AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (10.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Efficient degradation of toluene over ultra-low Pd supported on UiO-66 and its functional materials: Reaction mechanism, water-resistance, and influence of SO2

Fukun BiaZhenyuan ZhaoaYang YangaQiang LiuaWenyuan HuangbYuandong Huanga( )Xiaodong Zhanga( )
School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
School of Chemistry, University of Manchester, Manchester, M13 9PL, UK
Show Author Information

HIGHLIGHTS

● Pd supported on UiO-66-M (M = H, NH2 and NO2) were successfully synthesized.

● Functional groups greatly affected Pd particles dimension and Pd0 proportion.

● Relationships between adsorption, catalytic and activation were revealed.

● Difference in SO2 influence mechanism on the supported Pd catalysts was elucidated.

Graphical Abstract

Abstract

Herein, Pd supported on UiO-66 as well as its NH2- and NO2-functional materials with ultra-low Pd loadings (0.05 ​wt%) were synthesized for toluene oxidation. Pd–U, using UiO-66 as the support, exhibited superb catalytic performance, water resistance, and resistance to SO2. A series of experiments and characterizations revealed that a high dispersion of small Pd clusters, high Pd0/Pdtotal proportion, better adsorption for toluene, and the best adsorption and activation capacities of gaseous oxygen species enhanced toluene degradation over Pd–U. Additionally, the catalytic mechanism over the Pd-based catalysts was revealed and discussed. Furthermore, the water-resistance and the SO2 concentration influence were tested and analyzed. Introducing H2O suppressed the adsorption and activation of toluene as well as gaseous oxygen species, and decreased catalytic performance over the three catalysts. The mechanism of the different impacts of SO2 on the three catalysts was investigated and elucidated. This study provides guidance for rationally designing catalysts for removing toluene under in-field operating conditions.

References

[1]

M.L. Xiao, X.L. Yu, Y.C. Guo, M.F. Ge, Boosting toluene combustion by tuning electronic metal-support interactions in in situ grown Pt@Co3O4 catalysts, Environ. Sci. Technol. 56 (2022) 1376–1385.

[2]

C. He, J. Cheng, X. Zhang, M. Douthwaite, S. Pattisson, Z. Hao, Recent advances in the catalytic oxidation of volatile organic compounds: a review based on pollutant sorts and sources, Chem. Rev. 119 (2019) 4471–4568.

[3]

M.L. Xiao, X.Q. Yang, Y. Peng, Y.C. Guo, Y.C. Wei, M.F. Ge, X.L. Yu, Confining shell-sandwiched Ag clusters in MnO2-CeO2 hollow spheres to boost activity and stability of toluene combustion, Nano Res. 15 (2022) 7042–7051.

[4]

Q.Y. Wang, Y.X. Li, A. Serrano-Lotina, W. Han, R. Portela, R.X. Wang, M.A. Banares, K.L. Yeung, Operando investigation of toluene oxidation over 1D Pt@CeO2 derived from Pt cluster-containing MOF, J. Am. Chem. Soc. 143 (2021) 196–205.

[5]

S.P. Mo, J. Li, R.Q. Liao, P. Peng, J.J. Li, J.L. Wu, M.L. Fu, L. Liao, T.M. Shen, Q.L. Xie, D.Q. Ye, Unraveling the decisive role of surface CeO2 nanoparticles in the Pt-CeO2/MnO2 hetero-catalysts for boosting toluene oxidation: synergistic effect of surface decorated and intrinsic O-vacancies, Chem. Eng. J. 418 (2021), 129399.

[6]

X.D. Zhang, F.K. Bi, Z.Y. Zhao, Y. Yang, Y.T. Li, L. Song, N. Liu, J.C. Xu, L.F. Cui, Boosting toluene oxidation by the regulation of Pd species on UiO-66: synergistic effect of Pd species, J. Catal. 413 (2022) 59–72.

[7]

X.D. Zhang, S. Xiang, Q.X. Du, F.K. Bi, K.L. Xie, L. Wang, Effect of calcination temperature on the structure and performance of rod-like MnCeOx derived from MOFs catalysts, Mol. Catal. 522 (2022), 112226.

[8]

X.D. Zhang, F.K. Bi, Z.Q. Zhu, Y. Yang, S.H. Zhao, J.F. Chen, X.T. Lv, Y.X. Wang, J.C. Xu, N. Liu, The promoting effect of H2O on rod-like MnCeOx derived from MOFs for toluene oxidation: a combined experimental and theoretical investigation, Appl. Catal. B Environ. 297 (2021), 120393.

[9]

Y.X. Wang, F.K. Bi, Y.Y. Wang, M.H. Jia, X.F. Tao, T.X. Jin, X.D. Zhang, MOF-derived CeO2 supported Ag catalysts for toluene oxidation: the effect of synthesis method, Mol. Catal. 515 (2021), 111922.

[10]

Q.Y. Zhao, Z.Y. Zhao, R.Z. Rao, Y. Yang, S.Y. Ling, F.K. Bi, X.Y. Shi, J.C. Xu, G. Lu, X.D. Zhang, Universitetet i Oslo-67 (UiO-67)/graphite oxide composites with high capacities of toluene: synthesis strategy and adsorption mechanism insight, J. Colloid Interface Sci. 627 (2022) 385–397.

[11]

Q.Y. Zhao, Q.X. Du, Y. Yang, Z.Y. Zhao, J. Cheng, F.K. Bi, X.Y. Shi, J.C. Xu, X.D. Zhang, Effects of regulator ratio and guest molecule diffusion on VOCs adsorption by defective UiO-67: experimental and theoretical insights, Chem. Eng. J. 433 (2022), 134510.

[12]

Y. Yang, S.H. Zhao, L.F. Cui, F.K. Bi, Y.N. Zhang, N. Liu, Y.X. Wang, F.D. Liu, C. He, X.D. Zhang, Recent advancement and future challenges of photothermal catalysis for VOCs elimination: from catalyst design to applications, Green Energy Environ (2022), https://doi.org/10.1016/j.gee.2022.02.006.

[13]

Y. Yang, S.H. Zhao, F.K. Bi, J.F. Chen, Y.X. Wang, L.F. Cui, J.C. Xu, X.D. Zhang, Highly efficient photothermal catalysis of toluene over Co3O4/TiO2 p-n heterojunction: the crucial roles of interface defects and band structure, Appl. Catal. B Environ. 315 (2022), 121550.

[14]

Z.L. Wu, D.D. Zhu, Z.Z. Chen, S.L. Yao, Li Jing, E.H. Gao, W. Wang, Enhanced energy efficiency and reduced nanoparticle emission on plasma catalytic oxidation of toluene using Au/γ-Al2O3 nanocatalyst, Chem. Eng. J. 427 (2022), 130981.

[15]

J.F. Chen, Y. Yang, S.H. Zhao, F.K. Bi, L. Song, N. Liu, J.C. Xu, Y.X. Wang, X.D. Zhang, Stable black phosphorus encapsulation in porous mesh-like UiO-66 promoted charge transfer for photocatalytic oxidation of toluene and o-dichlorobenzene: performance, degradation pathway, and mechanism, ACS Catal. 12 (2022) 8069–8081.

[16]

X.D. Zhang, K. Yue, R.Z. Rao, J.F. Chen, Q. Liu, F.K. Bi, Y.X. Wang, J.C. Xu, N. Liu, Synthesis of acidic MIL-125 from plastic waste: significant contribution of N orbital for efficient photocatalytic degradation of chlorobenzene and toluene, Appl. Catal. B Environ. 310 (2022), 121300.

[17]

X.D. Zhang, Z.Q. Zhu, R.Z. Rao, J.F. Chen, X.W. Han, S.T. Jiang, Y.Q. Yang, Y.X. Wang, L. Wang, Highly efficient visible-light-driven photocatalytic degradation of gaseous toluene by rutile-anatase TiO2@MIL-101 composite with two heterojunctions, J. Environ. Sci. (2022), https://doi.org/10.1016/j.jes.2022.03.014.

[18]

Y.F. Li, T.Y. Chen, S.Q. Zhao, P. Wu, Y.N. Chong, A.Q. Li, Y. Zhao, G.X. Chen, X.J. Jin, Y.C. Qiu, D.Q. Ye, Engineering cobalt oxide with coexisting cobalt defects and oxygen vacancies for enhanced catalytic oxidation of toluene, ACS Catal. 12 (2022) 4906–4917.

[19]

R. Mi, D. Li, Z. Hu, R.T. Yang, Morphology effects of CeO2 nanomaterials on the catalytic combustion of toluene: a combined kinetics and diffuse reflectance infrared Fourier transform spectroscopy study, ACS Catal. 11 (2021) 7876–7889.

[20]

X.D. Zhang, Y. Yang, Q. Zhu, M.D. Ma, Z.Y. Jiang, X. Liao, C. He, Unraveling the effects of potassium incorporation routes and positions on toluene oxidation over α-MnO2 nanorods: based on experimental and density functional theory (DFT) studies, J. Colloid Interface Sci. 598 (2021) 324–338.

[21]

Y.T. Wang, C. Wang, K. Zeng, S.M. Wang, H.L. Zhang, X.W. Li, Z. Wang, C.H. Zhang, Revealing the strong interaction effect of MnOx nanoparticles and Nb2O5 supports with variable morphologies on catalytic propane oxidation, Appl. Surf. Sci. 576 (2022), 151797.

[22]

Y.R. Fang, H.J. Li, Q. Zhang, C.Y. Wang, J. Xu, H. Shen, J. Yang, C.Q. Pan, Y.H. Zhu, Z. Luo, Y.B. Guo, Oxygen vacancy-governed opposite catalytic performance for C3H6 and C3H8 combustion: the effect of the Pt electronic structure and chemisorbed oxygen species, Environ. Sci. Technol. 56 (2022) 3245–3257.

[23]

F.K. Bi, X.D. Zhang, Q.X. Du, K. Yue, R.Z. Wang, F. Li, N. Liu, Y.D. Huang, Influence of pretreatment conditions on low-temperature CO oxidation over Pd supported UiO-66 catalysts, Mol. Catal. 509 (2021), 111633.

[24]

K. Karinshak, P.W. Chen, R.F. Liu, S.J. Golden, M.P. Harold, Optimizing feed modulation for coupled methane and NOx conversion over Pd-Pt/Mn0.5Fe2.5O4/Al2O3 monolith catalyst, Appl. Catal. B Environ. 304 (2022), 120607.

[25]

C.Y. Wang, Y.B. Li, C.B. Zhang, X.Y. Chen, C.L. Liu, W.Z. Weng, W.P. Shan, H. He, A simple strategy to improve Pd dispersion and enhance Pd/TiO2 catalytic activity for formaldehyde oxidation: the roles of surface defects, Appl. Catal. B Environ. 282 (2021), 119540.

[26]

M. Guo, P.J. Ma, J.Y. Wang, H.X. Xu, K. Zheng, D.J. Cheng, Y.X. Liu, G.S. Guo, H.X. Dai, E.H. Duan, J.G. Deng, Synergy in Au-CuO janus structure for catalytic isopropanol oxidative dehydrogenation to acetone, Angew. Chem. Int. Ed. 61 (2022), e202203827.

[27]

Q.X. Du, R.Z. Rao, F.K. Bi, Y. Yang, W.M. Zhang, Y.Q. Yang, N. Liu, X.D. Zhang, Preparation of modified zirconium-based metal-organic frameworks (Zr-MOFs) supported metals and recent application in environment: a review and perspectives, Surface. Interfac. 28 (2022), 101647.

[28]

S.T. Jiang, Z.Y. Zhao, J.F. Chen, Y. Yang, C.Y. Ding, Y.Q. Yang, Y.X. Wang, N. Liu, L. Wang, X.D. Zhang, Recent research progress and challenges of MIL-88(Fe) from synthesis to advanced oxidation process, Surface. Interfac. 30 (2022), 101843.

[29]

C.F. Huang, Q.Q. Ji, H.L. Zhang, S.M. Wang, X.H. Liu, Y.M. Guo, C.H. Zhang, Ru-incorporated Co3O4 nanoparticles from self-sacrificial ZIF-67 template as efficient bifunctional electrocatalysts for rechargeable metal-air battery, J. Colloid Interface Sci. 606 (2022) 654–665.

[30]

C.Y. Wang, L.S. Ma, C.C. Wang, P. Wang, L. Gutierrez, W.W. Zheng, Light-response adsorption and desorption behaviors of metal–organic frameworks, Environ. Funct. Mater. 1 (2022) 49–66.

[31]

A. Bavykina, N. Kolobov, I.S. Khan, J.A. Bau, A. Ramirez, J. Gascon, Metal-organic frameworks in heterogeneous catalysis: recent progress, new trends, and future perspectives, Chem. Rev. 120 (2020) 8468–8535.

[32]

V. Muelas-Ramos, C. Belver, J.J. Rodriguez, J. Bedia, Synthesis of noble metal-decorated NH2-MIL-125 titanium MOF for the photocatalytic degradation of acetaminophen under solar irradiation, Separ. Purif. Technol. 272 (2021), 118896.

[33]

Y.C. Zhong, Y.L. Mao, S.L. Shi, M.M. Wan, C. Ma, S.H. Wang, C. Chen, D. Zhao, N. Zhang, Fabrication of magnetic Pd/MOF hollow nanospheres with double-shell structure: toward highly efficient and recyclable nanocatalysts for hydrogenation reaction, ACS Appl. Mater. Interfaces 11 (2019) 32251–32260.

[34]

V.R. Bakuru, B. Velaga, N.R. Peela, S.B. Kalidindi, Hybridization of Pd nanoparticles with UiO-66(Hf) metal-organic framework and the effect of nanostructure on the catalytic properties, Chem. Eur J. 24 (2018) 15978–15982.

[35]

G.L. Zhuang, J.Q. Bai, X. Zhou, Y.F. Gao, H.L. Huang, H.Q. Cui, X. Zhong, C.L. Zhong, J.G. Wang, The effect of N-containing supports on catalytic CO oxidation cctivity over highly dispersed Pt/UiO-67, Eur. J. Inorg. Chem. 1 (2017) 172–178.

[36]

Y.Q. Han, H.T. Xu, Y.Q. Su, Z.L. Xu, K.F. Wang, W.Z. Wang, Noble metal (Pt, Au@Pd) nanoparticles supported on metal organic framework (MOF-74) nanoshuttles as high-selectivity CO2 conversion catalyst, J. Catal. 370 (2019) 70–80.

[37]

L.S. Li, X.B. Pan, D.P. Lan, J.P. Ge, H.Q. Zhang, Z.Z. Zheng, J.C. Liu, Z.L. Xu, J.K. Liu, Etching of cubic Pd@Pt in UiO-66 to obtain nanocages for enhancing CO2 hydrogenation, Mater. Today Energy 19 (2021), 100585.

[38]

J.T. Li, Z.L. Xu, T. Wang, X.W. Xie, D.D. Li, J.G. Wang, H.B. Huang, Z.M. Ao, A versatile route to fabricate metal/UiO-66 (metal = Pt, Pd, Ru) with high activity and stability for the catalytic oxidation of various volatile organic compounds, Chem. Eng. J. 448 (2022), 136900.

[39]

Y. Zhang, Y.X. Li, L. Liu, Z.B. Han, Palladium nanoparticles supported on UiO-66-NH2 as heterogeneous catalyst for epoxidation of styrene, Inorg. Chem. Commun. 100 (2019) 51–55.

[40]

C.Y. Wei, H.L. Hou, E.M. Wang, M. Lu, Preparation of a series of Pd@UiO-66 by a double-solvent method and its catalytic performance for toluene oxidation, Materials 13 (2020) 88.

[41]

Y.F. Zheng, Q.L. Liu, C.P. Shan, Y. Su, K.X. Fu, S.C. Lu, R. Han, C.F. Song, N. Ji, D.G. Ma, Defective ultrafine MnOX nanoparticles confined with in a carbon matrix for low-temperature oxidation of volatile organic compounds, Environ. Sci. Technol. 55 (2021) 5403–5411.

[42]

X.Y. Shi, X.D. Zhang, F.K. Bi, Z.H. Zheng, L.J. Sheng, J.C. Xu, Y.Q. Yang, Effective toluene adsorption over defective UiO-66-NH2: an experimental and computational exploration, J. Mol. Liq. 316 (2020), 113812.

[43]

M. Kandiah, M.H. Nilsen, S. Usseglio, S. Jakobsen, U. Olsbye, M. Tilset, C. Larabi, E.A. Quadrelli, F. Bonino, K.P. Lillerud, Synthesis and stability of tagged UiO-66 Zr-MOFs, Chem. Mater. 22 (2010) 6632–6640.

[44]

Z.H. Rada, H.R. Abid, H.Q. Sun, S.B. Wang, Bifunctionalized metal organic frameworks, UiO-66-NO2-N (N = -NH2, -(OH)2, -(COOH)2), for enhanced adsorption and selectivity of CO2 and N2, J. Chem. Eng. Data 60 (2015) 2152–2161.

[45]

Z. Li, S.J. Zhao, H.Z. Wang, Y. Peng, Z.J. Tan, B. Tang, Functional groups influence and mechanism research of UiO-66-type metalorganic frameworks for ketoprofen delivery, Colloids Surf., B 178 (2019) 1–7.

[46]

J. Feng, M. Li, Y.H. Zhong, Y.L. Xu, X.J. Meng, Z.W. Zhao, C.G. Feng, Hydrogenation of levulinic acid to γ-valerolactone over Pd@UiO-66-NH2 with high metal dispersion and excellent reusability, Microporous Mesoporous Mater. 294 (2020), 109858.

[47]

H. Ghaedi, M. Ayoub, S. Sufian, B. Lal, Y. Uemura, Thermal stability and FT-IR analysis of phosphonium-based deep eutectic solvents with different hydrogen bond donors, J. Mol. Liq. 242 (2017) 395–403.

[48]

X.D. Zhang, Y. Yang, X.T. Lv, Y.X. Wang, N. Liu, D. Chen, L.F. Cui, Adsorption/desorption kinetics and breakthrough of gaseous toluene for modified microporousmes-oporous UiO-66 metal organic framework, J. Hazard Mater. 366 (2019) 140–150.

[49]

Z.H. Rada, H.R. Abid, J. Shang, H.Q. Sun, Y.D. He, P. Webley, S.M. Liu, S.B. Wang, Functionalized UiO-66 by single and binary (OH)2 and NO2 groups for uptake of CO2 and CH4, Ind. Eng. Chem. Res. 55 (2016) 7924–7932.

[50]

F.K. Bi, X.D. Zhang, J.F. Chen, Y. Yang, Y.X. Wang, Excellent catalytic activity and water resistance of UiO-66-supported highly dispersed Pd nanoparticles for toluene catalytic oxidation, Appl. Catal. B Environ. 269 (2020), 118767.

[51]

L.J. Shen, W.M. Wu, R.W. Liang, R. Lin, L. Wu, Highly dispersed palladium nanoparticles anchored on UiO-66(NH2) metal-organic framework as a reusable and dual functional visible-light-driven photocatalyst, Nanoscale 5 (2013) 9374–9382.

[52]

X.X. Wang, D.A. Cullen, Y.T. Pan, S. Hwang, M.Y. Wang, Z.X. Feng, J.Y. Wang, M.H. Engelhard, H.G. Zhang, Y.H. He, Y.Y. Shao, D. Su, L.L. More, J.S. Spendelow, G. Wu, Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells, Adv. Mater. 30 (2018), 1706758.

[53]

S.Q. Zhou, L. Shang, Y.X. Zhao, R. Shi, G.I.N. Waterhouse, Y.C. Huang, L.R. Zheng, T.R. Zhang, Pd single-atom catalysts on nitrogen-doped graphene for the highly selective photothermal hydrogenation of acetylene to ethylene, Adv. Mater. 31 (2019), 1900509.

[54]

S. Lin, D.H.K. Reddy, J.K. Bediako, M.H. Song, W. Wei, J.A. Kim, Y.S. Yun, Effective adsorption of Pd(Ⅱ), Pt(Ⅳ) and Au(Ⅲ) by Zr(Ⅳ)-based metal-organic frameworks from strongly acidic solutions, J. Mater. Chem. A 5 (2017) 13557–13564.

[55]

S.S. Zeng, F. Lyu, L.G. Sun, Y.W. Zhan, F.X. Ma, J. Lu, Y.Y. Li, UiO-66-NO2 as an oxygen “pump” for enhancing oxygen reduction reaction performance, Chem. Mater. 31 (2019) 1646–1654.

[56]

M.M. Guo, K. Li, L.Z. Liu, H.B. Zhang, W.M. Guo, X.F. Hu, X.L. Meng, J.P. Jia, T.H. Sun, Manganese-based multi-oxide derived from spent ternary lithium-ions batteries as high-efficient catalyst for VOCs oxidation, J. Hazard Mater. 380 (2019), 120905.

[57]

K. Murata, D. Kosuge, J. Ohyama, Y. Mahara, Y. Yamamoto, S. Arai, A. Satsuma, Exploiting metal-support interactions to tune the redox properties of supported Pd catalysts for methane combustion, ACS Catal. 10 (2021) 1381–1387.

[58]

S.Y. Chen, S.D. Li, R.Y. You, Z.Y. Guo, F. Wang, G.X. Li, W.T. Yuan, B.E. Zhu, Y. Gao, Z. Zhang, H.S. Yang, Y. Wang, Elucidation of active sites for CH4 catalytic oxidation over Pd/CeO2 via tailoring metal-support interactions, ACS Catal. 11 (2011) 5666–5677.

[59]

X.B. Du, F. Dong, Z.C. Tang, J.Y. Zhang, Precise design and synthesis of Pd/InOx@CoOx core-shell nanofibers for the highly efficient catalytic combustion of toluene, Nanoscale 12 (2020) 12133–12145.

[60]

R. Georgieva, M. Gancheva, G. Ivanov, M. Shipochka, P. Markov, D. Nihtianova, R. Iordanova, A. Naydenov, Synthesis, characterization and activity of Pd/CaWO4 catalyst in the complete oxidation of C1-C6 alkanes and toluene, React. Kinet. Mech. Catal. 132 (2021) 811–827.

[61]

X.Q. Yang, X.Y. Ma, D.W. Han, M.L. Xiao, L.J. Ma, H. Sun, X.L. Yu, M.F. Ge, Efficient removal of toluene over palladium supported on hierarchical alumina microspheres catalyst, Catal. Today 375 (2021) 352–359.

[62]

X.Y. Weng, B.Q. Shi, A.N. Liu, J.Y. Sun, Y. Xiong, H.Q. Wan, S.R. Zheng, L. Dong, Y.W. Chen, Highly dispersed Pd/modified-Al2O3 catalyst on complete oxidation of toluene: role of basic sites and mechanism insight, Appl. Surf. Sci. 497 (2019), 143747.

[63]

Z.D. Fu, L.S. Liu, Y. Song, Q. Ye, S.Y. Cheng, T.F. Kang, H.X. Dai, Catalytic oxidation of carbon monoxide, toluene, and ethyl acetate over the xPd/OMS-2 catalysts: effect of Pd loading, Front. Chem. Sci. Eng. 11 (2017) 185–196.

[64]

L. Yang, C.Y. Chen, Z.B. Rui, H.B. Ji, Anodic aluminum oxide supported Pd@CeO2 catalyst for organic gas pollutants removal with an enhanced performance, Catal. Today 355 (2020) 602–607.

[65]

Q.L. Liu, Q.N. Zhao, M.S. Luo, Z. Yang, F.L. Wang, H. Li, Dendritic mesoporous silica nanosphere supported highly dispersed Pd-CoOx catalysts for catalytic oxidation of toluene, Mol. Catal. 519 (2022), 112123.

[66]

M.C. Wen, S.N. Song, W.N. Zhao, Q.X. Liu, J.Y. Chen, G.Y. Li, T.C. An, Atomically dispersed Pd sites on Ti-SBA-15 for efficient catalytic combustion of typical gaseous VOCs, Environ. Sci.: Nano 8 (2021) 3735–3745.

[67]

X.D. Zhang, Y. Yang, L. Song, J.F. Chen, Y.Q. Yang, Y.X. Wang, Enhanced adsorption performance of gaseous toluene on defective UiO-66 metal organic framework: equilibrium and kinetic studies, J. Hazard Mater. 365 (2019) 597–605.

[68]

C.H. Wang, X. Li, Y.Y. Liu, A.J. Wang, Q. Sheng, C.X. Zhang, Insight into metalsupport interactions from the hydrodesulfurization of dibenzothiophene over Pd catalysts supported on UiO-66 and its amino-functionalized analogues, J. Catal. 407 (2022) 333–341.

[69]

H.B. Huang, Y. Xu, Q.Y. Feng, D.Y.C. Leung, Low temperature catalytic oxidation of volatile organic compounds: a review, Catal. Sci. Technol. 5 (2015) 2649–2669.

[70]

V.P. Santos, S.A.C. Carabineiro, P.B. Tavares, M.F.R. Pereira, J.J.M. Órfão, J.L. Figueiredo, Oxidation of CO, ethanol and toluene over TiO2 supported noble metal catalysts, Appl. Catal. B Environ. 99 (2010) 198–205.

[71]

P. Brandt, S.H. Xing, J. Liang, G. Kurt, A. Nuhnen, O. Weingart, C. Janiak, Zirconium and aluminum MOFs for low-pressure SO2 adsorption and potential separation: elucidating the effect of small pores and NH2 groups, ACS Appl. Mater. Interfaces 13 (2021) 29137–29149.

[72]

Z. Li, F.Y. Liao, F. Jiang, B. Liu, S. Ban, G.J. Chen, C.Y. Sun, P. Xiao, Y.F. Sun, Capture of H2S and SO2 from trace sulfur containing gas mixture by functionalized UiO-66(Zr) materials: a molecular simulation study, Fluid Phase Equil. 427 (2016) 259–267.

[73]

D.F. Zhang, X.F. Jing, D.S. Sholl, S.B. Sinnott, Molecular simulation of capture of sulfur-containing gases by porous aromatic frameworks, J. Phys. Chem. C 122 (2018) 18456–18467.

[74]

Z.Q. Hou, L.Y. Dai, Y.X. Liu, J.G. Deng, L. Jing, W.B. Pei, R.Y. Gao, Y. Feng, H.X. Dai, Highly efficient and enhanced sulfur resistance supported bimetallic single-atom palladium-cobalt catalysts for benzene oxidation, Appl. Catal., B: Environ. 285 (2021), 119844.

[75]

V.H. Nissinen, N.M. Kinnunen, M. Suvanto, Regeneration of a sulfur-poisoned methane combustion catalyst: structural evidence of Pd4S formation, Appl. Catal. B Environ. 237 (2018) 110–115.

Environmental Functional Materials
Pages 166-181
Cite this article:
Bi F, Zhao Z, Yang Y, et al. Efficient degradation of toluene over ultra-low Pd supported on UiO-66 and its functional materials: Reaction mechanism, water-resistance, and influence of SO2. Environmental Functional Materials , 2022, 1(2): 166-181. https://doi.org/10.1016/j.efmat.2022.07.002

223

Views

6

Downloads

25

Crossref

Altmetrics

Received: 29 June 2022
Revised: 24 July 2022
Accepted: 30 July 2022
Published: 20 August 2022
© 2022 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return