AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

AGNP: Network-wide short-term probabilistic traffic speed prediction and imputation

Meng XuaYining DiaHongxing DingaZheng Zhub,c,d( )Xiqun Chenb,c,dHai Yanga,e
Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
Institute of Intelligent Transportation Systems, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, China
Zhejiang Provincial Engineering Research Center for Intelligent Transportation, Hangzhou, 310058, China
Alibaba-Zhejiang University Joint Research Institute of Frontier Technologies, Hangzhou, 310058, China
Intelligent Transportation Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, 511458, China
Show Author Information

Abstract

The data-driven Intelligent Transportation System (ITS) provides great support to travel decisions and system management but inevitably encounters the issue of data missing in monitoring systems. Hence, network-wide traffic state prediction and imputation is critical to recognizing the system level state of a transportation network. Abundant research works have adopted various approaches for traffic prediction and imputation. However, previous methods ignore the reliability analysis of the predicted/imputed traffic information. Thus, this study originally proposes an attentive graph neural process (AGNP) method for network-level short-term traffic speed prediction and imputation, simultaneously considering reliability. Firstly, the Gaussian process (GP) is used to model the observed traffic speed state. Such a stochastic process is further learned by the proposed AGNP method, which is utilized for inferring the congestion state on the remaining unobserved road segments. Data from a transportation network in Anhui Province, China, is used to conduct three experiments with increasing missing data ratio for model testing. Based on comparisons against other machine learning models, the results show that the proposed AGNP model can impute traffic networks and predict traffic speed with high-level performance. With the probabilistic confidence provided by the AGNP, reliability analysis is conducted both numerically and visually to show that the predicted distributions are beneficial to guide traffic control strategies and travel plans.

References

 

Bae, B., Kim, H., Lim, H., Liu, Y., Han, L.D., Freeze, P.B., 2018. Missing data imputation for traffic flow speed using spatio-temporal cokriging. Transport. Res. C Emerg. Technol. 88, 124–139.

 

Candela, J.Q., Rasmussen, C.E., 2005. A unifying view of sparse approximate Gaussian process regression. J. Mach. Learn. Res. 6, 1939–1959.

 

Chan, R.K.C., Lim, J.M.Y., Parthiban, R., 2021. A neural network approach for traffic prediction and routing with missing data imputation for intelligent transportation system. Expert Syst. Appl. 171, 114573.

 

Che, Z., Purushotham, S., Cho, K., Sontag, D., Liu, Y., 2018. Recurrent neural networks for multivariate time series with missing values. Sci. Rep. 8 (1), 1–12.

 

Chen, X., He, Z., Wang, J., 2018. Spatial-temporal traffic speed patterns discovery and incomplete data recovery via SVD-combined tensor decomposition. Transport. Res. C Emerg. Technol. 86, 59–77.

 

Chen, X., He, Z., Chen, Y., Lu, Y., Wang, J., 2019. Missing traffic data imputation and pattern discovery with a Bayesian augmented tensor factorization model. Transport. Res. C Emerg. Technol. 104, 66–77.

 
Chung, J., Gulcehre, C., Cho, K., Bengio, Y., 2014. Empirical evaluation of gated recurrent neural networks on sequence modeling. In: Proceedings of Neural Information Processing Systems (NeurIPS).
 

Cui, Z., Henrickson, K., Ke, R., Wang, Y., 2019. Traffic graph convolutional recurrent neural network: a deep learning framework for network-scale traffic learning and forecasting. IEEE Trans. Intell. Transport. Syst. 21 (11), 4883–4894.

 

Cui, Z., Lin, L., Pu, Z., Wang, Y., 2020. Graph Markov network for traffic forecasting with missing data. Transport. Res. C Emerg. Technol. 117, 102671.

 

de Medrano, R., Aznarte, J.L., 2020. A spatio-temporal attention-based spot-forecasting framework for urban traffic prediction. Appl. Soft Comput. 96, 106615.

 

Deb, S., Strawderman, L., Carruth, D.W., DuBien, J., Smith, B., Garrison, T.M., 2017. Development and validation of a questionnaire to assess pedestrian receptivity toward fully autonomous vehicles. Transport. Res. C Emerg. Technol. 84, 178–195.

 

El Hamdani, S., Benamar, N., Younis, M., 2020. Pedestrian support in intelligent transportation systems: challenges, solutions and open issues. Transport. Res. C Emerg. Technol. 121, 102856.

 

Ganin, A.A., Mersky, A.C., Jin, A.S., Kitsak, M., Keisler, J.M., Linkov, I., 2019. Resilience in intelligent transportation systems (ITS). Transport. Res. C Emerg. Technol. 100, 318–329.

 

Gao, K., Yang, Y., Qu, X., 2021. Diverging effects of subjective prospect values of uncertain time and money. Commun. Transport. Res. 1, 100007.

 
Garnelo, M., Schwarz, J., Rosenbaum, D., Viola, F., Rezende, D.J., Eslami, S.M., Teh, Y.W., 2018. Neural processes. In: Proceedings of the International Conference on Machine Learning (ICML).
 

Hochreiter, S., Schmidhuber, J., 1997. Long short-term memory. Neural Comput. 9 (8), 1735–1780.

 

Huang, F., Yi, P., Wang, J., Li, M., Peng, J., Xiong, X., 2022. A dynamical spatial-temporal graph neural network for traffic demand prediction. Inf. Sci. 594, 286–304.

 

Jia, Y., Wu, J., Xu, M., 2017. Traffic flow prediction with rainfall impact using a deep learning method. J. Adv. Transport., 6575947.

 

Kaur, M., Singh, S., Aggarwal, N., 2022. Missing traffic data imputation using a dual-stage error-corrected boosting regressor with uncertainty estimation. Inf. Sci. 586, 344–373.

 

Ke, J., Zheng, H., Yang, H., Chen, X.M., 2017. Short-term forecasting of passenger demand under on-demand ride services: a spatio-temporal deep learning approach. Transport. Res. C Emerg. Technol. 85, 591–608.

 
Kim, H., Mnih, A., Schwarz, J., Garnelo, M., Eslami, A., Rosenbaum, D., et al., 2019. Attentive neural processes. In: Proceedings of the International Conference on Learning Representations (ICLR).
 
Kingma, D.P., Welling, M., 2014. Auto-encoding variational bayes. In: Proceedings of the International Conference on Learning Representations (ICLR).
 
Kipf, T.N., Welling, M., 2017. Semi-supervised classification with graph convolutional networks. In: Proceedings of the International Conference on Learning Representations (ICLR).
 

Lee, K., Rhee, W., 2022. DDP-GCN: multi-graph convolutional network for spatiotemporal traffic forecasting. Transport. Res. C Emerg. Technol. 134, 103466.

 

Li, L., Li, Y., Li, Z., 2013. Efficient missing data imputing for traffic flow by considering temporal and spatial dependence. Transport. Res. C Emerg. Technol. 34, 108–120.

 

Li, L., Zhang, J., Wang, Y., Ran, B., 2018. Missing value imputation for traffic-related time series data based on a multi-view learning method. IEEE Trans. Intell. Transport. Syst. 20 (8), 2933–2943.

 

Li, H., Li, M., Lin, X., He, F., Wang, Y., 2020. A spatiotemporal approach for traffic data imputation with complicated missing patterns. Transport. Res. C Emerg. Technol. 119, 102730.

 

Liu, L., Chen, R.C., 2017. A novel passenger flow prediction model using deep learning methods. Transport. Res. C Emerg. Technol. 84, 74–91.

 
Liu, S., Yue, Y., Krishnan, R., 2013. Adaptive collective routing using Gaussian process dynamic congestion models. In: Proceedings of the 19th ACM SIGKDD International Conference On Knowledge Discovery And Data Mining.
 

Liu, Q., Wang, B., Zhu, Y., 2018. Short-term traffic speed forecasting based on attention convolutional neural network for arterials. Comput. Aided Civ. Infrastruct. Eng. 33 (11), 999–1016.

 

Liu, Y., Liu, Z., Jia, R., 2019. DeepPF: a deep learning based architecture for metro passenger flow prediction. Transport. Res. C Emerg. Technol. 101, 18–34.

 

Luan, S., Ke, R., Huang, Z., Ma, X., 2022. Traffic congestion propagation inference using dynamic Bayesian graph convolution network. Transport. Res. C Emerg. Technol. 135, 103526.

 

Matthews, A.G.D.G., Van Der Wilk, M., Nickson, T., Fujii, K., Boukouvalas, A., León-Villagrá, P., et al., 2017. GPflow: a Gaussian process library using TensorFlow. J. Mach. Learn. Res. 18 (40), 1–6.

 

Ni, D., Leonard, J.D., Guin, A., Feng, C., 2005. Multiple imputation scheme for overcoming the missing values and variability issues in ITS data. J. Transport. Eng. 131 (12), 931–938.

 

Ortuzar, J.D.D., 2021. Future transportation: sustainability, complexity and individualization of choices. Commun Transport Res 1, 100010.

 

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al., 2011. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830.

 

Peng, H., Du, B., Liu, M., Liu, M., Ji, S., Wang, S., et al., 2021. Dynamic graph convolutional network for long-term traffic flow prediction with reinforcement learning. Inf. Sci. 578, 401–416.

 

Qu, L., Li, L., Zhang, Y., Hu, J., 2009. PPCA-based missing data imputation for traffic flow volume: a systematical approach. IEEE Trans. Intell. Transport. Syst. 10 (3), 512–522.

 
Rasmussen, C.E., Williams, C.K.I., 2006. Classification. In: Gaussian Processes for Machine Learning. MIT press, Cambridge, MA, pp. 7–32.
 

Ran, B., Jin, P.J., Boyce, D., Qiu, T.Z., Cheng, Y., 2012. Perspectives on future transportation research: impact of intelligent transportation system technologies on next-generation transportation modeling. J. Intell. Transport. S. 16 (4), 226–242.

 

Rodrigues, F., Pereira, F.C., 2018. Heteroscedastic Gaussian processes for uncertainty modeling in large-scale crowdsourced traffic data. Transport. Res. C Emerg. Technol. 95, 636–651.

 

Rodrigues, F., Henrickson, K., Pereira, F.C., 2018. Multi-output Gaussian processes for crowdsourced traffic data imputation. IEEE Trans. Intell. Transport. Syst. 20 (2), 594–603.

 

Salamanis, A., Kehagias, D.D., Filelis-Papadopoulos, C.K., Tzovaras, D., Gravvanis, G.A., 2016. Managing spatial graph dependencies in large volumes of traffic data for travel-time prediction. IEEE Trans. Intell. Transport. Syst. 17 (6), 1678–1687.

 

Smith, B.L., Williams, B.M., Oswald, R.K., 2002. Comparison of parametric and nonparametric models for traffic flow forecasting. Transport. Res. C Emerg. Technol. 10 (4), 303–321.

 

Spana, S., Du, L., 2022. Optimal information perturbation for traffic congestion mitigation: Gaussian process regression and optimization. Transport. Res. C Emerg. Technol. 138, 103647.

 

Sumalee, A., Ho, H.W., 2018. Smarter and more connected: future intelligent transportation system. IATSS Res. 42 (2), 67–71.

 

Ta, X., Liu, Z., Hu, X., Yu, L., Sun, L., Du, B., 2022. Adaptive Spatio-Temporal Graph Neural Network for Traffic Forecasting. Knowledge-Based Systems, 108199.

 

Tang, J., Zeng, J., 2022. Spatiotemporal gated graph attention network for urban traffic flow prediction based on license plate recognition data. Comput. Aided Civ. Infrastruct. Eng. 37 (1), 3–23.

 

Tang, J., Zhang, X., Yin, W., Zou, Y., Wang, Y., 2021. Missing data imputation for traffic flow based on combination of fuzzy neural network and rough set theory. J. Intell. Transport. S. 25 (5), 439–454.

 

Tian, Y., Zhang, K., Li, J., Lin, X., Yang, B., 2018. LSTM-based traffic flow prediction with missing data. Neurocomputing 318, 297–305.

 

Wang, W., Wu, Y., 2021. Is uncertainty always bad for the performance of transportation systems? Commun. Transport. Res. 1, 100021.

 

Xu, M., Di, Y., Yang, H., Chen, X., Zhu, Z., 2023. Multi-task supply-demand prediction and reliability analysis for docked bike-sharing systems via transformer-encoder-based neural processes. Transport. Res. C Emerg. Technol. 147, 104015.

 

Yang, B., Kang, Y., Yuan, Y., Huang, X., Li, H., 2021a. ST-LBAGAN: spatio-temporal learnable bidirectional attention generative adversarial networks for missing traffic data imputation. Knowl. Base Syst. 215, 106705.

 

Yang, J.M., Peng, Z.R., Lin, L., 2021b. Real-time spatiotemporal prediction and imputation of traffic status based on LSTM and Graph Laplacian regularized matrix factorization. Transport. Res. C Emerg. Technol. 129, 103228.

 

Ye, J., Xue, S., Jiang, A., 2021. Attention-based spatio-temporal graph convolutional network considering external factors for multi-step traffic flow prediction. Digital Communications and Networks 8 (3), 343–350.

 
Yu, B., Yin, H., Zhu, Z., 2017. Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI).
 

Yuan, Y., Zhang, Z., Yang, X.T., Zhe, S., 2021. Macroscopic traffic flow modeling with physics regularized Gaussian process: a new insight into machine learning applications in transportation. Transp. Res. Part B Methodol. 146, 88–110.

 
Zhang, J., Zheng, Y., Qi, D., 2017. Deep spatio-temporal residual networks for citywide crowd flows prediction. In: Proceedings of the AAAI Conference on Artificial Intelligence.
 

Zhang, Y., Cheng, T., Ren, Y., 2019. A graph deep learning method for short-term traffic forecasting on large road networks. Comput. Aided Civ. Infrastruct. Eng. 34 (10), 877–896.

 

Zhang, K., He, Z., Zheng, L., Zhao, L., Wu, L., 2021a. A generative adversarial network for travel times imputation using trajectory data. Comput. Aided Civ. Infrastruct. Eng. 36 (2), 197–212.

 

Zhang, Z., Lin, X., Li, M., Wang, Y., 2021b. A customized deep learning approach to integrate network-scale online traffic data imputation and prediction. Transport. Res. C Emerg. Technol. 132, 103372.

 

Zhu, Z., Peng, B., Xiong, C., Zhang, L., 2016. Short-term traffic flow prediction with linear conditional Gaussian Bayesian network. J. Adv. Transport. 50 (6), 1111–1123.

 

Zhu, Z., Mardan, A., Zhu, S., Yang, H., 2021. Capturing the interaction between travel time reliability and route choice behavior based on the generalized Bayesian traffic model. Transp. Res. Part B Methodol. 143, 48–64.

 

Zhu, K., Zhang, S., Li, J., Zhou, D., Dai, H., Hu, Z., 2022a. Spatiotemporal multi-graph convolutional networks with synthetic data for traffic volume forecasting. Expert Syst. Appl. 187, 115992.

 

Zhu, Z., Xu, M., Di, Y., Chen, X., Yu, J., 2022b. Modeling ride-sourcing matching and pickup processes based on additive Gaussian process models. Transport. Bus.: Transport Dynamics 11 (1), 590–611.

 

Zhu, Z., Xu, M., Di, Y., Yang, H., 2022c. Fitting spatial-temporal data via a physics regularized multi-output grid Gaussian process: case studies of a bike-sharing system. IEEE Trans. Intell. Transport. Syst. 23 (11), 21090–21101.

 

Zhu, Z., Xu, M., Ke, J., Yang, H., Chen, X., 2023. A Bayesian clustering ensemble Gaussian process model for network-wide traffic flow clustering and prediction. Transport. Res. C Emerg. Technol. 148, 104032.

Communications in Transportation Research
Article number: 100099
Cite this article:
Xu M, Di Y, Ding H, et al. AGNP: Network-wide short-term probabilistic traffic speed prediction and imputation. Communications in Transportation Research, 2023, 3: 100099. https://doi.org/10.1016/j.commtr.2023.100099

295

Views

15

Crossref

15

Web of Science

14

Scopus

Altmetrics

Received: 22 March 2023
Revised: 04 June 2023
Accepted: 04 June 2023
Published: 25 July 2023
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return