AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (5.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Hydrogel-based superadsorbents for efficient removal of heavy metals in industrial wastewater treatment and environmental conservation

Md. Samrat HossainaMd. Manik HossainaMost. Kulsum KhatunaKhan Rajib Hossainb( )
Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
Show Author Information

HIGHLIGHTS

● Heavy metal adsorption from industrial wastewater using superadsorbent hydrogels (SAH).

● SAHs with good thermal and mechanical capabilities for heavy metal ion removal.

● In water, hydrogels have an excellent swelling ratio and slow-release characteristics.

● A versatile SAH with broad applications, contributing to eco-friendly practices and environmental conservation.

● SAHs are a promising new material for a wide range of applications, including water purification, drug delivery, and tissue engineering.

Graphical Abstract

Abstract

Superadsorbent hydrogels have become a viable solution to the urgent problem of industrial wastewater contamination. This paper offers a thorough analysis of the most recent advancements in superadsorbent hydrogels, highlighting their potential to reduce pollution from industrial waste and support environmental preservation. The review begins with an explanation of the basic properties and principles of superadsorbent hydrogels, with a focus on their exceptional ability to swell with water. The story then flows into a thorough analysis of wastewater treatment, explaining how superadsorbent hydrogels interact with pollutants. Synthesis processes using natural, synthetic, and hybrid materials are examined to reveal the many strategies used to produce these hydrogels. In addition, the study explores the environmental effects of using superadsorbent hydrogels in wastewater treatment, assessing possible effects on soil and aquatic environments. This research highlights the revolutionary potential of superadsorbent hydrogels in improving industrial wastewater treatment methods while also protecting the environment.

References

[1]

M.I. Ahamed, A.M. Asiri, Applications of Ion Exchange Materials in the Environment, Springer International Publishing, 2019.

[2]

M. Ahmad, S. Ahmed, B.L. Swami, S. Ikram, Adsorption of heavy metal ions: role of chitosan and cellulose for water treatment, Langmuir 79 (2015) 109–155.

[3]

M. Akter, M. Bhattacharjee, A.K. Dhar, F.B.A. Rahman, S. Haque, T.U. Rashid, S.M.F. Kabir, Cellulose-based hydrogels for wastewater treatment: a concise review, Gels 7 (2021) 30.

[4]

R.M. Ali, H.A. Hamad, M.M. Hussein, G.F. Malash, Potential of using green adsorbent of heavy metal removal from aqueous solutions: adsorption kinetics, isotherm, thermodynamic, mechanism and economic analysis, Ecol. Eng. 91 (2016) 317–332.

[5]

I.C. Alupei, M. Popa, M. Hamcerencu, M.J.M. Abadie, Superabsorbant hydrogels based on xanthan and poly (vinyl alcohol): 1. the study of the swelling properties, Eur. Polym. J. 38 (2002) 2313–2320.

[6]
A.A. Aly, M.K. El-Bisi, Grafting of Polysaccharides: Recent Advances, Biopolymer grafting, 2018, pp. 469–519.
[7]

A. Ayati, S. Ranjbari, B. Tanhaei, M. Sillanpää, Ionic liquid-modified composites for the adsorptive removal of emerging water contaminants: a review, J. Mol. Liq. 275 (2019) 71–83.

[8]

A. Azimi, A. Azari, M. Rezakazemi, M. Ansarpour, Removal of heavy metals from industrial wastewaters: a review, ChemBioEng Rev. 4 (2017) 37–59.

[9]

M.A.H. Badsha, I.M.C. Lo, An innovative pH-independent magnetically separable hydrogel for the removal of Cu (Ⅱ) and Ni (Ⅱ) ions from electroplating wastewater, J. Hazard Mater. 381 (2020) 121000.

[10]

M.A.H. Badsha, M. Khan, B. Wu, A. Kumar, I.M.C. Lo, Role of surface functional groups of hydrogels in metal adsorption: from performance to mechanism, J. Hazard Mater. 408 (2021) 124463.

[11]

J. Bai, J. Chu, X. Yin, J. Wang, W. Tian, Q. Huang, Z. Jia, X. Wu, H. Guo, Z. Qin, Synthesis of amidoximated polyacrylonitrile nanoparticle/graphene composite hydrogel for selective uranium sorption from saline lake brine, Chem. Eng. J. 391 (2020) 123553.

[12]

M.A. Barakat, New trends in removing heavy metals from industrial wastewater, Arab. J. Chem. 4 (2011) 361–377.

[13]

S. Bashir, M. Hina, J. Iqbal, A.H. Rajpar, M.A. Mujtaba, N.A. Alghamdi, S. Wageh, K. Ramesh, S. Ramesh, Fundamental concepts of hydrogels: synthesis, properties, and their applications, Polymers 12 (2020) 2702.

[14]

S. Bashir, Y.Y. Teo, S. Ramesh, K. Ramesh, Synthesis and characterization of karaya gum-g-poly(acrylic acid) hydrogels and in vitro release of hydrophobic quercetin, Polymer 147 (2018) 108–120.

[15]

K. Kumari, V. Kumar, S. Nayaka, G. Saxena, I. Sanyal, Physiological alterations and heavy metal accumulation in the transplanted lichen Pyxine cocoes (Sw.) Nyl. in Lucknow city, Uttar Pradesh, Environ. Monit. Assess. 196 (2024) 84.

[16]

S.N. Basri, N. Zainuddin, K. Hashim, N.A. Yusof, Preparation and characterization of irradiated carboxymethyl sago starch-acid hydrogel and its application as metal scavenger in aqueous solution, Carbohydr. Polym. 138 (2016) 34–40.

[17]

G.R. Biswas, S.B. Majee, A roy combination of synthetic and natural polymers in hydrogel: an impact on drug permeation, J. Appl. Pharmaceut. Sci. 6 (2016) 158–164.

[18]

J. Briffa, E. Sinagra, R. Blundell, Heavy metal pollution in the environment and their toxicological effects on humans, Heliyon 6 (2020).

[19]

S.R. Caliari, J.A. Burdick, A practical guide to hydrogels for cell culture, Nat. Methods 13 (2016) 405–414.

[20]

B. Chen, M. Wang, M. Duan, X. Ma, J. Hong, F. Xie, R. Zhang, X. Li, In search of key: protecting human health and the ecosystem from water pollution in China, J. Clean. Prod. 228 (2019) 101–111.

[21]

P. Chowdhary, R.N. Bharagava, S. Mishra, N. Khan, Role of industries in water scarcity and its adverse effects on environment and human health, Environ. Concerns and Sustain. Dev. 1 (2020) 235–256. Water and Energy Resources.

[22]
D.E. Ciolacu, D.M. Suflet, Cellulose-based Hydrogels for Medical/pharmaceutical Applications, Biomass as Renewable Raw Material to Obtain Bioproducts of HighTech Value, Elsevier, 2018, pp. 401–439.
[23]

J.J. Coetzee, N. Bansal, E.M.N. Chirwa, Chromium in environment, its toxic effect from chromite-mining and ferrochrome industries, and its possible bioremediation, Expos. Health 12 (2020) 51–62.

[24]

G. Crini, E. Lichtfouse, Advantages and disadvantages of techniques used for wastewater treatment, Environ. Chem. Lett. 17 (2019) 145–155.

[25]

P. Cyganowski, A. Dzimitrowicz, P. Jamroz, D. Jermakowicz-Bartkowiak, P. Pohl, Polymerization-driven immobilization of dc-APGD synthesized gold nanoparticles into a quaternary ammonium-based hydrogel resulting in a polymeric nanocomposite with heat-transfer applications, Polymers 10 (2018) 377.

[26]

Z. Darban, S. Shahabuddin, R. Gaur, I. Ahmad, N. Sridewi, Hydrogel-based adsorbent material for the effective removal of heavy metals from wastewater: a comprehensive review, Gels 8 (2022) 263.

[27]

S.K. De, N.R. Aluru, A chemo-electro-mechanical mathematical model for simulation of pH sensitive hydrogels, Mech. Mater. 36 (2004) 395–410.

[28]
G. Deng, W.T. Wong, M. Huang, R. Wu, W. F Lai, Self-healing Properties of Hydrogels Based on Natural Polymers, Hydrogels Based on Natural Polymers, Elsevier, 2020, pp. 223–245.
[29]

N.N. Dil, M. Sadeghi, Free radical synthesis of nanosilver/gelatin-poly(acrylic acid) nanocomposite hydrogels employed for antibacterial activity and removal of Cu (Ⅱ) metal ions, J. Hazard Mater. 351 (2018) 38–53.

[30]

A. El-Hag Ali, Removal of heavy metals from model wastewater by using carboxymehyl cellulose/2-acrylamido-2-methyl propane sulfonic acid hydrogels, J. Appl. Polym. Sci. 123 (2012) 763–769.

[31]

H. Es-Sahbany, M. Berradi, S. Nkhili, R. Hsissou, M. Allaoui, M. Loutfi, M.S. El Youbi, Removal of heavy metals (nickel) contained in wastewater-models by the adsorption technique on natural clay, Mater. Today: Proc. 13 (2019) 866–875.

[32]

R. Fang, W. He, H. Xue, W. Chen, Synthesis and characterization of a high-capacity cationic hydrogel adsorbent and its application in the removal of Acid Black 1 from aqueous solution, React. Funct. Polym. 102 (2016) 1–10.

[33]

K. Ganesan, A. Barowski, L. Ratke, B. Milow, Influence of hierarchical porous structures on the mechanical properties of cellulose aerogels, J. Sol. Gel Sci. Technol. 89 (2019) 156–165.

[34]

S. Garg, A. Garg, R.D. Vishwavidyalaya, Hydrogel: classification, properties, preparation and technical features, Asian J. Biomater. Res. 2 (2016) 163–170.

[35]

T.K. Giri, H. Badwaik, Understanding the application of gum ghatti based biodegradable hydrogel for wastewater treatment, Environ. Nanotechnol. Monit. Manag. 17 (2022) 100668.

[36]

C.B. Godiya, X. Cheng, D. Li, Z. Chen, X. Lu, Carboxymethyl cellulose/ polyacrylamide composite hydrogel for cascaded treatment/reuse of heavy metal ions in wastewater, J. Hazard Mater. 364 (2019) 28–38.

[37]

M.F. Hamza, J.C. Roux, E. Guibal, Uranium and europium sorption on amidoxime-functionalized magnetic chitosan micro-particles, Chem. Eng. J. 344 (2018) 124–137.

[38]

M. Hasanpour, M. Hatami, Application of three dimensional porous aerogels as adsorbent for removal of heavy metal ions from water/wastewater: a review study, Adv. Colloid Interface Sci. 284 (2020) 102247.

[39]

M. Hasanpour, M. Hatami, Photocatalytic performance of aerogels for organic dyes removal from wastewaters: review study, J. Mol. Liq. 309 (2020) 113094.

[40]

X. He, L. Cheng, Y. Wang, J. Zhao, W. Zhang, C. Lu, Aerogels from quaternary ammonium-functionalized cellulose nanofibers for rapid removal of Cr (Ⅵ) from water, Carbohydr. Polym. 111 (2014) 683–687.

[41]

K.R. Hossain, P. Jiang, X. Yao, X. Yang, D. Hu, X. Wang, Ionic liquids for 3D printing: fabrication, properties, applications, J. Ion, Liq 3 (2023) 100066.

[42]

K.R. Hossain, J. Wu, X. Xu, K. Cobra, M.M. Jami, M.B. Ahmed, X. Wang, Tribological bioinspired interfaces for 3D printing, Tribol. Int. 188 (2023) 108904.

[43]

N. Hou, R. Wang, F. Wang, J. Bai, T. Jiao, Z. Bai, L. Zhang, J. Zhou, Q. Peng, Self-assembled hydrogels constructed via host-guest polymers with highly efficient dye removal capability for wastewater treatment, Colloids Surf. A Physicochem. Eng. Asp. 579 (2019) 123670.

[44]

X. Hu, W. Cheng, W. Nie, Z. Shao, Synthesis and characterization of a temperature-sensitive hydrogel based on sodium alginate and N-isopropylacrylamide, Polym. Adv. Technol. 26 (2015) 1340–1345.

[45]

S.H. Huang, D.H. Chen, Rapid removal of heavy metal cations and anions from aqueous solutions by an amino-functionalized magnetic nano-adsorbent, J. Hazard Mater. 163 (2009) 174–179.

[46]

H. Ismail, M. Irani, Z. Ahmad, Starch-based hydrogels: present status and applications, Int. J. Polym. Mater. 62 (2013) 411–420.

[47]

C. Jiang, X. Wang, G. Wang, C. Hao, X. Li, T. Li, Adsorption performance of a polysaccharide composite hydrogel based on crosslinked glucan/chitosan for heavy metal ions, Compos. B Eng. 169 (2019) 45–54.

[48]

Y. Jiang, Y. Wang, Q. Li, C. Yu, W. Chu, Natural polymer-based stimuli-responsive hydrogels, Curr. Med. Chem. 27 (2020) 2631–2657.

[49]
S.E. Jørgensen, Adsorption and ion exchange, in: Developments in Environmental Modelling vol. 14, Elsevier, 1989, pp. 65–81.
[50]

S.M.F. Kabir, R. Cueto, S. Balamurugan, L.D. Romeo, J.T. Kuttruff, B.D. Marx, I.I. Negulescu, Removal of acid dyes from textile wastewaters using fish scales by absorption process, Cleanroom Technol. 1 (2019) 311–324.

[51]

P. Kalendova, L. Svoboda, J. Hroch, P. Honcova, H. Drobna, S. Slang, Hydrogels based on starch from various natural sources: synthesis and characterization, Starch Staerke 73 (2021) 2100051.

[52]

M. Khan, I.M. Lo, A holistic review of hydrogel applications in the adsorptive removal of aqueous pollutants: recent progress, challenges, and perspectives, Water Res. 106 (2016) 259–271.

[53]

M. Kuddushi, S. Rajput, A. Shah, J.P. Mata, V.K. Aswal, O.A. El Seoud, A. Kumar, N.I. Malek, Stimuli responsive, self-sustainable, and self-healable functionalized hydrogel with dual gelation, load-bearing, and dye-absorbing properties, ACS Appl. Mater. Interfaces 11 (2019) 19572–19583.

[54]

L. Lin, H. Yang, X. Xu, Effects of water pollution on human health and disease heterogeneity: a review, Front. Environ. Sci. 10 (2022) 880246.

[55]

C. Lӧwenberg, M. Balk, C. Wischke, M. Behl, A. Lendlein, Shape-memory hydrogels: evolution of structural principles to enable shape switching of hydrophilic polymer networks, Acc. Chem. Res. 50 (2017) 723–732.

[56]

W. Lu, Z. Dai, L. Li, J. Liu, S. Wang, H. Yang, C. Cao, L. Liu, T. Chen, B. Zhu, L. Sun, L. Chen, P. Zhang, Preparation of composite hydrogel (PCG) and its adsorption performance for uranium (Ⅵ), J. Mol. Liq. 303 (2020) 112604.

[57]
X. Luo, F. Deng, Nanomaterials for the Removal of Pollutants and Resource Reutilization, Elsevier, 2018.
[58]

Q. Lv, X. Hu, X. Zhang, L. Huang, Z. Liu, G. Sun, Highly efficient removal of trace metal ions by using poly(acrylic acid) hydrogel adsorbent, Mater. Des. 181 (2019) 107934.

[59]

J. Ma, G. Zhou, L. Chu, Y. Liu, C. Liu, S. Luo, Y. Wei, Efficient removal of heavy metal ions with an EDTA functionalized chitosan/polyacrylamide double network hydrogel, ACS Sustain. Chem. Eng. 5 (2017) 843–851.

[60]

M. Mahinroosta, Z.J. Farsangi, A. Allahverdi, Z. Shakoori, Hydrogels as intelligent materials: a brief review of synthesis, properties and applications, Mater, Today Chem 8 (2018) 42–55.

[61]

S. Maity, N. Naskar, S. Lahiri, J. Ganguly, Polysaccharide-derived hydrogel water filter for the rapid and selective removal of arsenic, Environ. Sci.: Water Res. Technol. 5 (2019) 1318–1327.

[62]

B. Mandal, S.K. Ray, Synthesis of interpenetrating network hydrogel from poly(acrylic acid-co-hydroxyethyl methacrylate) and sodium alginate: modeling and kinetics study for removal of synthetic dyes from water, Carbohydr. Polym. 98 (2013) 257–269.

[63]

S. Mangaraj, A. Yadav, L.M. Bal, S.K. Dash, N.K. Mahanti, Application of biodegradable polymers in food packaging industry: a comprehensive review, J. Package Technol. Res. 3 (2019) 77–96.

[64]

N. Martin, G. Youssef, Dynamic properties of hydrogels and fiber-reinforced hydrogels, J. Mech. Behav. Biomed. Mater. 85 (2018) 194–200.

[65]

V. Masindi, K.L. Muedi, Environmental contamination by heavy metals, Heavy Metals 10 (2018) 115–132.

[66]

B.Y. Medina, M.L. Torem, L.M.S. De Mesquita, On the kinetics of precipitate flotation of Cr Ⅲ using sodium dodecylsulfate and ethanol, Miner. Eng. 18 (2005) 225–231.

[67]

R.P. Medina, E.T. Nadres, F.C. Ballesteros, D.F. Rodrigues, Incorporation of graphene oxide into a chitosan–poly (acrylic acid) porous polymer nanocomposite for enhanced lead adsorption, Environ. Sci.: Nano 3 (2016) 638–646.

[68]

P. Milani, D. França, A.G. Balieiro, R. Faez, Polymers and its applications in agriculture, Polímeros 27 (2017) 256–266.

[69]

A. Mishra, A. Nath, P.P. Pande, R. Shankar, Treatment of gray wastewater and heavy metal removal from aqueous medium using hydrogels based on novel crosslinkers, J. Appl. Polym. Sci. 138 (2021) 50242.

[70]

S. Mitra, A.J. Chakraborty, A.M. Tareq, T.B. Emran, F. Nainu, A. Khusro, A.M. Idris, M.U. Khandaker, H. Osman, F.A. Alhumaydhi, J. Simal-Gandara, Impact of heavy metals on the environment and human health: novel therapeutic insights to counter the toxicity, J. King Saud Univ. Sci. 34 (2022) 101865.

[71]

K. Miyamae, M. Nakahata, Y. Takashima, A. Harada, Self-healing, expansion–contraction, and shape-memory properties of a preorganized supramolecular hydrogel through host–guest interactions, Angew. Chem. Int. Ed. 54 (2015) 8984–8987.

[72]

Z. Mohammadi, S. Shangbin, C. Berkland, J.T. Liang, Chelator-mimetic multifunctionalized hydrogel: highly efficient and reusable sorbent for Cd, Pb, and as removal from waste water, Chem. Eng. J. 307 (2017) 496–502.

[73]

E. Mohammadnia, M. Hadavifar, H. Veisi, Kinetics and thermodynamics of mercury adsorption onto thiolated graphene oxide nanoparticles, Polyhedron 173 (2019) 114139.

[74]
N. Morin-Crini, G. Crini, L. Roy, Eaux Industrielles Contaminees, Presses Universitaires de Franche-Comte, 2017.
[75]

N.H. Mthombeni, S. Mbakop, M.S. Onyango, Adsorptive removal of manganese from industrial and mining wastewater, Proceed. Sustain. Rese. Innov. Conference (2022) 36–45.

[76]

R. Mu, B. Liu, X. Chen, N. Wang, J. Yang, Hydrogel adsorbent in industrial wastewater treatment and ecological environment protection, Environ. Technol. Innov. 20 (2020) 101107.

[77]

R. Mukherjee, P. Bhunia, S. De, Impact of graphene oxide on removal of heavy metals using mixed matrix membrane, Chem. Eng. J. 292 (2016) 284–297.

[78]

A. Nasir, F. Masood, T. Yasin, A. Hameed, Progress in polymeric nanocomposite membranes for wastewater treatment: preparation, properties and applications, J. Ind. Eng. Chem. 79 (2019) 29–40.

[79]
NOAA National Centers for Environmental Information, ETOPO 2022 15 ArcSecond Global Relief Model, NOAA National Centers for Environmental Information, 2022.
[80]

M. Nuhanović, M. Grebo, S. Draganović, M. Memić, N. Smječanin, Uranium (Ⅵ) biosorption by sugar beet pulp: equilibrium, kinetic and thermodynamic studies, J. Radioanal. Nucl. Chem. 322 (2019) 2065–2078.

[81]

O.F. Odio, L. Lartundo-Rojas, E.G. Palacios, R. Martínez, E. Reguera, Synthesis of a novel poly-thiolated magnetic nano-platform for heavy metal adsorption, Role of thiol and carboxyl functions, Appl. Surf. Sci. 386 (2016) 160–177.

[82]

Y. Oladosu, M.Y. Rafii, F. Arolu, S.C. Chukwu, M.A. Salisu, I.K. Fagbohun, T.K. Muftaudeen, S. Swaray, B.S. Haliru, Superabsorbent polymer hydrogels for sustainable agriculture: a review, Horticulturae 8 (2022) 605.

[83]

H. Onishi, Y. Machida, Biodegradation and distribution of water-soluble chitosan in mice, Biomaterials 20 (1999) 175–182.

[84]

O. Ozay, N. Aktas, N. Sahiner, Hydrogels as a potential chromatographic system: absorption, speciation, and separation of chromium species from aqueous media, Separ. Sci. Technol. 46 (2011) 1450–1461.

[85]

O. Ozay, S. Ekici, Y. Baran, N. Aktas, N. Sahiner, Removal of toxic metal ions with magnetic hydrogels, Water Res. 43 (2009) 4403–4411.

[86]

O. Ozay, S. Ekici, Y. Baran, S. Kubilay, N. Aktas, N. Sahiner, Utilization of magnetic hydrogels in the separation of toxic metal ions from aqueous environments, Desalination 260 (2010) 57–64.

[87]

P.M. Pakdel, S.J. Peighambardoust, A review on acrylic based hydrogels and their applications in wastewater treatment, J. Environ. Manag. 217 (2018) 123–143.

[88]

P.M. Pakdel, S.J. Peighambardoust, Review on recent progress in chitosan-based hydrogels for wastewater treatment application, Carbohydr. Polym. 201 (2018) 264–279.

[89]

N.A. Peppas, P. Bures, W.S. Leobandung, H. Ichikawa, Hydrogels in pharmaceutical formulations, Eur. J. Pharm. Biopharm. 50 (2000) 27–46.

[90]

R.C. Pereira, P.R. Anizelli, E. Di Mauro, D.F. Valezi, A.C.S. da Costa, C.T.B. Zaia, D.A. Zaia, The effect of pH and ionic strength on the adsorption of glyphosate onto ferrihydrite, Geochem. Trans. 20 (2019) 1–14.

[91]

N. Pettinelli, S. Rodriguez-Llamazares, V. Abella, L. Barral, R. Bouza, Y. Farrag, F. Lago, Entrapment of chitosan, pectin or κ-carrageenan within methacrylate based hydrogels: effect on swelling and mechanical properties, Mater, Science Eng. C 96 (2019) 583–590.

[92]

F. Picchioni, H. Muljana, Hydrogels based on dynamic covalent and non covalent bonds: a chemistry perspective, Gels 4 (2018) 21.

[93]

X. Qi, L. Lin, L. Shen, Z. Li, T. Qin, Y. Qian, X. Wu, X. Wei, Q. Gong, J. Shen, Efficient decontamination of lead ions from wastewater by salecan polysaccharide-based hydrogels, ACS Sustain. Chem. Eng. 7 (2019) 11014–11023.

[94]

C.R. Ramakrishnaiah, C. Sadashivalah, G. Ranganna, Assessment of water quality index for groundwater in Tumkur Taluk, Karnataka State, Indian J. Chem. 6 (2009) 523–530.

[95]

M.N. Rashed, Adsorption technique for the removal of organic pollutants from water and wastewater, Organic pollutants-monitoring, risk and treatment 7 (2013) 167–194.

[96]

S. Rittikulsittichai, A.G. Kolhatkar, S. Sarangi, M.A. Vorontsova, P.G. Vekilov, A. Brazdeikis, T.R. Lee, Multi-responsive hybrid particles: thermo-, pH-, photo-, and magneto-responsive magnetic hydrogel cores with gold nanorod optical triggers, Nanoscale 8 (2016) 11851–11861.

[97]

F.H. Rodrigues, C.E. de C. Magalhães, A.L. Medina, A.R. Fajardo, Hydrogel composites containing nanocellulose as adsorbents for aqueous removal of heavy metals: design, optimization, and application, Cellulose 26 (2019) 9119–9133.

[98]

N.N. Rudi, M.S. Muhamad, L. Te Chuan, J. Alipal, S. Omar, N. Hamidon, N.H.A. Hamid, N.M. Sunar, R. Ali, H. Harun, Evolution of adsorption process for manganese removal in water via agricultural waste adsorbents, Heliyon 6 (2020).

[99]

J.C. Saha, A.K. Dikshit, M. Bandyopadhyay, K.C. Saha, A review of arsenic poisoning and its effects on human health, Crit. Rev. Environ. Sci. Technol. 29 (1999) 281–313.

[100]

N.K. Sahua, P.S. Gilsb, D. Rayb, P.K. Sahoo, Hydrogels, a review, Adv. Polym. Sci. Technol.: Int. J. 2 (2012) 43–50.

[101]

M.L. Sanyang, W.A.W.A.K. Ghani, A. Idris, M.B. Ahmad, Hydrogel biochar composite for arsenic removal from wastewater, Desalination Water Treat. 57 (2016) 3674–3688.

[102]

G. Saxena, D. Purchase, S.I. Mulla, G.D. Saratale, R.N. Bharagava, Phytoremediation of heavy metal-contaminated sites: eco-environmental concerns, field studies, sustainability issues, and future prospects, Rev. Environ. Contam. Toxicol. 249 (2020) 71–131.

[103]

G. Sennakesavan, M. Mostakhdemin, L.K. Dkhar, A. Seyfoddin, S.J. Fatihhi, Acrylic acid/acrylamide based hydrogels and its properties-a review, Polym. Degrad. Stabil. 180 (2020) 109308.

[104]

M. Shafiq, A.A. Alazba, M.T. Amin, Removal of heavy metals from wastewater using date palm as a biosorbent: a comparative review, Sains Malays. 47 (2018) 35–49.

[105]

L.A. Shah, M. Khan, R. Javed, M. Sayed, M.S. Khan, A. Khan, M. Ullah, Superabsorbent polymer hydrogels with good thermal and mechanical properties for removal of selected heavy metal ions, J. Clean. Prod. 201 (2018) 78–87.

[106]

S. Sharma, S. Tiwari, A review on biomacromolecular hydrogel classification and its applications, Int. J. Biol. Macromol. 162 (2020) 737–747.

[107]
M.R. Singh, A. Gupta, Water Pollution-Sources, Effects and Control, Centre for Biodiversity, Department of Botany, Nagaland University, 2016, pp. 1–16.
[108]

V. Sinha, S. Chakma, Advances in the preparation of hydrogel for wastewater treatment: a concise review, J. Environ. Chem. Eng. 7 (2019) 103295.

[109]

N. Siti, H. Mohd, L.K. Md, I. Shamsul, Adsorption process of heavy metals by low-cost adsorbent: a review, World Appl. Sci. J. 28 (2013) 1518–1530.

[110]

C. Sun, T. Chen, Q. Huang, J. Wang, S. Lu, J. Yan, Enhanced adsorption for Pb (Ⅱ) and Cd (Ⅱ) of magnetic rice husk biochar by KMnO4 modification, Environ. Sci. Pollut. Res. 26 (2019) 8902–8913.

[111]

W. Tanan, J. Panichpakdee, S. Saengsuwan, Novel biodegradable hydrogel based on natural polymers: synthesis, characterization, swelling/reswelling and biodegradability, Eur. Polym. J. 112 (2019) 678–687.

[112]

J. Tavakoli, Y. Tang, Hydrogel based sensors for biomedical applications: an updated review, Polymers 9 (2017) 364.

[113]

C.Y. Teh, P.M. Budiman, K.P.Y. Shak, T.Y. Wu, Recent advancement of coagulation–flocculation and its application in wastewater treatment, Ind. Eng. Chem. Res. 55 (2016) 4363–4389.

[114]

S. Thakur, B. Sharma, A. Verma, J. Chaudhary, S. Tamulevicius, V.K. Thakur, Recent approaches in guar gum hydrogel synthesis for water purification, Int. J. Polym. Anal. Char. 23 (2018) 621–632.

[115]

S. Thakur, V.K. Thakur, O.A. Arotiba, History, classification, properties and application of hydrogels: an overview, Hydrogels, Recent Adv. (2018) 29–50.

[116]

Z. Tian, W. Liu, G. Li, The microstructure and stability of collagen hydrogel cross-linked by glutaraldehyde, Polym. Degrad. Stabil. 130 (2016) 264–270.

[117]

H. Tokuyama, T. Iwama, Temperature-swing solid-phase extraction of heavy metals on a poly(N-isopropylacrylamide) hydrogel, Langmuir 23 (2007) 13104–13108.

[118]

T.H. Tran, H. Okabe, Y. Hidaka, K. Hara, Removal of metal ions from aqueous solutions using carboxymethyl cellulose/sodium styrene sulfonate gels prepared by radiation grafting, Carbohydr. Polym. 157 (2017) 335–343.

[119]

F. Ullah, M.B.H. Othman, F. Javed, Z. Ahmad, H.M. Akil, Classification, processing and application of hydrogels: a review, Mater. Sci. Eng. C 57 (2015) 414–433.

[120]

K. Varaprasad, G.M. Raghavendra, T. Jayaramudu, M.M. Yallapu, R. Sadiku, A mini review on hydrogels classification and recent developments in miscellaneous applications, Mate, Sci. Eng. C 79 (2017) 958–971.

[121]

L.Y. Wang, M.J. Wang, Removal of heavy metal ions by poly(vinyl alcohol) and carboxymethyl cellulose composite hydrogels prepared by a freeze–thaw method, ACS Sustain. Chem. Eng. 4 (2016) 2830–2837.

[122]

S. Wang, Y. Shi, S. Chen, C. Zhu, X. Wang, T. Zhou, L. Su, C. Tan, L. Zhang, H. Xiang, Porous biochars with nitrogen defects prepared from hydrogel template-modified food waste for high-performance supercapacitors, J. Energy Storage 72 (2023) 108720.

[123]

T. Wang, L. Wang, D. Wu, W. Xia, H. Zhao, D. Jia, Hydrothermal synthesis of nitrogen-doped graphene hydrogels using amino acids with different acidities as doping agents, J. Mater. Chem. A 2 (2014) 8352–8361.

[124]
M. Wawrzkiewicz, Z. Hubicki, Anion Exchange Resins as Effective Sorbents for Removal of Acid, Reactive, and Direct Dyes from Textile Wastewaters, Ion Exchange-Studies and Applications, 2015, pp. 37–72.
[125]

L. Weerasundara, B. Gabriele, A. Figoli, Y.S. Ok, J. Bundschuh, Hydrogels: novel materials for contaminant removal in water—a review, Crit. Rev. Environ. Sci. Technol. 51 (2021) 1970–2014.

[126]

O. Wichterle, D. Lim, Hydrophilic gels for biological use, Nature 185 (1960) 117–118.

[127]

H. Wu, Z. Gai, Y. Guo, Y. Li, Y. Hao, Z.N. Lu, Does environmental pollution inhibit urbanization in China? A new perspective through residents' medical and health costs, Environ. Res. 182 (2020) 109128.

[128]

X. Xu, H. Yang, C. Li, Theoretical model and actual characteristics of air pollution affecting health cost: a review, Int. J. Environ. Res. Publ. Health 19 (2022) 3532.

[129]

E. Yan, M. Cao, X. Ren, J. Jiang, Q. An, Z. Zhang, J. Gao, X. Yang, D. Zhang, Synthesis of Fe3O4 nanoparticles functionalized polyvinyl alcohol/chitosan magnetic composite hydrogel as an efficient adsorbent for chromium (Ⅵ) removal, J. Phys. Chem. Solid. 121 (2018) 102–109.

[130]

H. Yan, K.H. Row, Characteristic and synthetic approach of molecularly imprinted polymer, Int. J. Mol. Sci. 7 (2006) 155–178.

[131]

K. Yang, Q. Han, B. Chen, Y. Zheng, K. Zhang, Q. Li, J. Wang, Antimicrobial hydrogels: promising materials for medical application, Int. J. Nanomed. (2018) 2217–2263.

[132]

X. Yang, L. Ni, Synthesis of hybrid hydrogel of poly(AM co DADMAC)/silica sol and removal of methyl orange from aqueous solutions, Chem. Eng. J. 209 (2012) 194–200.

[133]

Q. Zeng, X. Qi, M. Zhang, X. Tong, N. Jiang, W. Pan, W. Xiong, Y. Li, J. Xu, J. Shen, L. Xu, Efficient decontamination of heavy metals from aqueous solution using pullulan/polydopamine hydrogels, Int. J. Biol. Macromol. 145 (2020) 1049–1058.

[134]

Y. Zhang, Z. Li, Heavy metals removal using hydrogel-supported nanosized hydrous ferric oxide: synthesis, characterization, and mechanism, Sci. Total Environ. 580 (2017) 776–786.

[135]

Y. Zhang, S. Fan, S. Li, Y. Song, G. Wen, 3D porous oxygen-enriched graphene hydrogels with well-balanced volumetric and gravimetric performance for symmetric supercapacitors, J. Mater. Sci. 55 (2020) 12214–12231.

[136]

Y. Zheng, A. Wang, Evaluation of ammonium removal using a chitosan-g-poly(acrylic acid)/rectorite hydrogel composite, J. Hazard Mater. 171 (2009) 671–677.

[137]

Y. Zheng, A. Wang, Granular hydrogel initiated by Fenton reagent and their performance on Cu (Ⅱ) and Ni (Ⅱ) removal, Chem. Eng. J. 200 (2012) 601–610.

[138]

Y. Zheng, A. Wang, Removal of heavy metals using polyvinyl alcohol semi-IPN poly (acrylic acid)/tourmaline composite optimized with response surface methodology, Chem. Eng. J. 162 (2010) 186–193.

[139]

Y. Zheng, A. Wang, Superadsorbent with three-dimensional networks: from bulk hydrogel to granular hydrogel, Eur. Polym. J. 72 (2015) 661–686.

[140]

Y. Zheng, D. Huang, A. Wang, Chitosan-g-poly(acrylic acid) hydrogel with crosslinked polymeric networks for Ni2+ recovery, Anal. Chim. Acta 687 (2011) 193–200.

[141]

Y. Zheng, J. Zhang, A. Wang, Fast removal of ammonium nitrogen from aqueous solution using chitosan-g-poly(acrylic acid)/attapulgite composite, Chem. Eng. J. 155 (2009) 215–222.

[142]

Y. Zheng, Y. Zhu, A. Wang, Highly efficient and selective adsorption of malachite green onto granular composite hydrogel, Chem. Eng. J. 257 (2014) 66–73.

[143]

Y. Zhou, X. Hu, M. Zhang, X. Zhuo, J. Niu, Preparation and characterization of modified cellulose for adsorption of Cd (Ⅱ), Hg (Ⅱ), and acid fuchsin from aqueous solutions, Ind. Eng. Chem. Res. 52 (2013) 876–884.

[144]

Y. Zhuang, F. Yu, H. Chen, J. Zheng, J. Ma, J. Chen, Alginate/graphene doublenetwork nanocomposite hydrogel beads with low-swelling, enhanced mechanical properties, and enhanced adsorption capacity, J. Mater. Chem. A 4 (2016) 10885–10892.

Environmental Functional Materials
Pages 142-158
Cite this article:
Hossain MS, Hossain MM, Khatun MK, et al. Hydrogel-based superadsorbents for efficient removal of heavy metals in industrial wastewater treatment and environmental conservation. Environmental Functional Materials , 2023, 2(2): 142-158. https://doi.org/10.1016/j.efmat.2024.01.001

238

Views

15

Downloads

1

Crossref

Altmetrics

Received: 25 October 2023
Revised: 22 December 2023
Accepted: 05 January 2024
Published: 11 February 2024
© 2024 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return