., Zheng, H., Yang, H., Chen, X.M., 2017. Short-term forecasting of passenger demand under on-demand ride services: a spatio-temporal deep learning approach. Transport. Res. C Emerg. Technol. 85, 591–608.

 

Ke, J., Yang, H., Zheng, H., Chen, X., Jia, Y., Gong, P., Ye, J., 2018. Hexagon-based convolutional neural network for supply-demand forecasting of ride-sourcing services. IEEE Trans. Intell. Transport. Syst. 20 (11), 4160–4173.

 

Ke, J., Yang, H., Zheng, Z., 2020a. On ride-pooling and traffic congestion. Transp. Res. Part B Methodol. 142, 213–231.

 

Ke, J., Yang, H., Li, X., Wang, H., Ye, J., 2020b. Pricing and equilibrium in on-demand ride-pooling markets. Transp. Res. Part B Methodol. 139, 411–431.

 

Ke, J., Qin, X., Yang, H., Zheng, Z., Zhu, Z., Ye, J., 2021a. Predicting origin-destination ride-sourcing demand with a spatio-temporal encoder-decoder residual multi-graph convolutional network. Transport. Res. C Emerg. Technol. 122, 102858.

 

Ke, J., Feng, S., Zhu, Z., Yang, H., Ye, J., 2021b. Joint predictions of multi-modal ridehailing demands: a deep multi-task multi-graph learning-based approach. Transport. Res. C Emerg. Technol. 127, 103063.

 

Khezerlou, A.V., Zhou, X., Tong, L., Li, Y., Luo, J., 2019. Forecasting gathering events through trajectory destination prediction: a dynamic hybrid model. IEEE Trans. Knowl. Data Eng. 33 (3), 991–1004.

 

Kim, T., Sharda, S., Zhou, X., Pendyala, R.M., 2020. A stepwise interpretable machine learning framework using linear regression (LR) and long short-term memory (LSTM): city-wide demand-side prediction of yellow taxi and for-hire vehicle (FHV) service. Transport. Res. C Emerg. Technol. 120, 102786.

 

Kucharski, R., Fielbaum, A., Alonso-Mora, J., Cats, O., 2021. If you are late, everyone is late: late passenger arrival and ride-pooling systems' performance. Transportmetrica: Transport. Sci. 17 (4), 1077–1100.

 

Lei, Z., Qian, X., Ukkusuri, S.V., 2020. Efficient proactive vehicle relocation for ondemand mobility service with recurrent neural networks. Transport. Res. C Emerg. Technol. 117, 102678.

 

Leong, W., Hensher, D.A., 2012. Embedding decision heuristics in discrete choice models: a review. Transport Rev. 32 (3), 313–331.

 

Li, J.Q., Zhou, K., Zhang, L., Zhang, W.B., 2012. A multimodal trip planning system with real-time traffic and transit information. J. Intell. Transport. Syst. 16 (2), 60–69.

 

Li, Y., Liu, Y., 2021. Optimizing flexible one-to-two matching in ride-hailing systems with boundedly rational users. Transport. Res. E Logist. Transport. Rev. 150, 102329.

 

Li, S., Liu, Y., Qu, X., 2022. Model controlled prediction: a reciprocal alternative of model predictive control. IEEE/CCA J. Autom. Sin. 9 (6), 1–4.

 

Liang, E., Wen, K., Lam, W.H., Sumalee, A., Zhong, R., 2021. An integrated reinforcement learning and centralized programming approach for online taxi dispatching. IEEE Transact. Neural Networks Learn. Syst.

 
Lin, X., Wang, Y., Xiao, X., Li, Z., Bhowmick, S.S., 2019, November. Path travel time estimation using attribute-related hybrid trajectories network. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, pp. 1973–1982.
 

Lippi, M., Bertini, M., Frasconi, P., 2013. Short-term traffic flow forecasting: an experimental comparison of time-series analysis and supervised learning. IEEE Trans. Intell. Transport. Syst. 14 (2), 871–882.

 

Liu, Y., Liu, Z., Lyu, C., Ye, J., 2019. Attention-based deep ensemble net for large-scale online taxi-hailing demand prediction. IEEE Trans. Intell. Transport. Syst. 21 (11), 4798–4807.

 
Liu, H., Tong, Y., Zhang, P., Lu, X., Duan, J., Xiong, H., 2019a. Hydra: a personalized and context-aware multi-modal transportation recommendation system. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2314–2324.
 

Liu, H., Li, T., Hu, R., Fu, Y., Gu, J., Xiong, H., 2019b. Joint representation learning for multi-modal transportation recommendation. Proc. AAAI Conf. Artif. Intell. 33 (No. 01), 1036–1043.

 

Liu, Z., Liu, Y., Lyu, C., Ye, J., 2020. Building personalized transportation model for online taxi-hailing demand prediction. IEEE Trans. Cybern. 51 (9), 4602–4610.

 

Liu, Z., Li, J., Wu, K., 2022a. Context-aware taxi dispatching at city-scale using deep reinforcement learning. IEEE Trans. Intell. Transport. Syst. 23 (3), 1996–2009.

 

Liu, Y., Lyu, C., Zhang, Y., Liu, Z., Yu, W., Qu, X., 2021. DeepTSP: deep traffic state prediction model based on large-scale empirical data. Commun. Transport. Res. 1, 100012.

 

Liu, Y., Lyu, C., Liu, Z., Cao, J., 2021a. Exploring a large-scale multi-modal transportation recommendation system. Transport. Res. C Emerg. Technol. 126, 103070.

 

Liu, Y., Wu, F., Lyu, C., Li, S., Ye, J., Qu, X., 2022b. Deep dispatching: a deep reinforcement learning approach for vehicle dispatching on online ride-hailing platform. Transport. Res. E Logist. Transport. Rev. 161, 102694.

 

Liu, Y., Wu, F., Lyu, C., Liu, X., Liu, Z., 2021b. Behavior2vector: embedding users' personalized travel behavior to vector. IEEE Trans. Intell. Transport. Syst. https://doi.org/10.1109/TITS.2021.3078229.

 
Long, J., Shelhamer, E., Darrell, T., 2015. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440.
 

Luo, Y., Jia, X., Fu, S., Xu, M., 2018. pRide: privacy-preserving ride matching over road networks for online ride-hailing service. IEEE Trans. Inf. Forensics Secur. 14 (7), 1791–1802.

 

Ma, T.Y., Rasulkhani, S., Chow, J.Y., Klein, S., 2019. A dynamic ridesharing dispatch and idle vehicle repositioning strategy with integrated transit transfers. Transport. Res. E Logist. Transport. Rev. 128, 417–442.

 

Ma, Z., Koutsopoulos, H.N., 2022. Near-on-demand mobility. The benefits of user flexibility for ride-pooling services. Transport. Res. C Emerg. Technol. 135, 103530.

 

Mäenpää, H., Lobov, A., Lastra, J.L.M., 2017. Travel mode estimation for multi-modal journey planner. Transport. Res. C Emerg. Technol. 82, 273–289.

 
Mao, X., Cai, T., Peng, W., Wan, H., 2021. Estimated time of arrival prediction via modeling the spatial-temporal interactions between links and crosses. In: Proceedings of the 29th International Conference on Advances in Geographic Information Systems, pp. 658–661.
 

Neto, F.D.N., de Souza Baptista, C., Campelo, C.E., 2018. Combining Markov model and prediction by partial matching compression technique for route and destination prediction. Knowl. Base Syst. 154, 81–92.

 

Niu, K., Wang, C., Zhou, X., Zhou, T., 2019. Predicting ride-hailing service demand via RPA-LSTM. IEEE Trans. Veh. Technol. 68 (5), 4213–4222.

 

Özkan, E., Ward, A.R., 2020. Dynamic matching for real-time ride sharing. Stoch. Syst. 10 (1), 29–70.

 

Pouls, M., Ahuja, N., Glock, K., Meyer, A., 2022. Adaptive forecast-driven repositioning for dynamic ride-sharing. Ann. Oper. Res. 1–34.

 

Qin, Z., Tang, X., Jiao, Y., Zhang, F., Xu, Z., Zhu, H., Ye, J., 2020. Ride-hailing order dispatching at DiDi via reinforcement learning. Inf. J. Appl. Anal. 50 (5), 272–286.

 
Qin, Z.T., Zhu, H., Ye, J., 2021. Reinforcement learning for ridesharing: a survey. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC). IEEE, pp. 2447–2454.
 

Qin, X., Yang, H., Wu, Y., Zhu, H., 2021. Multi-party ride-matching problem in the ridehailing market with bundled option services. Transport. Res. C Emerg. Technol. 131, 103287.

 

Qin, G., Luo, Q., Yin, Y., Sun, J., Ye, J., 2021. Optimizing matchingtime intervals for ride-hailing services using reinforcement learning. Transport. Res. C Emerg. Technol. 129, 103239.

 
Research and Markets, 2022. Ride-hailing market - growth, trends, COVID-19 impact, and forecasts, 2022 - 2027). Accessed April 19th, 2022. https://www.researchandmarkets.com/reports/5239571/ride-hailing-market-growth-trends-covid-19.
 
Rong, H., Zhou, X., Yang, C., Shafiq, Z., Liu, A., 2016. The rich and the poor: a Markov decision process approach to optimizing taxi driver revenue efficiency. In: Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, pp. 2329–2334.
 
Ronneberger, O., Fischer, P., Brox, T., 2015. U-net: convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, pp. 234–241.
 

Rossi, A., Barlacchi, G., Bianchini, M., Lepri, B., 2019. Modelling taxi drivers' behaviour for the next destination prediction. IEEE Trans. Intell. Transport. Syst. 21 (7), 2980–2989.

 

Shah, S., Lowalekar, M., Varakantham, P., 2020, April. Neural approximate dynamic programming for on-demand ride-pooling. Proc. AAAI Conf. Artif. Intell. 34 (No. 01), 507–515.

 

Shi, J., Gao, Y., Wang, W., Yu, N., Ioannou, P.A., 2019. Operating electric vehicle fleet for ride-hailing services with reinforcement learning. IEEE Trans. Intell. Transport. Syst. 21 (11), 4822–4834.

 

Song, Z., Wu, K., Shao, J., 2020. Destination prediction using deep echo state network. Neurocomputing 406, 343–353.

 

Smith, B.L., Williams, B.M., Oswald, R.K., 2002. Comparison of parametric and nonparametric models for traffic flow forecasting. Transport. Res. C Emerg. Technol. 10 (4), 303–321.

 

Sun, Y., Fu, K., Wang, Z., Zhou, D., Wu, K., Ye, J., Zhang, C., 2022. CoDriver ETA: combine driver information in estimated time of arrival by driving style learning auxiliary task. IEEE Trans. Intell. Transport. Syst. 23 (5), 4037–4048.

 
Sun, Y., Wang, Y., Fu, K., Wang, Z., Yan, Z., Zhang, C., Ye, J., 2021. FMA-ETA: estimating travel time entirely based on FFN with attention. In: ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, pp. 3355–3359.
 

Tang, K., Chen, S., Liu, Z., Khattak, A.J., 2018. A tensor-based Bayesian probabilistic model for citywide personalized travel time estimation. Transport. Res. C Emerg. Technol. 90, 260–280.

 

Tang, J., Liang, J., Liu, F., Hao, J., Wang, Y., 2021. Multi-community passenger demand prediction at region level based on spatio-temporal graph convolutional network. Transport. Res. C Emerg. Technol. 124, 102951.

 
Tong, Y., Chen, Y., Zhou, Z., Chen, L., Wang, J., Yang, Q., et al., 2017. The simpler the better: a unified approach to predicting original taxi demands based on large-scale online platforms. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1653–1662.
 

Tong, Y., Zeng, Y., Zhou, Z., Chen, L., Ye, J., Xu, K., 2018. A unified approach to route planning for shared mobility. Proc. VLDB Endow. 11 (11), 1633.

 
Wang, Y., Zheng, Y., Xue, Y., 2014. Travel time estimation of a path using sparse trajectories. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 25–34.
 
Wang, Z., Fu, K., Ye, J., 2018. Learning to estimate the travel time. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 858–866.
 
Wang, D., Zhang, J., Cao, W., Li, J., Zheng, Y., 2018. When will you arrive? estimating travel time based on deep neural networks. In: Thirty-Second AAAI Conference on Artificial Intelligence.
 
Wu, F., Wu, L., 2019, July. DeepETA: a spatial-temporal sequential neural network model for estimating time of arrival in package delivery system. Proc. AAAI Conf. Artif. Intell. 33 (No. 01), 774–781.
 
Xu, Z., Li, Z., Guan, Q., Zhang, D., Li, Q., Nan, J., et al., 2018. Large-scale order dispatch in on-demand ride-hailing platforms: a learning and planning approach. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 905–913.
 

Xu, Y., Wang, W., Xiong, G., Liu, X., Wu, W., Liu, K., 2022. Network-flow-based efficient vehicle dispatch for city-scale ride-hailing systems. IEEE Trans. Intell. Transport. Syst. 23 (6), 5526–5538.

 
Xue, A.Y., Zhang, R., Zheng, Y., Xie, X., Huang, J., Xu, Z., 2013. Destination prediction by sub-trajectory synthesis and privacy protection against such prediction. In: 2013 IEEE 29th International Conference on Data Engineering (ICDE). IEEE, pp. 254–265.
 

Yan, C., Zhu, H., Korolko, N., Woodard, D., 2020. Dynamic pricing and matching in ridehailing platforms. Nav. Res. Logist. 67 (8), 705–724.

 

Yang, R., Lai, M., 2021. Multi-level analyses on the nearest-first matching policy of ondemand chauffeured ride-hailing service. Int. J. Sustain. Transport. 15 (10), 749–767.

 
Yao, H., Wu, F., Ke, J., Tang, X., Jia, Y., Lu, S., et al., 2018, April. Deep multi-view spatialtemporal network for taxi demand prediction. Proc. AAAI Conf. Artif. Intell. 32 (1).
 

Yousaf, J., Li, J., Chen, L., Tang, J., Dai, X., 2014. Generalized multipath planning model for ride-sharing systems. Front. Comput. Sci. 8 (1), 100–118.

 

Yu, X., Shen, S., 2019. An integrated decomposition and approximate dynamic programming approach for on-demand ride pooling. IEEE Trans. Intell. Transport. Syst. 21 (9), 3811–3820.

 

Yu, H., Shu, J., Jia, X., Zhang, H., Yu, X., 2019. LpRide: lightweight and privacypreserving ride matching over road networks in online ride hailing systems. IEEE Trans. Veh. Technol. 68 (11), 10418–10428.

 

Yu, H., Zhang, H., Yu, X., Du, X., Guizani, M., 2020. PGRide: privacy-preserving group ridesharing matching in online ride hailing services. IEEE Internet Things J. 8 (7), 5722–5735.

 

Yuan, J., Zheng, Y., Xie, X., Sun, G., 2011. T-drive: enhancing driving directions with taxi drivers' intelligence. IEEE Trans. Knowl. Data Eng. 25 (1), 220–232.

 
Yuen, C.F., Singh, A.P., Goyal, S., Ranu, S., Bagchi, A., 2019. Beyond shortest paths: route recommendations for ride-sharing. In: The World Wide Web Conference, pp. 2258–2269.
 
Zhang, J., Zheng, Y., Qi, D., Li, R., Yi, X., 2016. DNN-based prediction model for spatiotemporal data. In: Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 1–4.
 

Zhang, C., Zhu, F., Lv, Y., Ye, P., Wang, F.Y., 2021. MLRNN: taxi demand prediction based on multi-level deep learning and regional heterogeneity analysis. IEEE Trans. Intell. Transport. Syst.

 

Zhang, D., Xiao, F., 2021a. Dynamic auto-structuring graph neural network: a joint learning framework for origin-destination demand prediction. IEEE Trans. Knowl. Data Eng. https://doi.org/10.1109/TKDE.2021.3135898.

 

Zhang, D., Xiao, F., Shen, M., Zhong, S., 2021b. DNEAT: a novel dynamic node-edge attention network for origin-destination demand prediction. Transportation Research Part C: Emerg. Technol. 122, 102851.

 

Zhang, J., Hasan, S., Yan, X., Liu, X., 2021c. Spatio-temporal mobility patterns of ondemand ride-hailing service users. Transport. Lett. 1–12.

 

Zhu, Z., Sun, L., Chen, X., Yang, H., 2021. Integrating probabilistic tensor factorization with Bayesian supervised learning for dynamic ridesharing pattern analysis. Transport. Res. C Emerg. Technol. 124, 102916.

 

Zhu, P., Mo, H., 2022. The potential of ride-pooling in VKT reduction and its environmental implications. Transport. Res. Transport Environ. 103, 103155.

 

Zou, M., Li, M., Lin, X., Xiong, C., Mao, C., Wan, C., et al., 2016. An agent-based choice model for travel mode and departure time and its case study in Beijing. Transport. Res. C Emerg. Technol. 64, 133–147.

 

Zuo, H., Cao, B., Zhao, Y., Shen, B., Zheng, W., Huang, Y., 2021. High-capacity ridesharing via shortest path clustering on large road networks. J. Supercomput. 77 (4), 4081–4106.

Communications in Transportation Research
Article number: 100075
Cite this article:
Liu Y, Jia R, Ye J, et al. How machine learning informs ride-hailing services: A survey. Communications in Transportation Research, 2022, 2(1): 100075. https://doi.org/10.1016/j.commtr.2022.100075
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return