AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

FeOx@FeP heterostructure: Surface phosphorization toward efficient photocatalytic Fenton-like norfloxacin removal

Yukun ZhuAbiduweili SikandaierYifei ZhangXiaoxia WangBaoyin DuJingfei XueYuanyuan SunPing Lu( )Dongjiang Yang( )
School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao University, Qingdao, 266071, PR China
Show Author Information

HIGHLIGHTS

· FeOx@FeP heterostructure was constructed by surface phosphorization of α-Fe2O3.

· FeOx@FeP heterostructure exhibits enhanced activity for photo-Fenton removal of norfloxacin.

· FeP overlayer could accelerate the separation and transfer of photogenerated charges in α-Fe2O3.

· ·OH and ·O2- radicals are the dominant reactive species for norfloxacin degradation.

Graphical Abstract

Abstract

The residues of daily-used antibiotics are difficult to be removed and very harmful to the environment. Herein, FeO@FeP heterostructure was constructed by surface phosphorization of hematite (α-Fe2O3) synthesized via a facile hydrothermal method for efficient photo-Fenton degradation of antibiotic norfloxacin (NOR). Compared with the bare α-Fe2O3, the FeO@FeP heterostructure exhibits much-enhanced photocatalytic Fenton-like performance, with NOR degraded by 75% within 5 ​min by sunlight-driven photo-Fenton reactions. It was suggested that the surface phosphorization-derived metallic FeP overlayer could accelerate the separation and migration of photogenerated charge carriers in α-Fe2O3, which benefits the generation of •OH and O2•− reactive radicals from photo-Fenton reaction and thus give rise to the great enhancement in NOR degradation activity. This study displays an alternative strategy of surface engineering to design novel heterostructured materials for the efficient photo-Fenton treatment of wastewater containing antibiotic residues as well as other organic pollutants.

References

[1]

D. Li, W. Shi, Recent developments in visible-light photocatalytic degradation of antibiotics, Chin, J. Catal. 37 (2016) 792–799.

[2]

Y. Liu, X. Wang, W. Ye, D.S. Butenko, P. Lu, Q. Chen, R. Cai, J. Sun, Y. Zhu, D. Yang, FeOx nanoclusters decorated TiO2 for boosting white LED driven photocatalytic Fenton-like norfloxacin degradation, Separ. Purif. Technol. 303 (2022), 122194.

[3]

X. Chen, X. Jiang, C. Yin, B. Zhang, Q. Zhang, Facile fabrication of hierarchical porous ZIF-8 for enhanced adsorption of antibiotics, J. Hazard Mater. 367 (2019) 194–204.

[4]

C.W. Yang, W.C. Hsiao, B.V. Chang, Biodegradation of sulfonamide antibiotics in sludge, Chemosphere 150 (2016) 559–565.

[5]

F.J. Beltrán, A. Aguinaco, J.F. García-Araya, A. Oropesa, Ozone and photocatalytic processes to remove the antibiotic sulfamethoxazole from water, Water Res. 42 (2008) 3799–3808.

[6]

W. Zhao, S. Ma, G. Yang, G. Wang, L. Zhang, D. Xia, H. Huang, Z. Cheng, J. Xu, C. Sun, D.Y.C. Leung, Z-scheme Au decorated carbon nitride/cobalt tetroxide plasmonic heterojunction photocatalyst for catalytic reduction of hexavalent chromium and oxidation of Bisphenol A, J. Hazard Mater. 410 (2021), 124539.

[7]

A.V. Vorontsov, Advancing Fenton and photo-Fenton water treatment through the catalyst design, J. Hazard Mater. 372 (2019) 103–112.

[8]

T. Li, L. Zhou, Improving heterogeneous Fenton reactivity of schwertmannite by increasing organic carbon and its promising application, Environ. Funct. Mater. 1 (2022) 160–165.

[9]

D. Wang, Y. Li, Y. Jiang, X. Cai, X. Yao, Perspectives on surface chemistry of nanostructured catalysts for heterogeneous advanced oxidation processes, Environ. Funct. Mater. 1 (2022) 182–186.

[10]

M. Munoz, Z.M. de Pedro, J.A. Casas, J.J. Rodriguez, Preparation of magnetite-based catalysts and their application in heterogeneous Fenton oxidation-a review, Appl. Catal. B Environ. 176–177 (2015) 249–265.

[11]

Z. Ji, R. Cai, W. Ye, P. Lu, C.L. Dong, Y.C. Huang, X. She, D.S. Butenko, Y. Liu, Y. Zhu, D. Yang, Confined Fe single atomic sites on (100) plane of anatase TiO2 nanofibers boost white LED driven Fenton-like norfloxacin degradation, J. Clean. Prod. 382 (2023), 135161.

[12]

Y. Gu, Y. Xuan, H. Zhang, X. Deng, M. Bai, L. Wang, A facile coordination precipitation route to prepare porous CuO microspheres with excellent photo-Fenton catalytic activity and electrochemical performance, CrystEngComm 21 (2019) 648–655.

[13]

W. Xu, S. Zhu, Y. Liang, Z. Li, Z. Cui, X. Yang, A. Inoue, Nanoporous CuS with excellent photocatalytic property, Sci. Rep. 5 (2015), 18125.

[14]

G. Kaur, B. Singh, P. Singh, M. Kaur, K.K. Buttar, K. Singh, A. Thakur, R. Bala, M. Kumar, A. Kumar, Preferentially grown nanostructured iron disulfide (FeS2) for removal of industrial pollutants, RSC Adv. 6 (2016) 99120–99128.

[15]

J.R. Kim, E. Kan, Heterogeneous photo-Fenton oxidation of methylene blue using CdS-carbon nanotube/TiO2 under visible light, J. Ind. Eng. Chem. 21 (2015) 644–652.

[16]

S. Guo, Y. Zhu, Y. Yan, Y. Min, J. Fan, Q. Xu, Holey structured graphitic carbon nitride thin sheets with edge oxygen doping via photo-Fenton reaction with enhanced photocatalytic activity, Appl. Catal. B Environ. 185 (2016) 315–321.

[17]

Y. Jia, C. Wu, D.H. Kim, B.W. Lee, S.J. Rhee, Y.C. Park, C.S. Kim, Q.J. Wang, C. Liu, Nitrogen doped BiFeO3 with enhanced magnetic properties and photo-Fenton catalytic activity for degradation of bisphenol A under visible light, Chem. Eng. J. 337 (2018) 709–721.

[18]

Y. Xiang, Y. Huang, B. Xiao, X. Wu, G. Zhang, Magnetic yolk-shell structure of ZnFe2O4 nanoparticles for enhanced visible light photo-Fenton degradation towards antibiotics and mechanism study, Appl. Surf. Sci. 513 (2020), 145820.

[19]

H. Chen, J. Zeng, M. Chen, Z. Chen, M. Ji, J. Zhao, J. Xia, H. Li, Improved visible light photocatalytic activity of mesoporous FeVO4 nanorods synthesized using a reactable ionic liquid, Chin. J. Catal. 40 (2019) 744–754.

[20]

P. Garcia-Muñoz, F. Fresno, C. Lefevre, D. Robert, N. Keller, Highly robust La1-xTixFeO3 dual catalyst with combined photocatalytic and photo-CWPO activity under visible light for 4-chlorophenol removal in water, Appl. Catal. B Environ. 262 (2020), 118310.

[21]

H. Liu, M. Tong, K. Zhu, H. Liu, R. Chen, Preparation and photo-Fenton degradation activity of α-Fe2O3 nanorings obtained by adding H2PO4, SO42−, and citric acid, Chem. Eng. J. 382 (2020), 123010.

[22]

Y. Fu, Y.R. Lu, F. Ren, Z. Xing, J. Chen, P. Guo, W.F. Pong, C.L. Dong, L. Zhao, S. Shen, Surface electronic structure reconfiguration of hematite nanorods for efficient photoanodic water oxidation, Sol. RRL 4 (2020), 1900349.

[23]

N.M. Shooshtari, M.M. Ghazi, An investigation of the photocatalytic activity of nano α-Fe2O3/ZnO on the photodegradation of cefixime trihydrate, Chem. Eng. J. 315 (2017) 527–536.

[24]

S. Demirci, M. Yurddaskal, T. Dikici, C. Sarıoğlu, Fabrication and characterization of novel iodine doped hollow and mesoporous hematite (Fe2O3) particles derived from sol-gel method and their photocatalytic performances, J. Hazard Mater. 345 (2018) 27–37.

[25]

Y. Zhao, F. Pan, H. Li, T. Niu, G. Xu, W. Chen, Facile synthesis of uniform α-Fe2O3 crystals and their facet-dependent catalytic performance in the photo-Fenton reaction, J. Mater. Chem. 1 (2013) 7242–7246.

[26]

J. Jiang, J. Gao, T. Li, Y. Chen, Q. Wu, T. Xie, Y. Lin, S. Dong, Visible-light-driven photo-Fenton reaction with α-F2O3/BiOI at near neutral pH: boosted photogenerated charge separation, optimum operating parameters and mechanism insight, J. Colloid Interface Sci. 554 (2019) 531–543.

[27]

T. Guo, K. Wang, G. Zhang, X. Wu, A novel α-F2O3@g-C3N4 catalyst: synthesis derived from Fe-based MOF and its superior photo-Fenton performance, Appl. Surf. Sci. 469 (2019) 331–339.

[28]

Y. Yuan, B. Zhong, F. Li, H. Wu, J. Liu, H. Yang, L. Zhao, Y. Sun, P. Zhang, L. Gao, Surface phosphorization for the enhanced photoelectrochemical performance of an Fe2O3/Si photocathode, Nanoscale 14 (2022) 11261–11269.

[29]

L. Yang, Y. Xiong, L. Li, Y. Yang, D. Gao, L. Liu, H. Dong, P. Xiao, Y. Zhang, Manipulation of charge transfer in FeP@Fe2O3 core-shell photoanode by directed built-In electric field, ACS Appl. Energy Mater. 1 (2018) 4591–4598.

[30]

J. Li, Z. Yuan, Y. Zhu, D. Li, W. Han, L. Li, G. Li, Engineering multiphasic heterostructure NiCoP@Co0.5Ni0.5Se2 with optimized electronic structure enabling robust hydrogen evolution, Chem. Eng. J. 450 (2022), 138426.

[31]

C. Yang, Y. Zhu, Y. Liu, H. Wang, D. Yang, Ternary red phosphorus/CoP2/SiO2 microsphere boosts visible-light-driven photocatalytic hydrogen evolution from pure water splitting, J. Mater. Sci. Technol. 125 (2022) 59–66.

[32]

G. Huang, W. Ye, C. Lv, D.S. Butenko, C. Yang, G. Zhang, P. Lu, Y. Xu, S. Zhang, H. Wang, Y. Zhu, D. Yang, Hierarchical red phosphorus incorporated TiO2 hollow sphere heterojunctions toward superior photocatalytic hydrogen production, J. Mater. Sci. Technol. 108 (2022) 18–25.

[33]

X. Yu, H. Su, J. Zou, Q. Liu, L. Wang, H. Tang, Doping-induced metal-N active sites and bandgap engineering in graphitic carbon nitride for enhancing photocatalytic H2 evolution performance, Chin. J. Catal. 43 (2022) 421–432.

[34]

Y. Zhu, Y. Zhuang, L. Wang, H. Tang, X. Meng, X. She, Constructing 0D/1D Ag3PO4/TiO2 S-scheme heterojunction for efficient photodegradation and oxygen evolution, Chin, J. Catal. 43 (2022) 2558–2568.

[35]

F. Mu, X. Miao, J. Cao, W. Zhao, G. Yang, H. Zeng, S. Li, C. Sun, Integration of plasmonic effect and S-scheme heterojunction into gold decorated carbon nitride/cuprous oxide catalyst for photocatalysis, J. Clean. Prod. 360 (2022), 131948.

[36]

W. Liu, R. Peng, X. Ye, J. Guo, L. Luo, Sulfur doping and structure defect functionalized carbon nitride nanosheets with enhanced photocatalytic degradation activity, Appl. Surf. Sci. 560 (2021), 150013.

[37]

X. Bu, Y. Gao, S. Zhang, Y. Tian, Amorphous cerium phosphate on P-doped Fe2O3 nanosheets for efficient photoelectrochemical water oxidation, Chem. Eng. J. 355 (2019) 910–919.

[38]

Y. Zhu, X. Zhao, J. Li, H. Zhang, S. Chen, W. Han, D. Yang, Surface modification of hematite photoanode by NiFe layered double hydroxide for boosting photoelectrocatalytic water oxidation, J. Alloys Compd. 764 (2018) 341–346.

[39]

Y. Zhou, K. Zhao, M. Al Amin, C. Fang, Z. Guo, C. Yoshimura, J. Niu, Elucidating the role of phosphorus doping in Co and Ni-loaded carbon nitride photocatalysts for nefazodone degradation, Environ. Funct. Mater. 1 (2022) 114–120.

[40]

X. Zhang, F. Tian, X. Lan, Y. Liu, W. Yang, J. Zhang, Y. Yu, Building P-doped MoS2/g-C3N4 layered heterojunction with a dual-internal electric field for efficient photocatalytic sterilization, Chem. Eng. J. 429 (2022), 132588.

[41]

J. Li, G. Wei, Y. Zhu, Y. Xi, X. Pan, Y. Ji, I.Â.V. Zatovsky, W. Han, Hierarchical. NiCoP nanocone arrays supported on Ni foam as an efficient and stable bifunctional electrocatalyst for overall water splitting, J. Mater. Chem. 5 (2017) 14828–14837.

[42]

C.Y. Son, I.H. Kwak, Y.R. Lim, J. Park, FeP and FeP2 nanowires for efficient electrocatalytic hydrogen evolution reaction, Chem. Commun. 52 (2016) 2819–2822.

[43]

L. Li, H. Wang, Z. Xie, C. An, G. Jiang, Y. Wang, 3D graphene-encapsulated nearly monodisperse Fe3O4 nanoparticles as high-performance lithium-ion battery anodes, J. Alloys Compd. 815 (2020), 152337.

[44]

Y. Zhu, J. Li, C.L. Dong, J. Ren, Y.C. Huang, D. Zhao, R. Cai, D. Wei, X. Yang, C. Lv, W. Theis, Y. Bu, W. Han, S. Shen, D. Yang, Red phosphorus decorated and doped TiO2 nanofibers for efficient photocatalytic hydrogen evolution from pure water, Appl. Catal. B Environ. 255 (2019), 117764.

[45]

Y. Zheng, X. Wu, Y. Zhang, Y. Li, W. Shao, J. Fu, Q. Lin, J. Tan, S. Gao, W. Ye, H. Huang, Highly efficient harvesting of vibration energy for complex wastewater purification using Bi5Ti3FeO15 with controlled oxygen vacancies, Chem. Eng. J. 453 (2023), 139919.

[46]

B. Dai, X. Chen, X. Yang, G. Yang, S. Li, L. Zhang, F. Mu, W. Zhao, D.Y.C. Leung, Designing S-scheme Au/g-C3N4/BiO1.2I0.6 plasmonic heterojunction for efficient visible-light photocatalysis, Separ. Purif. Technol. 287 (2022), 120531.

[47]

Z. Liu, Y. Zheng, S. Zhang, J. Fu, Y. Li, Y. Zhang, W. Ye, (1−x)Bi0.5Na0.5TiO3-xBiFeO3 solid solutions with enhanced piezocatalytic dye degradation, Separ. Purif. Technol. 290 (2022), 120831.

[48]

Y. Zheng, M. Cheng, X. Wu, S. Zhang, Z. Liu, Y. Li, W. Shao, Q. Lin, J. Tan, S. Gao, Y. Zhang, W. Ye, Sm-doped (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 nanostructures for piezocatalytic dye degradation, ACS Appl. Nano Mater. 5 (2022) 277–287.

[49]

Y. Zhu, C. Lv, Z. Yin, J. Ren, X. Yang, C.L. Dong, H. Liu, R. Cai, Y.C. Huang, W. Theis, S. Shen, D. Yang, A[001]-oriented Hittorf's phosphorus nanorods/polymeric carbon nitride heterostructure for boosting wide-spectrum-responsive photocatalytic hydrogen evolution from pure water, Angew. Chem. Int. Ed. 59 (2020) 868–873.

[50]

Y. Xu, M.A.A. Schoonen, The absolute energy positions of conduction and valence bands of selected semiconducting minerals, Am. Mineral. 85 (2000) 543–556.

[51]

D.A. Armstrong, R.E. Huie, S. Lymar, W.H. Koppenol, G. Merényi, P. Neta, D.M. Stanbury, S. Steenken, P. Wardman, Standard electrode potentials involving radicals in aqueous solution: inorganic radicals, Bioinorganic React, Mech 9 (2013) 59–61.

[52]

P. Vanýsek, Electrochemical series, CRC Handb. Chem. Phys. 8 (2000).

[53]

H. Zhou, Z. Xie, Y. Liu, B. Lai, W.J. Ong, S. Wang, X. Duan, Recent advances in molybdenum disulfide-based advanced oxidation processes, Environ. Funct. Mater. 1 (2022) 1–9.

[54]

X. Wang, M. Wang, G. Liu, Y. Zhang, G. Han, A. Vomiero, H. Zhao, Colloidal carbon quantum dots as light absorber for efficient and stable ecofriendly photoelectrochemical hydrogen generation, Nano Energy 86 (2021), 106122.

[55]

C. Lin, H. Liu, M. Guo, Y. Zhao, X. Su, P. Zhang, Y. Zhang, Plasmon-induced broad spectrum photocatalytic overall water splitting: through non-noble bimetal nanoparticles hybrid with reduced graphene oxide, Colloids Surf. A Physicochem. Eng. Aspects 646 (2022), 128962.

[56]

X. Wang, Y. Zhang, J. Li, G. Liu, M. Gao, S. Ren, B. Liu, L. Zhang, G. Han, J. Yu, H. Zhao, F. Rosei, Platinum cluster/carbon quantum dots derived graphene heterostructured carbon nanofibers for efficient and durable solar-driven electrochemical hydrogen evolution, Small Methods 6 (2022), 2101470.

Environmental Functional Materials
Pages 230-238
Cite this article:
Zhu Y, Sikandaier A, Zhang Y, et al. FeOx@FeP heterostructure: Surface phosphorization toward efficient photocatalytic Fenton-like norfloxacin removal. Environmental Functional Materials , 2022, 1(3): 230-238. https://doi.org/10.1016/j.efmat.2022.12.002

193

Views

4

Downloads

4

Crossref

Altmetrics

Received: 31 October 2022
Revised: 17 December 2022
Accepted: 18 December 2022
Published: 24 December 2022
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return