PDF (2.8 MB)
Collect
Submit Manuscript
Show Outline
Outline
HIGHLIGHTS
Graphical Abstract
Abstract
Keywords
References
Show full outline
Hide outline
Review Article | Open Access

Advances in dual-functional photocatalysis for simultaneous reduction of hexavalent chromium and oxidation of organics in wastewater

Tao ZhangaPengfei WangbYi LicYueping Baoa()Teik-Thye LimdSihui Zhana()
MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300130, PR China
Tianjin Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry, School of Science, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072, PR China
School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, 639798, Singapore
Show Author Information

HIGHLIGHTS

● The basic principles of dual-functional photocatalysis in aqueous phase are discussed.

● Recent advances in dual-functional photocatalytic simultaneous removal of Cr(Ⅵ) and organics are summarized.

● Recent advances in TiO2-based, Bi-based and g-C3N4-based dual-functional photocatalysts are summarized.

● Key scientific problems and outlooks in dual-functional photocatalysis are outlined.

Graphical Abstract

View original image Download original image

Abstract

The solar-driven photocatalytic process has been evolved as a promising technology for both hexavalent chromium reduction and organic pollutants oxidation. Although both reactions are based on the same principle of photoinduced interfacial charge transfer, different catalysts and reaction conditions are required in two processes. This review revealed the scientific advances in dual-functional photocatalytic processes that enable simultaneous hexavalent chromium reduction and organics oxidation. Firstly, the basic principles of dual-functional photocatalysis are briefly discussed whereby the key concept of the system is the simultaneous oxidation of organic pollutants via photogenerated holes and reduction of hexavalent chromium via photogenerated electrons. Then, advances in dual-functional photocatalysis for the simultaneous removal of hexavalent chromium and organics are presented and discussed in terms of catalysts classification, including TiO2-based, bismuth-based and g-C3N4-based catalysts. Finally, the prospects, challenges and new perspectives of feasible solutions for dual-functional photocatalytic catalysts design are presented. Overall, this paper provides new insights on the modulation strategies and conformational relationships of dual-functional materials for researchers in the field of photocatalysis, which is beneficial for the practical applications of dual-functional materials in environmental remediation.

References

[1]

M. Wang, A.B.G. Janssen, J. Bazin, M. Strokal, L. Ma, C. Kroeze, Accounting for interactions between dustainable development goals is essential for water pollution control in China, Nat. Commun. 13 (2022) 730.

[2]

K. Li, J. Wang, Y. Zhang, Heavy metal pollution risk of cultivated land from industrial production in China: spatial pattern and its enlightenment, Sci. Total Environ. 828 (2022), 154382.

[3]

K. Yan, H. Wang, Z. Lan, J. Zhou, H. Fu, L. Wu, J. Xu, Heavy metal pollution in the soil of contaminated sites in China: research status and pollution assessment over the past two decades, J. Clean. Prod. 373 (2022), 133780.

[4]

Y. Wu, X. Li, L. Yu, T. Wang, J. Wang, T. Liu, Review of soil heavy metal pollution in China: spatial distribution, primary sources, and remediation alternatives, Resour. Conserv. Recycl. 181 (2022), 106261.

[5]

J.L. Wilkinson, A.B.A. Boxall, D.W. Kolpin, K.M.Y. Leung, R.W.S. Lai, C. Galbán-Malagón, A.D. Adell, J. Mondon, M. Metian, R.A. Marchant, A. Bouzas-Monroy, A. Cuni-Sánchez, A. Coors, P. Carriquiriborde, M. Rojo, C. Gordon, M. Cara, M. Moermond, T. Luarte, V. Petrosyan, Y. Perikhanyan, C.S. Mahon, C.J. McGurk, T. Hofmann, T. Kormoker, V. Iniguez, J. Guzman-Otazo, J.L. Tavares, F.G. De Figueiredo, M.T.P. Razzolini, V. Dougnon, G. Gbaguidi, O. Traoré, J.M. Blais, L.E. Kimpe, M. Wong, D. Wong, R. Ntchantcho, J. Pizarro, G.G. Ying, C.E. Chen, M. Páez, J. Martínez-Lara, J.P. Otamonga, J. Poté, S.A. Ifo, P. Wilson, S. Echeverría-Sáenz, N. Udikovic-Kolic, M. Milakovic, Pharmaceutical pollution of the world’s rivers, Proc. Natl. Acad. Sci. U.S.A. 119 (2022), e2113947119.

[6]

M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Mariñas, A.M. Mayes, Science and technology for water purification in the coming decades, Nature 452 (2008) 301–310.

[7]

B. Van der Bruggen, Sustainable implementation of innovative technologies for water purification, Nat. Rev. Chem. 5 (2021) 217–218.

[8]

P. Sharma, S.P. Singh, S.K. Parakh, Y.W. Tong, Health hazards of hexavalent chromium (Cr (Ⅵ)) and its microbial reduction, Bioengineered 13 (2022) 4923–4938.

[9]

S. Zhang, H. Lan, Y. Cui, X. An, H. Liu, J. Qu, Insight into the key role of Cr intermediates in the efficient and simultaneous degradation of organic contaminants and Cr(Ⅵ) reduction via g-C3N4-assisted photocatalysis, Environ. Sci. Technol. 56 (2022) 3552–3563.

[10]

K.E. Ukhurebor, U.O. Aigbe, R.B. Onyancha, W. Nwankwo, O.A. Osibote, H.K. Paumo, O.M. Ama, C.O. Adetunji, I.U. Siloko, Effect of hexavalent chromium on the environment and removal techniques: a review, J. Environ. Manag. 280 (2021), 111809.

[11]

G. Chen, Y. Yu, L. Liang, X. Duan, R. Li, X. Lu, B. Yan, N. Li, S. Wang, Remediation of antibiotic wastewater by coupled photocatalytic and persulfate oxidation system: a critical review, J. Hazard Mater. 408 (2021), 124461.

[12]

Z. Li, S. Wang, J. Wu, W. Zhou, Recent progress in defective TiO2 photocatalysts for energy and environmental applications, Renew. Sustain. Energy Rev. 156 (2022), 111980.

[13]

A. Balakrishnan, S. Appunni, M. Chinthala, D.V N. Vo, Biopolymer-supported TiO2 as a sustainable photocatalyst for wastewater treatment: a review, Environ. Chem. Lett. 20 (2022) 3071–3098.

[14]

J. Song, R. Guan, M. Xie, P. Dong, X. Yang, J. Zhang, Advances in electrospun TiO2 nanofibers: design, construction, and applications, Chem. Eng. J. 431 (2022), 134343.

[15]

Y. Cui, M. Li, N. Zhu, Y. Cheng, S.S. Lam, J. Chen, Y. Gao, J. Zhao, Bi-based visible light-driven nano-photocatalyst: the design, synthesis, and its application in pollutant governance and energy development, Nano Today 43 (2022), 101432.

[16]

X. Wu, H.L. Tan, C. Zhang, Z. Teng, Z. Liu, Y. H. Ng, Q. Zhang, C. Su, Recent advances in two-dimensional ultrathin Bi-based photocatalysts, Prog. Mater. Sci. 133 (2023), 101047.

[17]

M. Xu, J. Yang, C. Sun, L. Liu, Y. Cui, B. Liang, Performance enhancement strategies of bi-based photocatalysts: a review on recent progress, Chem. Eng. J. 389 (2020), 124402.

[18]

H. Ma, Y. He, P. Chen, H. Wang, Y. Sun, J. Li, F. Dong, G. Xie, J. Sheng, Ultrathin two-dimensional Bi-based photocatalysts: synthetic strategies, surface defects, and reaction mechanisms, Chem. Eng. J. 417 (2021), 129305.

[19]

G.Z.S. Ling, S.F. Ng, W.J. Ong, Tailor-engineered 2D cocatalysts: harnessing electron–hole redox center of 2D g-C3N4 photocatalysts toward solar-to-chemical conversion and environmental purification, Adv. Funct. Mater. 32 (2022), 2111875.

[20]

V. Hasija, V.H. Nguyen, A. Kumar, P. Raizada, V. Krishnan, A.A.P. Khan, P. Singh, E. Lichtfouse, C. Wang, P. T. Huong, Advanced activation of persulfate by polymeric g-C3N4 based photocatalysts for environmental remediation: a review, J. Hazard Mater. 413 (2021), 125324.

[21]

Y. Li, Z. Xia, Q. Yang, L. Wang, Y. Xing, Review on g-C3N4-based S-scheme heterojunction photocatalysts, J. Mater. Sci. Technol. 125 (2022) 128–144.

[22]

H. Zhang, L. Zhang, S. Dong, X. Duan, D. Zhu, B.J. Ni, C. Lyu, Regulating energy band structures of triazine covalent organic frameworks with electron-donating/withdrawing substituents for visible-light-responsive photocatalytic tetracycline degradation and Cr(Ⅵ) reduction, J. Hazard Mater. 446 (2023), 130756.

[23]

K. Dou, C. Peng, R. Wang, H. Cao, C. Yao, J. Qiu, J. Liu, N. Tsidaeva, W. Wang, S-scheme tubular g-C3N4/BiOI heterojunctions for boosting photodegradation of tetracycline and Cr(Ⅵ): mechanism insight, degradation pathway and DFT calculation, Chem. Eng. J. 455 (2023), 140813.

[24]

Y. Deng, L. Li, H. Zeng, R. Tang, Z. Zhou, Y. Sun, C. Feng, D. Gong, J. Wang, Y. Huang, Unveiling the origin of high-efficiency charge transport effect of C3N5/C3N4 homojunction for activating peroxymonosulfate to degrade atrazine under visible light, Chem. Eng. J. 457 (2023), 141261.

[25]

A.E. Giannakas, M. Antonopoulou, J. Papavasiliou, Y. Deligiannakis, I. Konstantinou, Photocatalytic performance of Pt-TiO2, Pt-N-TiO2 and Pt-N/F-TiO2 towards simultaneous Cr(Ⅵ) reduction/benzoic acid oxidation: insights into photogenerated charge carrier dynamics and catalyst properties, J. Photochem. Photobiol. Chem. 349 (2017) 25–35.

[26]

X. Bai, J. Jia, Y. Du, X. Hu, J. Li, E. Liu, J. Fan, Multi-level trapped electrons system in enhancing photocatalytic activity of TiO2 nanosheets for simultaneous reduction of Cr (Ⅵ) and RhB degradation, Appl. Surf. Sci. 503 (2020), 144298.

[27]

Y. Deng, L. Tang, G. Zeng, Z. Zhu, M. Yan, Y. Zhou, J. Wang, Y. Liu, J. Wang, Insight into highly efficient simultaneous photocatalytic removal of Cr(Ⅵ) and 2,4-diclorophenol under visible light irradiation by phosphorus doped porous ultrathin g-C3N4 nanosheets from aqueous media: performance and reaction mechanism, Appl. Catal. B Environ. 203 (2017) 343–354.

[28]

D. Lu, P. Fang, W. Wu, J. Ding, L. Jiang, X. Zhao, C. Li, M. Yang, Y. Li, D. Wang, Solvothermal-assisted synthesis of self-assembling TiO2 nanorods on large graphitic carbon nitride sheets with their anti-recombination in the photocatalytic removal of Cr(Ⅵ) and rhodamine B under visible light irradiation, Nanoscale 9 (2017) 3231–3245.

[29]

S. Patnaik, K.K. Das, A. Mohanty, K. Parida, Enhanced photo catalytic reduction of Cr (Ⅵ) over polymer-sensitized g-C3N4/ZnFe2O4 and its synergism with phenol oxidation under visible light irradiation, Catal. Today 315 (2018) 52–66.

[30]

G. Liu, H.G. Yang, J. Pan, Y.Q. Yang, G.Q.M. Lu, H.M. Cheng, Titanium dioxide crystals with tailored facets, Chem. Rev. 114 (2014) 9559–9612.

[31]

T. Guo, S. Yang, Y. Chen, L. Yang, Y. Sun, Q. Shang, Photocatalytic kinetics and cyclic stability of photocatalysts Fe-complex/TiO2 in the synergistic degradation of phenolic pollutants and reduction of Cr(Ⅵ), Environ. Sci. Pollut. Res. 28 (2021) 12459–12473.

[32]

Y. Ding, S. Maitra, C. Wang, R. Zheng, T. Barakat, S. Roy, L.H. Chen, B.L. Su, Bi-functional Cu-TiO2/CuO photocatalyst for large-scale synergistic treatment of waste sewage containing organics and heavy metal ions, Sci. China Mater. 66 (2023) 179–192.

[33]

H. Guan, X. Zhou, W. Wen, B. Jin, J. Li, S. Zhang, Efficient and robust Cu/TiO2 nanorod photocatalysts for simultaneous removal of Cr(Ⅵ) and methylene blue under solar light, J. Chin. Chem. Soc. 65 (2018) 706–713.

[34]

Z.H. Diao, X.R. Xu, D. Jiang, J.J. Liu, L.J. Kong, G. Li, L.Z. Zuo, Q.H. Wu, Simultaneous photocatalytic Cr(Ⅵ) reduction and ciprofloxacin oxidation over TiO2/Fe0 composite under aerobic conditions: performance, durability, pathway and mechanism, Chem. Eng. J. 315 (2017) 167–176.

[35]

L. Cheng, S. Liu, G. He, Y. Hu, The simultaneous removal of heavy metals and organic contaminants over a Bi2WO6/mesoporous TiO2 nanotube composite photocatalyst, RSC Adv. 10 (2020) 21228–21237.

[36]

S. Liu, X. Zhou, C. Wei, Y. Hu, Spatial directional separation and synergetic treatment of Cr(Ⅵ) and Rhodamine B mixed pollutants on three-layeredPd@MIL-101/P25 photocatalyst, Sci. Total Environ. 842 (2022), 156836.

[37]

J. Xu, J. Zhu, M. Chen, Simultaneous removal of ceftriaxone sodium and Cr(Ⅵ) by a novel multi-junction (p-n junction combined with homojunction) composite photocatalyst: BiOI nanosheets modified cake-like anatase-rutile TiO2, J. Mol. Liq. 320 (2020), 114479.

[38]

W. Xie, E. Pakdel, Y. Liang, D. Liu, L. Sun, X. Wang, Natural melanin/TiO2 hybrids for simultaneous removal of dyes and heavy metal ions under visible light, J. Photochem. Photobiol., A 389 (2020), 112292.

[39]

P.M. Olmos-Moya, S. Velazquez-Martinez, C. Pineda-Arellano, J.R. Rangel-Mendez, L.F. Chazaro-Ruiz, High added value functionalized carbon quantum dots synthetized from orange peels by assisted microwave solvothermal method and their performance as photosensitizer of mesoporous TiO2 photoelectrodes, Carbon 187 (2022) 216–229.

[40]

B. Zhao, H. Xu, K. Zhang, B. Gao, Y. Wang, Q. Wang, K. Zhang, Y. Huang, J. Li, Visible-light-driven CQDs/TiO2 photocatalytic simultaneous removal of Cr(Ⅵ) and organics: cooperative reaction, kinetics and mechanism, Chemosphere 307 (2022), 135897.

[41]

L. Wang, C. Zhang, R. Cheng, J. Ali, Z. Wang, G. Mailhot, G. Pan, Microcystis aeruginosa synergistically facilitate the photocatalytic degradation of tetracycline hydrochloride and Cr(Ⅵ) on PAN/TiO2/Ag nanofiber mats, Catalysts 8 (2018) 628.

[42]

J. Du, S. Ma, H. Liu, H. Fu, L. Li, Z. Li, Y. Li, J. Zhou, Uncovering the mechanism of novel AgInS2 nanosheets/TiO2 nanobelts composites for photocatalytic remediation of combined pollution, Appl. Catal. B Environ. 259 (2019), 118062.

[43]

P. Behera, S. Subudhi, S.P. Tripathy, K. Parida, MOF derived nano-materials: a recent progress in strategic fabrication, characterization and mechanistic insight towards divergent photocatalytic applications, Coord. Chem. Rev. 456 (2022), 214392.

[44]

K. Sun, Y. Qian, H.L. Jiang, Metal–organic frameworks for photocatalytic water splitting and CO2 reduction, Angew. Chem. Int. Ed. 62 (2023), e202217565.

[45]

Y. Wang, C. Kang, X. Li, Q. Hu, C. Wang, Ag NPs decorated C–TiO2/Cd0.5Zn0.5S Z-scheme heterojunction for simultaneous RhB degradation and Cr(Ⅵ) reduction, Environ. Pollut. 286 (2021), 117305.

[46]

K. Wu, S. Song, H. Wu, J. Guo, L. Zhang, Facile synthesis of Bi2WO6/C3N4/Ti3C2 composite as Z-scheme photocatalyst for efficient ciprofloxacin degradation and H2 production, Appl. Catal. A Gen. 608 (2020), 117869.

[47]

Y. Liu, Y. Lin, J. Tang, X. Liu, L. Chen, Y. Tian, D. Fang, J. Wang, Preparation of a coated ZH-scheme (SnS2@CdS)/TiO2(001) photocatalyst for phenol degradation with simultaneous Cr(Ⅵ) conversion, Appl. Surf. Sci. 574 (2022), 151595.

[48]

P. Wu, X. Zhao, C. Li, M. Yang, G. Li, S. Zhang, J. Ming, M. Liu, Z. Qian, P. Fang, One-pot synthesis of Fe2O3/Y2O3@TNS for enhanced photocatalytic and adsorption properties, New J. Chem. 44 (2020) 16370–16383.

[49]

C. Xu, F. Yang, B. Deng, S. Che, W. Yang, G. Zhang, Y. Sun, Y. Li, RGO-wrapped Ti3C2/TiO2 nanowires as a highly efficient photocatalyst for simultaneous reduction of Cr(Ⅵ) and degradation of RhB under visible light irradiation, J. Alloys Compd. 874 (2021), 159865.

[50]

Y. Sun, L. Xu, P. Jin, X. Bai, X. Jin, X. Shi, Simultaneous removal of colorless micropollutants and hexavalent chromium by pristine TiO2 under visible light: an electron transfer mechanism, Chem. Eng. J. 405 (2021), 126968.

[51]

Y. Liu, B. Yang, H. He, S. Yang, X. Duan, S. Wang, Bismuth-based complex oxides for photocatalytic applications in environmental remediation and water splitting: a review, Sci. Total Environ. 804 (2022), 150215.

[52]

X. Chen, X. Zhang, Y.H. Li, M.Y. Qi, J.Y. Li, Z.R. Tang, Z. Zhou, Y.J. Xu, Transition metal doping BiOBr nanosheets with oxygen vacancy and exposed {102} facets for visible light nitrogen fixation, Appl. Catal. B Environ. 281 (2021), 119516.

[53]

A. Kumar, P. Singh, A.A.P. Khan, Q. V. Le, V.H. Nguyen, S. Thakur, P. Raizada, CO2 photoreduction into solar fuels via vacancy engineered bismuth-based photocatalysts: Selectivity and mechanistic insights, Chem. Eng. J. 439 (2022), 135563.

[54]

J. Zhao, J. Chen, Z. Chen, Y. Zhang, D. Xia, Q. Wang, Flexible cotton fabrics/PDA/BiOBr composite photocatalyst using bioinspired polydopamine as electron transfer mediators for dye degradation and Cr(Ⅵ) reduction under visible light, Colloids Surf. A Physicochem. Eng. Asp. 593 (2020), 124623.

[55]

L. Gan, A. Geng, C. Song, L. Xu, L. Wang, X. Fang, S. Han, J. Cui, C. Mei, Simultaneous removal of rhodamine B and Cr(Ⅵ) from water using cellulose carbon nanofiber incorporated with bismuth oxybromide: the effect of cellulose pyrolysis temperature on photocatalytic performance, Environ. Res. 185 (2020), 109414.

[56]

F. Chen, Q. Yang, Y. Wang, F. Yao, Y. Ma, X. Huang, X. Li, D. Wang, G. Zeng, H. Yu, Efficient construction of bismuth vanadate-based Z-scheme photocatalyst for simultaneous Cr(Ⅵ) reduction and ciprofloxacin oxidation under visible light: Kinetics, degradation pathways and mechanism, Chem. Eng. J. 348 (2018) 157–170.

[57]

J. Wan, P. Xue, R. Wang, L. Liu, E. Liu, X. Bai, J. Fan, X. Hu, Synergistic effects in simultaneous photocatalytic removal of Cr(Ⅵ) and tetracycline hydrochloride by Z-scheme Co3O4/Ag/Bi2WO6 heterojunction, Appl. Surf. Sci. 483 (2019) 677–687.

[58]

Z. Liu, X. Cui, C. Piao, J. Tang, S. Li, D. Fang, J. Wang, Construction and preparation of a coated Z-scheme (CNT-Ni2P-CNT/Er3+: Y3Al5O12)@Bi12GeO20 photocatalyst for the enhanced photocatalytic conversion of hexavalent chromium with the simultaneous degradation of concomitant organic pollutants, Powder Technol. 368 (2020) 213–226.

[59]

Z. Wu, Z. Li, M. Wu, J. Shen, W. Feng, X. Li, D. Xu, S. Zhang, N. Ma, Defective BiO2-x/BiOCl porous ultrathin nanosheets for efficient solar-light-driven photoreduction of Cr (Ⅵ), Mat. Sci. Semicon. Proc. 128 (2021), 105781.

[60]

J.C. Sin, S.M. Lam, H. Zeng, H. Lin, H. Li, K.O. Tham, A.R. Mohamed, J.W. Lim, Z. Qin, Magnetic NiFe2O4 nanoparticles decorated on N-doped BiOBr nanosheets for expeditious visible light photocatalytic phenol degradation and hexavalent chromium reduction via a Z-scheme heterojunction mechanism, Appl. Surf. Sci. 559 (2021), 149966.

[61]

C. Lu, L. Wang, D. Yang, Z. Jin, X. Wang, J. Xu, Z. Li, W. Shi, W. Guan, W. Huang, Boosted tetracycline and Cr(Ⅵ) simultaneous cleanup over Z-scheme BiPO4/CuBi2O4 p-n heterojunction with 0D/1D trepang-like structure under simulated sunlight irradiation, J. Alloys Compd. 919 (2022), 165849.

[62]

C. Lu, D. Yang, L. Wang, S. Wen, D. Cao, C. Tu, L. Gao, Y. Li, Y. Zhou, W. Huang, Facile construction of CoO/Bi2WO6 p-n heterojunction with following Z-scheme pathways for simultaneous elimination of tetracycline and Cr(Ⅵ) under visible light irradiation, J. Alloys Compd. 904 (2022), 164046.

[63]

J. Zhang, Y. Ma, W. Zhang, X. Huang, X. Wang, Y. Huang, P. Zhang, CuBi2O4/calcined ZnAlBi-LDHs heterojunction: simultaneous removal of Cr(Ⅵ) and tetracycline through effective adsorption and photocatalytic redox, J. Clean. Prod. 365 (2022), 132810.

[64]

Z. Huang, X. Dai, Z. Huang, T. Wang, L. Cui, J. Ye, P. Wu, Simultaneous and efficient photocatalytic reduction of Cr(Ⅵ) and oxidation of trace sulfamethoxazole under LED light by rGO@Cu2O/BiVO4 p-n heterojunction composite, Chemosphere 221 (2019) 824–833.

[65]

C. Li, Z. Zhao, X. Wang, M. Li, J. Jiang, S. Dong, Carbon quantum dots induce in-situ formation of oxygen vacancies and domination of {001} facets in BiOBr microflower for simultaneous removal of aqueous tetracycline and hexavalent chromium, Chem. Eng. J. 442 (2022), 136249.

[66]

L. Liu, J. Liu, K. Sun, J. Wan, F. Fu, J. Fan, Novel phosphorus-doped Bi2WO6 monolayer with oxygen vacancies for superior photocatalytic water detoxication and nitrogen fixation performance, Chem. Eng. J. 411 (2021), 128629.

[67]

Q. Huang, Y. Liu, T. Cai, X. Xia, Simultaneous removal of heavy metal ions and organic pollutant by BiOBr/Ti3C2 nanocomposite, J. Photochem. Photobiol. A 375 (2019) 201–208.

[68]

H. Zhang, R. Chen, X. Zhou, Y. Dong, Y. Chen, H. Shi, Simultaneous removal of Cr(Ⅵ) and TC over BiO1-xBr/CeVO4 S-scheme heterostructures: oxygen vacancy boosted charge separation and analysis of intermediates, Environ. Sci.: Nano 9 (2022) 3613–3628.

[69]

L. Jiang, Y. Xie, F. He, Y. Ling, J. Zhao, H. Ye, S. Li, J. Wang, Y. Hou, Facile synthesis of GO as middle carrier modified flower-like BiOBr and C3N4 nanosheets for simultaneous treatment of chromium(Ⅵ) and tetracycline, Chin. Chem. Lett. 32 (2021) 2187–2191.

[70]

G. Xie, H. Wang, Y. Zhou, Y. Du, C. Liang, L. Long, K. Lai, W. Li, X. Tan, Q. Jin, G. Qiu, D. Zhou, H. Huo, X. Hu, X. Xu, Simultaneous remediation of methylene blue and Cr(Ⅵ) by mesoporous BiVO4 photocatalyst under visible-light illumination, J. Taiwan. Inst. Chem. E. 112 (2020) 357–365.

[71]

M. Chahkandi, M. Zargazi, Novel method of square wave voltammetry for deposition of Bi2S3 thin film: Photocatalytic reduction of hexavalent Cr in single and binary mixtures, J. Hazard Mater. 380 (2019), 120879.

[72]

Y. Sun, W. Wu, H. Zhou, Lignosulfonate-controlled BiOBr/C Nano-hollow microsphere photocatalyst for efficient removal of tetracycline and Cr(Ⅵ) under visible light, SSRN Electron. J. (2022), 139819.

[73]

C. Li, Z. Zhao, S. Fu, X. Wang, Y. Ma, S. Dong, Polyvinylpyrrolidone in the one-step synthesis of carbon quantum dots anchored hollow microsphere Bi2WO6 enhances the simultaneous photocatalytic removal of tetracycline and Cr (Ⅵ), Sep. Purif. Technol. 270 (2021), 118844.

[74]

R. Chen, Z. Ren, Y. Liang, G. Zhang, T. Dittrich, R. Liu, Y. Liu, Y. Zhao, S. Pang, H. An, C. Ni, P. Zhou, K. Han, F. Fan, C. Li, Spatiotemporal imaging of charge transfer in photocatalyst particles, Nature 610 (2022) 296–301.

[75]

T. Yu, L. Lv, H. Wang, X. Tan, Enhanced photocatalytic treatment of Cr(Ⅵ) and phenol by monoclinic BiVO4 with {010}-orientation growth, Mater. Res. Bull. 107 (2018) 248–254.

[76]

J. Jia, M. Zhang, Z. Liu, C. Yu, W. Zhou, Z. Li, La3+, Gd3+-codoped BiVO4 nanorods with superior visible-light-driven photocatalytic performance for simultaneous removing aqueous Cr(Ⅵ) and azo dye, J. Nanopart. Res.22 (2020) 1–14.

[77]

D. Dai, J. Qiu, L. Zhang, H. Ma, J. Yao, Amino-functionalized Ti-metal-organic framework decorated BiOI sphere for simultaneous elimination of Cr(Ⅵ) and tetracycline, J. Colloid Interface Sci. 607 (2022) 933–941.

[78]

Z. Khazaee, A.R. Mahjoub, A.H.C. Khavar, V. Srivastava, M. Sillanpää, Sub-level engineering strategy of nitrogen-induced Bi2O3/g-C3N4: a versatile photocatalyst for oxidation and reduction, Environ. Sci. Pollut. Res. 28 (2021) 50747–50766.

[79]

W. Zhao, J. Li, B. Dai, Z. Cheng, J. Xu, K. Ma, L. Zhang, N. Sheng, G. Mao, H. Wu, K. Wei, D.Y.C. Leung, Simultaneous removal of tetracycline and Cr(Ⅵ) by a novel three-dimensional AgI/BiVO4 p-n junction photocatalyst and insight into the photocatalytic mechanism, Chem. Eng. J. 369 (2019) 716–725.

[80]

H. Shen, F. Fu, W. Xue, X. Yang, S. Ajmal, Y. Zhen, L. Guo, D. Wang, R. Chi, In situ fabrication of Bi2MoO6/Bi2MoO homojunction photocatalyst for simultaneous photocatalytic phenol degradation and Cr(Ⅵ) reduction, J. Colloid Interface Sci. 599 (2021) 741–751.

[81]

Z. Zhai, K. Ren, X. Zheng, Y. Chen, Y. Dong, H. Shi, Simultaneous photocatalytic tetracycline oxidation and chromate reduction via a jointed synchronous pathway upon Z-scheme Bi12O17Cl2/AgBr: insight into intermediates and mechanism, Environ. Sci.: Nano 9 (2022) 1780–1793.

[82]

H. Li, F. Deng, Y. Zheng, L. Hua, C. Qu, X. Luo, Visible-light-driven Z-scheme rGO/Bi2S3–BiOBr heterojunctions with tunable exposed BiOBr (102) facets for efficient synchronous photocatalytic degradation of 2-nitrophenol and Cr(Ⅵ) reduction, Environ. Sci.: Nano 6 (2019) 3670–3683.

[83]

Q. Liang, S. Ploychompoo, J. Chen, T. Zhou, H. Luo, Simultaneous Cr(Ⅵ) reduction and bisphenol A degradation by a 3D Z-scheme Bi2S3-BiVO4 graphene aerogel under visible light, Chem. Eng. J. 384 (2020), 123256.

[84]

Y. Zhang, Z. Chen, Z. Shi, T.T. Lu, D. Chen, Q. Wang, Z. Zhan, A direct Z-scheme BiOBr/TzDa COF heterojunction photocatalyst with enhanced performance on visible-light driven removal of organic dye and Cr(Ⅵ), Sep. Purif. Technol. 275 (2021), 119216.

[85]

Q. Xu, L. Zhang, B. Cheng, J. Fan, J. Yu, S-scheme heterojunction photocatalyst, Chem 6 (2020) 1543–1559.

[86]

X. Dou, C. Zhang, H. Shi, The simultaneous promotion of Cr (Ⅵ) photoreduction and tetracycline removal over 3D/2D Cu2O/BiOBr S-scheme nanostructures, Sep. Purif. Technol. 282 (2022), 120023.

[87]

C. Liu, P. Wang, Y. Qiao, G. Zhou, Self-assembled Bi2SeO5/rGO/MIL-88A Z-scheme heterojunction boosting carrier separation for simultaneous removal of Cr (Ⅵ) and chloramphenicol, Chem. Eng. J. 431 (2022), 133289.

[88]

A. Chachvalvutikul, T. Luangwanta, S. Kaowphong, Double Z-scheme FeVO4/Bi4O5Br2/BiOBr ternary heterojunction photocatalyst for simultaneous photocatalytic removal of hexavalent chromium and rhodamine B, J. Colloid Interface Sci. 603 (2021) 738–757.

[89]

G. Xu, M. Du, J. Zhang, T. Li, Y. Guan, C. Guo, Facile fabrication of magnetically recyclable Fe3O4/BiVO4/CuS heterojunction photocatalyst for boosting simultaneous Cr(Ⅵ) reduction and methylene blue degradation under visible light, J. Alloys Compd. 895 (2022), 162631.

[90]

Z. Qu, Z. Liu, A. Wu, C. Piao, S. Li, J. Wang, Y. Song, Preparation of a coated Z-scheme and H-type SrTiO3/(BiFeO3@ZnS) composite photocatalyst and application in degradation of 2,4-dichlorophenol with simultaneous conversion of Cr(Ⅵ), Sep. Purif. Technol. 240 (2020), 116653.

[91]

W. Mao, L. Zhang, T. Wang, Y. Bai, Y. Guan, Fabrication of highly efficient Bi2WO6/CuS composite for visible-light photocatalytic removal of organic pollutants and Cr(Ⅵ) from wastewater, Front. Environ. Sci. Eng.15 (2020) 1–13.

[92]

S. Fu, W. Yuan, X. Liu, Y. Yan, H. Liu, L. Li, F. Zhao, J. Zhou, A novel 0D/2D WS2/BiOBr heterostructure with rich oxygen vacancies for enhanced broad-spectrum photocatalytic performance, J. Colloid Interface Sci. 569 (2020) 150–163.

[93]

J. Wan, Y. Zhang, R. Wang, L. Liu, E. Liu, J. Fan, F. Fu, Effective charge kinetics steering in surface plasmons coupled two-dimensional chemical Au/Bi2WO6-MoS2 heterojunction for superior photocatalytic detoxification performance, J. Hazard Mater. 384 (2020), 121484.

[94]

Y. Guo, C. Li, Y. Guo, X. Wang, X. Li, Ultrasonic-assisted synthesis of mesoporous g-C3N4/Na-bentonite composites and its application for efficient photocatalytic simultaneous removal of Cr(Ⅵ) and RhB, Colloids Surf. A Physicochem. Eng. Asp. 578 (2019), 123624.

[95]

H. Liu, J. Liang, S. Fu, L. Li, J. Cui, P. Gao, F. Zhao, J. Zhou, N doped carbon quantum dots modified defect-rich g-C3N4 for enhanced photocatalytic combined pollutions degradation and hydrogen evolution, Colloids Surf. A Physicochem. Eng. Asp. 591 (2020), 124552.

[96]

K. Yan, R. Li, Z. Yang, X. Li, Y. Wang, G. Wu, Biomass waste-derived porous carbon efficient for simultaneous removal of chlortetracycline and hexavalent chromium, iScience 24 (2021), 102421.

[97]

K. Li, D. Zhao, Y. Li, S. Luo, Z. Zhou, The synergistic photocatalytic effects of surface-modified g-C3N4 in simple and complex pollution systems based on a macro-thermodynamic model, Environ. Sci.: Nano 8 (2021) 217–232.

[98]

H. Huo, X. Hu, H. Wang, J. Li, G. Xie, X. Tan, Q. Jin, D. Zhou, C. Li, G. Qiu, Y. Liu, Synergy of photocatalysis and adsorption for simultaneous removal of hexavalent chromium and methylene blue by g-C3N4/BiFeO3/carbon nanotubes ternary composites, Int. J. Environ. Res. Public Health 16 (2019) 3219.

[99]

F. Bairamis, I. Konstantinou, WO3 fibers/g-C3N4 Z-scheme heterostructure photocatalysts for simultaneous oxidation/reduction of phenol/Cr (Ⅵ) in aquatic media, Catalysts 11 (2021) 792.

[100]

E. Liu, Y. Du, X. Bai, J. Fan, X. Hu, Synergistic improvement of Cr(Ⅵ) reduction and RhB degradation using RP/g-C3N4 photocatalyst under visible light irradiation, Arab. J. Chem. 13 (2020) 3836–3848.

[101]

F. Zhao, Y. Liu, S. Ben Hammouda, B. Doshi, N. Guijarro, X. Min, C.J. Tang, M. Sillanpää, K. Sivula, S. Wang, MIL-101(Fe)/g-C3N4 for enhanced visible-light-driven photocatalysis toward simultaneous reduction of Cr(Ⅵ) and oxidation of bisphenol A in aqueous media, Appl. Catal. B Environ. 272 (2020), 119033.

[102]

U. Alam, K. Pandey, N. Verma, Photocatalytic oxidation of glyphosate and reduction of Cr(Ⅵ) in water over ACF-supported CoNiWO4-gCN composite under batch and flow conditions, Chemosphere 297 (2022), 134119.

[103]

A. Jin, X. Liu, M. Li, Y. Jia, C. Chen, X. Chen, One-pot ionothermal synthesized carbon nitride heterojunction nanorods for simultaneous photocatalytic reduction and oxidation reactions: synergistic effect and mechanism insight, ACS Sustain. Chem. Eng. 7 (2019) 5122–5133.

[104]

K. Wei, K. Li, Z. Zeng, Y. Dai, L. Yan, H. Guo, X. Luo, Synergistic photocatalytic effect of porous g-C3N4 in a Cr(Ⅵ)/4-chlorophenol composite pollution system, Chin. J. Catal. 38 (2017) 1804–1811.

[105]

L. Mohapatra, D. Patra, S.J. Zaidi, S.H. Yoo, Heterointerface engineered and highly dual-functional N-doped carbon dot/N-rich g-C3N4 hybrid photocatalysts, Mater. Today Chem. 26 (2022), 101081.

[106]

S. Patnaik, D.P. Sahoo, K.M. Parida, Bimetallic co-effect of Au-Pd alloyed nanoparticles on mesoporous silica modified g-C3N4 for single and simultaneous photocatalytic oxidation of phenol and reduction of hexavalent chromium, J. Colloid Interface Sci. 560 (2020) 519–535.

[107]

J. Niu, Y. Peng, T. Hu, Y. Chen, J. Cheng, Y. Hu, Development of interfacial strong Interaction-enhanced C-F@CuBi2(Ox/N1-x)4/CN nano-sheet clusters photocatalysts for the simultaneous degradation of tetracycline and reduced Cr(Ⅵ), Chem. Eng. J. 454 (2023), 140203.

[108]

J. Ren, S. Lv, S. Wang, M. Bao, X. Zhang, Y. Gao, Y. Liu, Z. Zhang, L. Zeng, J. Ke, Construction of efficient g-C3N4/NH2-UiO-66 (Zr) heterojunction photocatalysts for wastewater purification, Sep. Purif. Technol. 274 (2021), 118973.

[109]

S. Luo, S. Li, S. Zhang, Z. Cheng, T.T. Nguyen, M. Guo, Visible-light-driven Z-scheme protonated g-C3N4/wood flour biochar/BiVO4 photocatalyst with biochar as charge-transfer channel for enhanced RhB degradation and Cr(Ⅵ) reduction, Sci. Total Environ. 806 (2022), 150662.

[110]

S.W. Lv, Q. Zheng, L. Ye, C.Y. Li, J.M. Liu, Y. Cong, S. Wang, The elaborately-designed Z-scheme Fe-g-C3N4/α-Fe2O3 photocatalytic platform equipping with active N-Fe-O bridges for enhanced synergistic removal of tetracycline and Cr(Ⅵ) via photoinduced electron transfer process, Chem. Eng. J. 455 (2023), 140940.

[111]

X. Wang, M. Lu, J. Ma, P. Ning, Preparation of air-stable magnetic g-C3N4@Fe0-graphene composite by new reduction method for simultaneous and synergistic conversion of organic dyes and heavy metal ions in aqueous solution, Sep. Purif. Technol. 212 (2019) 586–596.

[112]

J. Gu, H. Chen, F. Jiang, X. Wang, L. Li, All-solid-state Z-scheme Co9S8/graphitic carbon nitride photocatalysts for simultaneous reduction of Cr(Ⅵ) and oxidation of 2,4-dichlorophenoxyacetic acid under simulated solar irradiation, Chem. Eng. J. 360 (2019) 1188–1198.

[113]

N.P. Moraes, A. Siervo, T.O. Silva, R. Silva Rocha, D.A. Reddy, L. Yu, M.R. Vasconcelos Lanza, L.A. Rodrigues, Kraft lignin-based carbon xerogel/zinc oxide composite for 4-chlorophenol solar-light photocatalytic degradation: effect of pH, salinity, and simultaneous Cr(Ⅵ) reduction, Environ. Sci. Pollut. Res. 30 (2023) 8280–8296.

[114]

Q. Yuan, L. Chen, M. Xiong, J. He, S.L. Luo, C.T. Au, S.F. Yin, Cu2O/BiVO4 heterostructures: synthesis and application in simultaneous photocatalytic oxidation of organic dyes and reduction of Cr(Ⅵ) under visible light, Chem. Eng. J. 255 (2014) 394–402.

[115]

S. Ghanbari, M.H. Givianrad, P.A. Azar, Synthesis of N-F-codoped TiO2/SiO2 nanocomposites as a visible and sunlight response photocatalyst for simultaneous degradation of organic water pollutants and reduction of Cr (Ⅵ), J. Sol Gel Sci. Technol. 89 (2019) 562–570.

[116]

Z.H. Diao, X.R. Xu, F.M. Liu, Y.X. Sun, Z.W. Zhang, K.F. Sun, S.Z. Wang, H. Cheng, Photocatalytic degradation of malachite green by pyrite and its synergism with Cr(Ⅵ) reduction: performance and reaction mechanism, Sep. Purif. Technol. 154 (2015) 168–175.

[117]

K.V. A. Kumar, L. Chandana, P. Ghosal, C. Subrahmanyam, Simultaneous photocatalytic degradation of p-cresol and Cr (Ⅵ) by metal oxides supported reduced graphene oxide, Mol. Catal. 451 (2018) 87–95.

[118]

U. Alam, A. Khan, D. Bahnemann, M. Muneer, Synthesis of Co doped ZnWO4 for simultaneous oxidation of RhB and reduction of Cr(Ⅵ) under UV-light irradiation, J. Environ. Chem. Eng. 6 (2018) 4885–4898.

[119]

N.M. Izzudin, A.A. Jalil, M.W. Ali, F.F.A. Aziz, M.S. Azami, N.S. Hassan, A.A. Fauzi, N. Ibrahim, R. Saravanan, M.H. Hassim, Promoting a well-dispersion of MoO3 nanoparticles on fibrous silica catalyst via one-pot synthesis for enhanced photoredox environmental pollutants efficiency, Chemosphere 308 (2022), 136456.

[120]

F. He, Z. Lu, M. Song, X. Liu, H. Tang, P. Huo, W. Fan, H. Dong, X. Wu, G. Xing, Construction of ion imprinted layer modified ZnFe2O4 for selective Cr(Ⅵ) reduction with simultaneous organic pollutants degradation based on different reaction channels, Appl. Surf. Sci. 483 (2019) 453–462.

[121]

Y. Guo, Y. Guo, D. Tang, Y. Liu, X. Wang, P. Li, G. Wang, Sol-gel synthesis of new ZnFe2O4/Na-bentonite composites for simultaneous oxidation of RhB and reduction of Cr(Ⅵ) under visible light irradiation, J. Alloys Compd. 781 (2019) 1101–1109.

[122]

G. Byzynski, C. Melo, D.P. Volanti, M.M. Ferrer, A.F. Gouveia, C. Ribeiro, J. Andrés, E. Longo, The interplay between morphology and photocatalytic activity in ZnO and N-doped ZnO crystals, Mater. Des. 120 (2017) 363–375.

[123]

P.G. Ramos, L.A. Sánchez, J.M. Rodriguez, A review on improving the efficiency of photocatalytic water decontamination using ZnO nanorods, J. Sol Gel Sci. Technol.102 (2022) 105–124.

[124]

Z. Jin, Y.X. Zhang, F.L. Meng, Y. Jia, T. Luo, X.Y. Yu, J. Wang, J.H. Liu, X.J. Huang, Facile synthesis of porous single crystalline ZnO nanoplates and their application in photocatalytic reduction of Cr(Ⅵ) in the presence of phenol, J. Hazard Mater. 276 (2014) 400–407.

[125]

K.V. A. Kumar, B. Lakshminarayana, D. Suryakala, C. Subrahmanyam, Reduced graphene oxide supported ZnO quantum dots for visible light-induced simultaneous removal of tetracycline and hexavalent chromium, RSC Adv. 10 (2020) 20494–20503.

[126]

T.X.Q. Nguyen, S.S. Chen, M. Pasawan, H.M. Chang, Enhanced photocatalytic activity of g-C3N4–n-p type flower-like ZnO/BiOBr heterojunction for hexavalent chromium and dye wastewater degradation, Environ. Technol. Innov. 31 (2023), 103154.

[127]

J. Yang, J. Hao, S. Xu, J. Dai, Y. Wang, X. Pang, Visible-light-driven photocatalytic degradation of 4-CP and the synergistic reduction of Cr(Ⅵ) on one-pot synthesized amorphous Nb2O5 nanorods/graphene heterostructured composites, Chem. Eng. J. 353 (2018) 100–114.

[128]

F. Hashemzadeh, A. Gaffarinejad, R. Rahimi, Porous p-NiO/n-Nb2O5 nanocomposites prepared by an EISA route with enhanced photocatalytic activity in simultaneous Cr(Ⅵ) reduction and methyl orange decolorization under visible light irradiation, J. Hazard Mater. 286 (2015) 64–74.

Environmental Functional Materials
Pages 58-69
Cite this article:
Zhang T, Wang P, Li Y, et al. Advances in dual-functional photocatalysis for simultaneous reduction of hexavalent chromium and oxidation of organics in wastewater. Environmental Functional Materials, 2023, 2(1): 58-69. https://doi.org/10.1016/j.efmat.2023.05.001
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return