AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

A predictive chance constraint rebalancing approach to mobility-on-demand services

Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, 41258, Sweden
Volvo Cars AB, Gothenburg, 41878, Sweden
Show Author Information

Abstract

This paper considers the problem of supply-demand imbalances in Mobility-on-Demand (MoD) services. These imbalances occur due to uneven stochastic travel demand and can be mitigated by proactively rebalancing empty vehicles to areas where the demand is high. To achieve this, we propose a method that takes into account uncertainties of predicted travel demand while minimizing pick-up time and rebalance mileage for autonomous MoD ride-hailing. More precisely, first travel demand is predicted using Gaussian Process Regression (GPR) which provides uncertainty bounds on the prediction. We then formulate a stochastic model predictive control (MPC) for the autonomous ride-hailing service and integrate the demand predictions with uncertainty bounds. In order to guarantee constraint satisfaction in the optimization under estimated stochastic demand prediction, we employ a probabilistic constraining method with user-defined confidence interval, using Chance Constrained MPC (CCMPC). The benefits of the proposed method are twofold. First, travel demand uncertainty prediction from data can naturally be embedded into the MoD optimization framework, allowing us to keep the imbalance at each station below a certain threshold with a user-defined probability. Second, CCMPC can be relaxed into a Mixed-Integer-Linear-Program (MILP) and the MILP can be solved as a corresponding Linear-Program, which always admits an integral solution. Our transportation simulations show that by tuning the confidence bound on the chance constraint, close to optimal oracle performance can be achieved, with a median customer wait time reduction of 4% compared to using only the mean prediction of the GPR.

References

 

Braverman, A., Dai, J.G., Liu, X., Ying, L., 2019. Empty-car routing in ridesharing systems. Oper. Res. 67 (5), 1437–1452.

 

Charnes, A., Cooper, W.W., 1959. Chance-constrained programming. Manag. Sci. 6 (1), 73–79.

 
Cplex, I.I., 1987. ‘User's Manual for Cplex’. IBM. https://www.ibm.com/docs/en/icos/20.1.0?topic=cplex-users-manual.
 

Gammelli, D., Peled, I., Rodrigues, F., Pacino, D., Kurtaran, H.A., Pereira, F.C., 2020. Estimating latent demand of shared mobility through censored Gaussian processes. Transport. Res. C Emerg. Technol. 120, 102775.

 

Gardner, J., Pleiss, G., Weinberger, K.Q., Bindel, D., Wilson, A.G., 2018. Gpytorch: blackbox matrix-matrix Gaussian process inference with gpu acceleration. Adv. Neural Inf. Process. Syst. 31, 7587–7597.

 
George, D.K., 2012. Stochastic Modeling and Decentralized Control Policies for LargeScale Vehicle Sharing Systems via Closed Queueing Networks. Ph.D. Dissertation. Columbus, OH: The Ohio State University.
 

Grosso, J., Ocampo-Martínez, C., Puig, V., Joseph, B., 2014. Chance-constrained model predictive control for drinking water networks. J. Process Control 24 (5), 504–516.

 

Guo, X., Caros, N.S., Zhao, J., 2021. Robust matching-integrated vehicle rebalancing in ride-hailing system with uncertain demand. Transp. Res. Part B Methodol. 150, 161–189.

 

He, L., Hu, Z., Zhang, M., 2020. Robust repositioning for vehicle sharing. Manuf. Serv. Oper. Manag. 22 (2), 241–256.

 

Hewing, L., Kabzan, J., Zeilinger, M.N., 2019. Cautious model predictive control using Gaussian process regression. IEEE Trans. Control Syst. Technol. 28 (6), 2736–2743.

 
Hoffman, A.J., Kruskal, J.B., 2010. Integral Boundary Points of Convex Polyhedra. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 49–76.
 

Horni, A., Nagel, K., Axhausen, K.W., 2016. The Multi-Agent Transport Simulation MATSim. Ubiquity Press.

 
Iglesias, R., Rossi, F., Wang, K., Hallac, D., Leskovec, J., Pavone, M., 2018. Data-driven model predictive control of autonomous mobility-on-demand systems. In: ‘2018 IEEE International Conference on Robotics and Automation (ICRA)’. IEEE, pp. 6019–6025.
 
Jensen, B.S., Nielsen, J.B., Larsen, J., 2013. Bounded Gaussian process regression. In: ‘2013 IEEE International Workshop on Machine Learning for Signal Processing (MLSP)’. IEEE, pp. 1–6.
 

Kocijan, J., 2016. Modelling and Control of Dynamic Systems Using Gaussian Process Models. Cham: Springer International Publishing.

 

Kuhn, H.W., 1955. The Hungarian method for the assignment problem. Nav. Res. Logist. Q. 2 (1–2), 83–97.

 

Lacombe, R., Gros, S., Murgovski, N., Kulcsár, B., 2021. Bilevel optimization for bunching mitigation and eco-driving of electric bus lines. IEEE Trans. Intell. Transport. Syst. 23 (8), 10662–10679.

 
Litman, T., 2020. Autonomous vehicle implementation predictions: Implications for transport planning, Technical report. Victoria Transport Policy Institute, 2020-1-9.
 

Mao, C., Liu, Y., Shen, Z.-J.M., 2020. Dispatch of autonomous vehicles for taxi services: a deep reinforcement learning approach. Transport. Res. C Emerg. Technol. 115, 102626.

 

Miao, F., Han, S., Lin, S., Wang, Q., Stankovic, J.A., Hendawi, A., Zhang, D., He, T., Pappas, G.J., 2017. Data-driven robust taxi dispatch under demand uncertainties. IEEE Trans. Control Syst. Technol. 27 (1), 175–191.

 
Ono, M., Williams, B.C., 2008. Iterative risk allocation: a new approach to robust model predictive control with a joint chance constraint. In: ‘2008 47th IEEE Conference on Decision and Control’. IEEE, pp. 3427–3432.
 
OpenStreetMap contributors, 2017. Planet OSM. https://planet.osm.org.
 

Pavone, M., Smith, S.L., Frazzoli, E., Rus, D., 2012. Robotic load balancing for mobility-on-demand systems. Int. J. Robot Res. 31 (7), 839–854.

 

Pereira, M., Boyraz Baykas, P., Kulcsár, B., Lang, A., 2022. Parameter and density estimation from real-world traffic data: a kinetic compartmental approach. Transp. Res. Part B Methodol. 155, 210–239.

 
Piorkowski, M., Sarafijanovic-Djukic, N., Grossglauser, M.. Crawdad Epfl/mobility. https://ieee-dataport.org/open-access/crawdad-epflmobility.
 
Prékopa, A., 2013. Stochastic Programming, 324. Springer Science & Business Media, pp. 233–269.
 
Raposo, A., et al.. The Future of Road Transport. https://publications.jrc.ec.europa.eu/repository/handle/JRC116644.
 

Rasmussen, C.E., Williams, C., 2005. Gaussian Processes for Machine Learning. The MIT Press.

 

Roberts, S., Osborne, M., Ebden, M., Reece, S., Gibson, N., Aigrain, S., 2013. Gaussian processes for time-series modelling. Phil. Trans. Math. Phys. Eng. Sci. 371 (1984), 20110550.

 

Ruch, C., Gächter, J., Hakenberg, J., Frazzoli, E., 2020. The +1 method: model-free adaptive repositioning policies for robotic multi-agent systems. IEEE Trans. Netw. Sci. Eng. 7 (4), 3171–3184.

 
Ruch, C., Hörl, S., Frazzoli, E., 2018. Amodeus, a simulation-based testbed for autonomous mobility-on-demand systems. In: ‘2018 21st International Conference on Intelligent Transportation Systems (ITSC)’. IEEE, HI, USA, pp. 3639–3644.
 
Salazar, M., Rossi, F., Schiffer, M., Onder, C.H., Pavone, M., 2018. On the interaction between autonomous mobility-on-demand and public transportation systems. In: ‘2018 21st International Conference on Intelligent Transportation Systems (ITSC)’. IEEE, HI, USA, pp. 2262–2269.
 
Schrijver, A., 1998. Theory of Linear and Integer Programming. John Wiley & Sons.
 
Shapiro, A., Dentcheva, D., Ruszczynski, A., 2021. In: Lectures on Stochastic Programming: Modeling and Theory, 3rd edn. Society for Industrial and Applied Mathematics, Philadelphia, PA.
 

Swiler, L.P., Gulian, M., Frankel, A.L., Safta, C., Jakeman, J.D., 2020. A survey of constrained Gaussian process regression: approaches and implementation challenges. J. Mach. Learn. Model. Comput. 1 (2), 119–156.

 
Tsao, M., Iglesias, R., Pavone, M., 2018. Stochastic model predictive control for autonomous mobility on demand. In: ‘2018 21st International Conference on Intelligent Transportation Systems (ITSC)’. IEEE, pp. 3941–3948.
 
United Nations Publications, 2019. World Urbanization Prospects: the 2018 Revision. UN.
 
Van Ackooij, W., Zorgati, R., Henrion, R., Moller, A., 2011. Chance constrained programming and its applications to energy management. In: Stochastic Optimization-Seeing the Optimal for the Uncertain. IntechOpen, pp. 291–320.
 

Van Parys, B.P.G., Goulart, P.J., Kuhn, D., 2016. Generalized gauss inequalities via semidefinite programming. Math. Program. 156 (1), 271–302.

 

Varga, B., Tettamanti, T., Kulcsár, B., Qu, X., 2020. Public transport trajectory planning with probabilistic guarantees. Transp. Res. Part B Methodol. 139, 81–101.

 
Walukiewicz, S., 2013. Integer Programming, vol. 46. Springer Science & Business Media.
 

Xie, Y., Zhao, K., Sun, Y., Chen, D., 2010. Gaussian processes for short-term traffic volume forecasting. Transport. Res. Rec. 2165 (1), 69–78.

 

Zardini, G., Lanzetti, N., Pavone, M., Frazzoli, E., 2022. Analysis and control of autonomous mobility-on-demand systems. Ann. Rev. Control, Robot. Auton. Systems 5, 633–658.

 
Zhang, R., Rossi, F., Pavone, M., 2016. Model predictive control of autonomous mobilityon-demand systems. In: ‘2016 IEEE International Conference on Robotics and Automation (ICRA)’. IEEE, pp. 1382–1389.
 
Zhao, K., Tarkoma, S., Liu, S., Vo, H., 2016. Urban human mobility data mining: an overview. In: ‘2016 IEEE International Conference on Big Data (Big Data)’, pp. 1911–1920.
Communications in Transportation Research
Article number: 100097
Cite this article:
Tingstad Jacobsen SE, Lindman A, Kulcsár B. A predictive chance constraint rebalancing approach to mobility-on-demand services. Communications in Transportation Research, 2023, 3: 100097. https://doi.org/10.1016/j.commtr.2023.100097

336

Views

2

Crossref

3

Web of Science

3

Scopus

Altmetrics

Received: 18 January 2023
Revised: 03 May 2023
Accepted: 05 May 2023
Published: 19 July 2023
© 2023 The Authors.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Return