AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (11.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

UiO-66(Zr)-based functional materials for water purification: An updated review

Yu-Hang LiChong-Chen Wang( )Xiao-Hong YiHong-Yu Chu
Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
Show Author Information

HIGHLIGHTS

● The fabrication strategies of UiO-66 based functional materials were summarized.

● Structure-function relationships between UiO-66 and applications were highlighted.

● The mechanisms of environmental applications were systematically summarized.

● The perspective of UiO-66-based environmental functional materials were proposed.

Graphical Abstract

Abstract

UiO-66, as a kind of classic metal-organic frameworks (MOFs), was foreseen as one of the most promising MOF materials for practical water purification, benefiting from its merits of rich pores, super-huge specific surface area, outstanding stability, intriguing properties and functions. Recently, to further enhance the applications of UiO-66-based materials in water environmental restoration, series effective strategies including functional modification, defect engineering, construction of UiO-66-based composites and membranes, had captured widespread interests by researchers. In this review, the recent advances in both various design strategies and corresponding structure-property relationships in wastewater treatment were summarized. The different design strategies induced particular applications, involving environmental catalysis, adsorption and fluorescent sensing detection, had been clarified with typical works. Moreover, the mechanisms and corresponding proof-of-concept techniques were also reviewed in detail. Finally, the existing challenges and future prospects of UiO-66 based functional materials including the pristine UiO-66 and its derivatives/composites for pollutants removal and sensing detection were proposed.

References

[1]

J.R. Long, O.M. Yaghi, The pervasive chemistry of metal-organic frameworks, Chem. Soc. Rev. 38 (2009) 1213–1214.

[2]

J.R. Li, J. Sculley, H.C. Zhou, Metal-organic frameworks for separations, Chem. Rev. 112 (2012) 869–932.

[3]

H.C. Zhou, J.R. Long, O.M. Yaghi, Introduction to metal-organic frameworks, Chem. Rev. 112 (2012) 673–674.

[4]

C.-C. Wang, J.-R. Li, X.-L. Lv, Y.-Q. Zhang, G. Guo, Photocatalytic organic pollutants degradation in metal-organic frameworks, Energy Environ. Sci. 7 (2014) 2831–2867.

[5]

M. Hartmann, A.G. Machoke, W. Schwieger, Catalytic test reactions for the evaluation of hierarchical zeolites, Chem. Soc. Rev. 45 (2016) 3313–3330.

[6]

J. Wang, Q. Ma, Y. Wang, Z. Li, Z. Li, Q. Yuan, New insights into the structure-performance relationships of mesoporous materials in analytical science, Chem. Soc. Rev. 47 (2018) 8766–8803.

[7]

Y. Tian, G. Zhu, Porous Aromatic frameworks (PAFs), Chem. Rev. 120 (2020) 8934–8986.

[8]

L.H. Chen, M.H. Sun, Z. Wang, W. Yang, Z. Xie, B.L. Su, Hierarchically structured zeolites: from design to application, Chem. Rev. 120 (2020) 11194–11294.

[9]

D.M. Kabtamu, Y.-n. Wu, F. Li, Hierarchically porous metal–organic frameworks: synthesis strategies, structures, and emerging applications in decontamination, J. Hazard Mater. 397 (2020) 122765.

[10]

M. Taddei, When defects turn into virtues: the curious case of zirconium-based metal-organic frameworks, Coord. Chem. Rev. 343 (2017) 1–24.

[11]

C. Wang, J. Luan, C. Wu, Metal-organic frameworks for aquatic arsenic removal, Water Res. 158 (2019) 370–382.

[12]

S. Mandal, S. Natarajan, P. Mani, A. Pankajakshan, Post-synthetic modification of metal-organic frameworks toward applications, Adv. Funct. Mater. 31 (2020) 2006291.

[13]

G. Cai, P. Yan, L. Zhang, H.C. Zhou, H.L. Jiang, Metal-organic framework-based hierarchically porous materials: synthesis and applications, Chem. Rev. 121 (2021) 12278–12326.

[14]

J.-R. Li, Y. Ma, M.C. McCarthy, J. Sculley, J. Yu, H.-K. Jeong, P.B. Balbuena, H.-C. Zhou, Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks, Coord. Chem. Rev. 255 (2011) 1791–1823.

[15]

J.R. Li, J. Yu, W. Lu, L.B. Sun, J. Sculley, P.B. Balbuena, H.C. Zhou, Porous materials with pre-designed single-molecule traps for CO2 selective adsorption, Nat. Commun. 4 (2013) 1538.

[16]

J.J. Li, C.C. Wang, H.F. Fu, J.R. Cui, P. Xu, J. Guo, J.R. Li, High-performance adsorption and separation of anionic dyes in water using a chemically stable graphene-like metal-organic framework, Dalton Trans. 46 (2017) 10197–10201.

[17]

Y.-Q. Zhang, C.-C. Wang, T. Zhu, P. Wang, S.-J. Gao, Ultra-high uptake and selective adsorption of organic dyes with a novel polyoxomolybdate-based organic–inorganic hybrid compound, RSC Adv. 5 (2015) 45688–45692.

[18]

C. Du, Z. Zhang, G. Yu, H. Wu, H. Chen, L. Zhou, Y. Zhang, Y. Su, S. Tan, L. Yang, J. Song, S. Wang, A review of metal organic framework (MOFs)-based materials for antibiotics removal via adsorption and photocatalysis, Chemosphere 272 (2021) 129501.

[19]

Z. Yin, S. Wan, J. Yang, M. Kurmoo, M.-H. Zeng, Recent advances in post-synthetic modification of metal–organic frameworks: new types and tandem reactions, Coord. Chem. Rev. 378 (2019) 500–512.

[20]

Z. Wang, S.M. Cohen, Postsynthetic modification of metal–organic frameworks, Chem. Soc. Rev. 38 (2009) 1315.

[21]

X.-D. Du, X.-H. Yi, P. Wang, J.g Deng, C.-C. Wang, Enhanced photocatalytic Cr(Ⅵ) reduction and diclofenac sodium degradation under simulated sunlight irradiation over MIL-100(Fe)/g-C3N4 heterojunctions, Chinese J. Catal. (2019) 70–79.

[22]

L. Zhang, C.-Y. Wang, C.-C. Wang, Mining resources from wastes to produce high value-added MOFs, Resour. Conserv. Recycl. 190 (2023) 106805.

[23]

X. Du, W. Fu, P. Su, L. Su, Q. Zhang, J. Cai, M. Zhou, Trace FeCu@PC derived from MOFs for Ultraefficient heterogeneous Electro-fenton process: enhanced electron transfer and bimetallic Synergy, ACS ES&T Eng. 1 (2021) 1311–1322.

[24]

X. Du, S. Wang, F. Ye, Z. Qingrui, Derivatives of metal-organic frameworks for heterogeneous Fenton-like processes: from preparation to performance and mechanisms in wastewater purification - a mini review, Environ. Res. 206 (2022) 112414.

[25]

X.-W. Zhang, M.-Y. Lan, F. Wang, X.-H. Yi, C.-C. Wang, ZIF-67-based catalysts in persulfate advanced oxidation processes (PS-AOPs) for water remediation, J. Environ. Chem. Eng. 10 (2022) 107997.

[26]

X.-W. Zhang, M.-Y. Lan, F. Wang, C.-C. Wang, P. Wang, C. Ge, W. Liu, Immobilized N-C/Co derived from ZIF-67 as PS-AOP catalyst for effective tetracycline matrix elimination: from batch to continuous process, Chem. Eng. J. 450 (2022) 138082.

[27]

F. Wang, S.S. Liu, Z. Feng, H. Fu, M. Wang, P. Wang, W. Liu, C.C. Wang, High-efficient peroxymonosulfate activation for rapid atrazine degradation by FeSx@MoS2 derived from MIL-88A(Fe), J. Hazard Mater. 440 (2022) 129723.

[28]

H. Fu, Z. Feng, S.-S. Liu, P. Wang, C. Zhao, C.-C. Wang, Enhanced ethanol sensing performance of N-doped ZnO derived from ZIF-8, Chin. Chem. Lett. 34 (2023) 107425.

[29]

M. Lan, R.-M. Guo, Y. Dou, J. Zhou, A. Zhou, J.-R. Li, Fabrication of porous Pt-doping heterojunctions by using bimetallic MOF template for photocatalytic hydrogen generation, Nano Energy 33 (2017) 238–246.

[30]

M. Li, S. You, X. Duan, Y. Liu, Selective formation of reactive oxygen species in peroxymonosulfate activation by metal-organic framework-derived membranes: a defect engineering-dependent study, Appl. Catal., B 312 (2022) 121419.

[31]

L. Chen, D. Liu, J. Peng, Q. Du, H. He, Ratiometric fluorescence sensing of metal-organic frameworks: tactics and perspectives, Coord. Chem. Rev. 404 (2020) 213113.

[32]

Y. Zhang, S. Sheng, S. Mao, X. Wu, Z. Li, W. Tao, I.R. Jenkinson, Highly sensitive and selective fluorescent detection of phosphate in water environment by a functionalized coordination polymer, Water Res. 163 (2019) 114883.

[33]

B. Wang, X.L. Lv, D. Feng, L.H. Xie, J. Zhang, M. Li, Y. Xie, J.R. Li, H.C. Zhou, Highly stable Zr(Ⅳ)-Based metal-organic frameworks for the detection and removal of antibiotics and organic explosives in water, J. Am. Chem. Soc. 138 (2016) 6204–6216.

[34]

L.E. Kreno, K. Leong, O.K. Farha, M. Allendorf, R.P. Van Duyne, J.T. Hupp, Metal-organic framework materials as chemical sensors, Chem. Rev. 112 (2012) 1105–1125.

[35]

E.A. Dolgopolova, A.M. Rice, C.R. Martin, N.B. Shustova, Photochemistry and photophysics of MOFs: steps towards MOF-based sensing enhancements, Chem. Soc. Rev. 47 (2018) 4710–4728.

[36]

Y. Zhang, M. Sun, M. Peng, E. Du, X. Xu, C.-C. Wang, The fabrication strategies and enhanced performances of metal-organic frameworks and carbon dots composites: state of the art review, Chin. Chem. Lett. 34 (2023) 107478.

[37]

Y.-W. Li, J.-R. Li, L.-F. Wang, B.-Y. Zhou, Q. Chen, X.-H. Bu, Microporous metal–organic frameworks with open metal sites as sorbents for selective gas adsorption and fluorescence sensors for metal ions, J. Mater. Chem. A 1 (2013) 495–499.

[38]

J. Ru, X. Wang, F. Wang, X. Cui, X. Du, X. Lu, UiO series of metal-organic frameworks composites as advanced sorbents for the removal of heavy metal ions: synthesis, applications and adsorption mechanism, Ecotoxicol. Environ. Saf. 208 (2021) 111577.

[39]

C.S. Cox, V. Cossich Galicia, M. Lessio, Computational insights into as(Ⅴ) removal from water by the UiO-66 metal-organic framework, J. Phys. Chem. C 125 (2021) 3157–3168.

[40]

S. Dhaka, R. Kumar, A. Deep, M.B. Kurade, S.-W. Ji, B.-H. Jeon, Metal-organic frameworks (MOFs) for the removal of emerging contaminants from aquatic environments, Coord. Chem. Rev. 380 (2019) 330–352.

[41]

X. Ren, C.-C. Wang, Y. Li, C.-Y. Wang, P. Wang, S. Gao, Ag(Ⅰ) removal and recovery from wastewater adopting NH2-MIL-125 as efficient adsorbent: a 3Rs (reduce, recycle and reuse) approach and practice, Chem. Eng. J. 442 (2022) 136306.

[42]

J. Guo, J.-J. Li, C.-C. Wang, Adsorptive removal of Cr(Ⅵ) from simulated wastewater in MOF BUC-17 ultrafine powder, J. Environ. Chem. Eng. 7 (2019) 102909.

[43]

J. Ma, C.-C. Wang, Z.-X. Zhao, P. Wang, J.-J. Li, F.-X. Wang, Adsorptive capture of perrhenate (ReO4) from simulated wastewater by cationic 2D-MOF BUC-17, Polyhedron 202 (2021) 115218.

[44]

X.-D. Du, M. h Zhou, Strategies to enhance catalytic performance of metal-organic frameworks in sulfate radical-based advanced oxidation processes for organic pollutants removal, Chem. Eng. J. 403 (2021) 126346.

[45]

Kenji Nomiya, Kazuhiro Tsuda, Tetsushi Sudoh, M. Oda, Ag(Ⅰ)-N bond-containing co-mpound showing wide spectra in effective antimicrobial activities: polymeric silver(Ⅰ) imidazolate, J. Inorg. Biochem. 68 (1997) 39–44.

[46]

C.-C. Wang, X.-Y. Yi, P. Wang, Powerful combination of MOFs and C3N4 for enhanced photocatalytic performance, Appl. Catal., B 247 (2019) 24–48.

[47]

Q. Zhao, C.-C. Wang, P. Wang, Effective norfloxacin elimination via photo-Fenton process over the MIL-101(Fe)-NH2 immobilized on α-Al2O3 sheet, Chin. Chem. Lett. 33 (2022) 4828–4833.

[48]

Y.-H. Li, C.-C. Wang, F. Wang, W. Liu, L. Chen, C. Zhao, H. Fu, P. Wang, X. Duan, Nearly zero peroxydisulfate consumption for persistent aqueous organic pollutants degradation via nonradical processes supported by in-situ sulfate radical regeneration in defective MIL-88B(Fe), Appl. Catal., B 331 (2023) 122699.

[49]

L. Shi, X. Zou, T. Wang, D. Wang, M. Fan, Z. Gong, Sunlight photocatalytic degradation of ofloxacin using UiO-66/wood composite photocatalysts, Chin. Chem. Lett. 33 (2022) 442–446.

[50]

F.-X. Wang, Z.-C. Zhang, C.-C. Wang, Selective oxidation of aqueous organic pollutants over MOFs-based catalysts: a mini review, Chem. Eng. J. 459 (2023) 141538.

[51]

F. Wang, Y. Gao, S.-S. Liu, X.-H. Yi, C.-C. Wang, H. Fu, Fabrication strategies of metal–organic frameworks derivatives for catalytic aqueous pollutants elimination, Chem. Eng. J. 463 (2023) 142466.

[52]

C.J. Vörösmarty, P.B. McIntyre, M.O. Gessner, D. Dudgeon, A. Prusevich, P. Green, S. Glidden, S.E. Bunn, C.A. Sullivan, C.R. Liermann, P.M. Davies, Global threats to human water security and river biodiversity, Nature 467 (2010) 555–561.

[53]

Y. Shen, Z. Zhang, K. Xiao, Evaluation of cobalt oxide, copper oxide and their solid solutions as heterogeneous catalysts for Fenton-degradation of dye pollutants, RSC Adv. 5 (2015) 91846–91854.

[54]

N. Akram, J. Guo, W. Ma, Y. Guo, A. Hassan, J. Wang, Synergistic catalysis of Co(OH)2/CuO for the degradation of organic pollutant under visible light irradiation, Sci. Rep. 10 (2020) 1939.

[55]

R. Sivaranjanee, P.S. Kumar, A review on remedial measures for effective separation of emerging contaminants from wastewater, Environ. Technol. Innov. 23 (2021) 101741.

[56]

J. Fawell, C.N. Ong, Emerging contaminants and the implications for drinking water, Int. J. Water Resour. Dev. 28 (2012) 247–263.

[57]

T. He, Y.Z. Zhang, X.J. Kong, J. Yu, X.L. Lv, Y. Wu, Z.J. Guo, J.R. Li, Zr(Ⅳ)-Based metal-organic framework with T-Shaped ligand: unique structure, high stability, selective detection, and rapid adsorption of Cr2O72- in water, ACS Appl. Mater. Interfaces 10 (2018) 16650–16659.

[58]

B. Shen, C. Dong, J. Ji, M. Xing, J. Zhang, Efficient Fe(Ⅲ)/Fe(Ⅱ) cycling triggered by MoO2 in Fenton reaction for the degradation of dye molecules and the reduction of Cr(Ⅵ), Chin. Chem. Lett. 30 (2019) 2205–2210.

[59]

H. Fu, C.-C. Wang, W. Liu, MOFs for water purification, Chin. Chem. Lett. 33 (2022) 1647–1649.

[60]

M.G. Pintado-Herrera, C. Wang, J. Lu, Y.P. Chang, W. Chen, X. Li, P.A. Lara-Martin, Distribution, mass inventories, and ecological risk assessment of legacy and emerging contaminants in sediments from the Pearl River Estuary in China, J. Hazard Mater. 323 (2017) 128–138.

[61]

C. Teodosiu, A.-F. Gilca, G. Barjoveanu, S. Fiore, Emerging pollutants removal through advanced drinking water treatment: a review on processes and environmental performances assessment, J. Clean. Prod. 197 (2018) 1210–1221.

[62]

J.H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, K.P. Lillerud, A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability, J. Am. Chem. Soc. 130 (2008) 13850–13851.

[63]

J.B. DeCoste, G.W. Peterson, H. Jasuja, T.G. Glover, Y.-g. Huang, K.S. Walton, Stability and degradation mechanisms of metal-organic frameworks containing the Zr6O4(OH)4 secondary building unit, J. Mater. Chem. A 1 (2013) 5642.

[64]

C.G. Piscopo, A. Polyzoidis, M. Schwarzer, S. Loebbecke, Stability of UiO-66 under acidic treatment: opportunities and limitations for post-synthetic modifications, Microporous Mesoporous Mater. 208 (2015) 30–35.

[65]

J. Aguilera-Sigalat, D. Bradshaw, A colloidal water-stable MOF as a broad-range fluorescent pH sensor via post-synthetic modification, Chem. Comm. 50 (2014) 4711–4713.

[66]

L. Valenzano, B. Civalleri, S. Chavan, S. Bordiga, M.H. Nilsen, S. Jakobsen, K.P. Lillerud, C. Lamberti, Disclosing the complex structure of UiO-66 metal organic framework: a Synergic combination of experiment and theory, Chem. Mater. 23 (2011) 1700–1718.

[67]

F. Ahmadijokani, H. Molavi, M. Rezakazemi, S. Tajahmadi, A. Bahi, F. Ko, T.M. Aminabhavi, J.-R. Li, M. Arjmand, UiO-66 metal-organic frameworks in water treatment: a critical review, Prog. Mater. Sci. 125 (2022) 100904.

[68]

Z. Zhang, Z. Li, Z. Dong, F. Yu, Y. Wang, Y. Wang, X. Cao, Y. Liu, Y. Liu, Synergy of photocatalytic reduction and adsorption for boosting uranium removal with PMo12/UiO-66 heterojunction, Chin. Chem. Lett. 33 (2022) 3577–3580.

[69]

W. Cao, Y. Zhang, Z. Shi, T. Liu, X.S. Song, L.S. Zhang, P.K. Wong, Z.G. Chen, Boosting the adsorption and photocatalytic activity of carbon fiber/MoS2-based weavable photocatalyst by decorating UiO-66-NH2 nanoparticles, Chem. Eng. J. 417 (2021) 128112.

[70]

T. Yang, T. Ma, L. Yang, W. Dai, S. Zhang, S. Luo, A self-supporting UiO-66 photocatalyst with Pd nanoparticles for efficient degradation of tetracycline, Appl. Surf. Sci. 544 (2021) 148928.

[71]

C. Wang, C. Xiong, X. Zhang, Y. He, J. Xu, Y. Zhao, S. Wang, J. Zheng, External optimization of Zr-MOF with mercaptosuccinic acid for efficient recovery of gold from solution: adsorption performance and DFT calculation, Sep. Purif. Technol. 296 (2022) 121329.

[72]

W. Ji, X. Wang, T. Ding, S. Chakir, Y. Xu, X. Huang, H. Wang, Electrospinning preparation of nylon-6@UiO-66-NH2 fiber membrane for selective adsorption enhanced photocatalysis reduction of Cr(Ⅵ) in water, Chem. Eng. J. 451 (2023) 138973.

[73]

T. Gan, X. Zhang, G. Qin, Y. Ni, A calcein-modified Zr(Ⅳ)-based metal-organic framework as a visualized sensor for calcium ions, J. Mater. Chem. C 10 (2022) 1517–1525.

[74]

Z. Li, Z. Zhang, Z. Dong, F. Yu, M. Ma, Y. Wang, Y. Wang, Y. Liu, J. Liu, X. Cao, Y. Liu, Solar light-responsive CdS/UiO-66-NH2 for ultrafast uranium reduction from uranium-containing mine wastewater without external sacrificial agents, Sep. Purif. Technol. 283 (2022) 120195.

[75]

S. Jiang, Z. Zhao, K. Cui, Y. Tang, X. Du, B. He, M. Li, J. Feng, B. Yu, W. Xiong, Catalytic wet peroxide oxidation of phenolic wastewater on novel Cu/Mn-UiO-66@Al2O3 ceramic tube membrane catalysts, Chem. Eng. J. 430 (2022) 132787.

[76]

S. Li, Y. Jin, Z. Hu, Y. Liu, S. Wu, Y. Wang, G. Wang, Performance and mechanism for U(Ⅵ) adsorption in aqueous solutions with amino-modified UiO-66, J. Radioanal. Nucl. Chem. 330 (2021) 857–869.

[77]

X.-H. Yi, S.-Q. Ma, X.-D. Du, C. Zhao, H. Fu, P. Wang, C.-C. Wang, The facile fabrication of 2D/3D Z-scheme g-C3N4/UiO-66 heterojunction with enhanced photocatalytic Cr(Ⅵ) reduction performance under white light, Chem. Eng. J. 375 (2019) 121944.

[78]

J. Guo, Y. Liang, L. Liu, J. Hu, H. Wang, W. An, W. Cui, Noble-metal-free CdS/Ni-MOF composites with highly efficient charge separation for photocatalytic H2 evolution, Appl. Surf. Sci. 522 (2020) 146356.

[79]

D.-X. Du, X.-H. Yi, P. Wang, W. w Zheng, J.g Deng, C.-C. Wang, Robust photocatalytic reduction of Cr(Ⅵ) on UiO-66-NH2(Zr/Hf) metal-organic framework membrane under sunlight irradiation, Chem. Eng. J. 356 (2019) 393–399.

[80]

M.B. Hussain, R. Mehmood, U. Azhar, J. Wang, L. Song, BiOCl-coated UiO-66-NH2 metal-organic framework nanoparticles for visible-light photocatalytic Cr(Ⅵ) reduction, ACS Appl. Nano Mater. 4 (2021) 4037–4047.

[81]

K. Yu, L. Tang, X. Cao, Z. Guo, Y. Zhang, N. Li, C. Dong, X. Gong, T. Chen, R. He, W. Zhu, Semiconducting metal–organic frameworks decorated with spatially separated dual Cocatalysts for efficient uranium(Ⅵ) photoreduction, Adv. Funct. Mater. 32 (2022) 2200315.

[82]

Y.-X. Li, X. Wang, C.-C. Wang, H. Fu, Y. Liu, P. Wang, C. Zhao, S-TiO2/UiO-66-NH2 composite for boosted photocatalytic Cr(Ⅵ) reduction and bisphenol A degradation under LED visible light, J. Hazard Mater. 399 (2020) 123085.

[83]

C. Zhao, Y. Li, H. Chu, X. Pan, L. Ling, P. Wang, H. Fu, C.C. Wang, Z. Wang, Construction of direct Z-scheme Bi5O7I/UiO-66-NH2 heterojunction photocatalysts for enhanced degradation of ciprofloxacin: mechanism insight, pathway analysis and toxicity evaluation, J. Hazard Mater. 419 (2021) 126466.

[84]

R.R. Solís, M. Peñas-Garzón, C. Belver, J.J. Rodriguez, J. Bedia, Highly stable UiO-66-NH2 by the microwave-assisted synthesis for solar photocatalytic water treatment, J. Environ. Chem. Eng. 10 (2022) 107122.

[85]

L. Feng, G.S. Day, K.-Y. Wang, S. Yuan, H.-C. Zhou, Strategies for pore engineering in zirconium metal-organic frameworks, Chem 6 (2020) 2902–2923.

[86]

S. Yuan, L. Zou, J.S. Qin, J. Li, L. Huang, L. Feng, X. Wang, M. Bosch, A. Alsalme, T. Cagin, H.C. Zhou, Construction of hierarchically porous metal-organic frameworks through linker labilization, Nat. Commun. 8 (2017) 15356.

[87]

C. Wang, A. Jiang, X. Liu, K. Yuen Koh, Y. Yang, J.P. Chen, K. Li, Amorphous metal-organic framework UiO-66-NO2 for removal of oxyanion pollutants: towards improved performance and effective reusability, Sep. Purif. Technol. 295 (2022) 121014.

[88]

T. Guan, X. Li, W. Fang, D. Wu, Efficient removal of phosphate from acidified urine using UiO-66 metal-organic frameworks with varying functional groups, Appl. Surf. Sci. 501 (2020) 144074.

[89]

C. Wang, X. Liu, J.P. Chen, K. Li, Superior removal of arsenic from water with zirconium metal-organic framework UiO-66, Sci. Rep. 5 (2015) 16613.

[90]

S.N. Tambat, D.J. Ahirrao, A.B. Pandit, N. Jha, S.M. Sontakke, Hydrothermally synthesized N2-UiO-66 for enhanced and selective adsorption of cationic dyes, Environ. Technol. Innov. 19 (2020) 101021.

[91]

M.S. Embaby, S.D. Elwany, W. Setyaningsih, M.R. Saber, The adsorptive properties of UiO-66 towards organic dyes: a record adsorption capacity for the anionic dye Alizarin Red S, Chin. J. Chem. Eng. 26 (2018) 731–739.

[92]

S. Ali, Z. Zuhra, Y. Abbas, Y. Shu, M. Ahmad, Z. Wang, Tailoring defect density in UiO-66 frameworks for enhanced Pb(Ⅱ) adsorption, Langmuir 37 (2021) 13602–13609.

[93]

Y. Zhao, D. Wang, W. Wei, L. Cui, C.W. Cho, G. Wu, Effective adsorption of mercury by Zr(Ⅳ)-based metal-organic frameworks of UiO-66-NH2 from aqueous solution, Environ. Sci. Pollut. Res. Int. 28 (2021) 7068–7075.

[94]

K.A. Lin, Y.T. Liu, S.Y. Chen, Adsorption of fluoride to UiO-66-NH2 in water: stability, kinetic, isotherm and thermodynamic studies, J. Colloid Interface Sci. 461 (2016) 79–87.

[95]

L. Fu, S. Wang, G. Lin, L. Zhang, Q. Liu, J. Fang, C. Wei, G. Liu, Post-functionalization of UiO-66-NH2 by 2,5-Dimercapto-1,3,4-thiadiazole for the high efficient removal of Hg(Ⅱ) in water, J. Hazard Mater. 368 (2019) 42–51.

[96]

J. Guo, X. Fan, J. Wang, S. Yu, M. Laipan, X. Ren, C. Zhang, L. Zhang, Y. Li, Highly efficient and selective recovery of Au(Ⅲ) from aqueous solution by bisthiourea immobilized UiO-66-NH2: performance and mechanisms, Chem. Eng. J. 425 (2021) 130588.

[97]

G. Cai, X. Ma, M. Kassymova, K. Sun, M. Ding, H.L. Jiang, Large-scale production of hierarchically porous metal-organic frameworks by a reflux-assisted post-synthetic ligand substitution strategy, ACS Cent. Sci. 7 (2021) 1434–1440.

[98]

L. Pei, X. Zhao, B. Liu, Z. Li, Y. Wei, Rationally Tailoring pore and surface properties of metal-organic frameworks for boosting adsorption of Dy3+, ACS Appl. Mater. Interfaces 13 (2021) 46763–46771.

[99]

P. Jia, K. Yang, J. Hou, Y. Cao, X. Wang, L. Wang, Ingenious dual-emitting Ru@UiO-66-NH2 composite as ratiometric fluorescence sensor for detection of mercury in aqueous, J. Hazard Mater. 408 (2021) 124469.

[100]

R.M. Rego, M.D. Kurkuri, M. Kigga, A comprehensive review on water remediation using UiO-66 MOFs and their derivatives, Chemosphere 302 (2022) 134845.

[101]

F.-X. Wang, C.-C. Wang, P. Wang, B.-C. Xing, Synthesis and applications of UiO series MOFs, Chin, J. Inorg. Chem. 33 (2017) 713–737.

[102]

X. Zhang, S. Tong, D. Huang, Z. Liu, B. Shao, Q. Liang, T. Wu, Y. Pan, J. Huang, Y. Liu, M. Cheng, M. Chen, Recent advances of Zr based metal organic frameworks photocatalysis: energy production and environmental remediation, Coord. Chem. Rev. 448 (2021) 214177.

[103]

A. Valverde, D. Payno, L. Lezama, J.M. Laza, S. Wuttke, R. Fernandez de Luis, Multivariate functionalization of UiO-66 for photocatalytic water remediation, Adv. Sustain. Syst. 6 (2022) 2200024.

[104]

X. Liu, Metal-organic framework UiO-66 membranes, Front. Chem. Sci. Eng. 14 (2019) 216–232.

[105]

F.-X. Wang, C.-C. Wang, P. Wang, B.-C. Xing, Syntheses and applications of UiO series of MOFs, Chinese J. Inorg. Chem. 33 (2017) 713–737.

[106]

C. Jia, T. He, G.-M. Wang, Zirconium-based metal-organic frameworks for fluorescent sensing, Coord. Chem. Rev. 476 (2023) 214930.

[107]

H. Liu, M. Cheng, Y. Liu, G. Zhang, L. Li, L. Du, B. Li, S. Xiao, G. Wang, X. Yang, Modified UiO-66 as photocatalysts for boosting the carbon-neutral energy cycle and solving environmental remediation issues, Coord. Chem. Rev. 458 (2022) 214428.

[108]

H. Wu, Y.S. Chua, V. Krungleviciute, M. Tyagi, P. Chen, T. Yildirim, W. Zhou, Unusual and highly tunable missing-linker defects in zirconium metal-organic framework UiO-66 and their important effects on gas adsorption, J. Am. Chem. Soc. 135 (2013) 10525–10532.

[109]

P. Ghosh, Y.J. Colon, R.Q. Snurr, Water adsorption in UiO-66: the importance of defects, Chem. Comm. 50 (2014) 11329–11331.

[110]

A. Schaate, P. Roy, A. Godt, J. Lippke, F. Waltz, M. Wiebcke, P. Behrens, Modulated synthesis of Zr-based metal-organic frameworks: from nano to single crystals, Chemistry 17 (2011) 6643–6651.

[111]

D. Morelli Venturi, F. Campana, F. Marmottini, F. Costantino, L. Vaccaro, Extensive Screening of green solvents for Safe and sustainable UiO-66 synthesis, ACS Sustain. Chem. Eng. 8 (2020) 17154–17164.

[112]

Y. Li, Y. Liu, W. Gao, L. Zhang, W. Liu, J. Lu, Z. Wang, Y.-J. Deng, Microwave-assisted synthesis of UIO-66 and its adsorption performance towards dyes, CrystEngComm 16 (2014) 7037–7042.

[113]

H. Motegi, K. Yano, N. Setoyama, Y. Matsuoka, T. Ohmura, A. Usuki, A facile synthesis of UiO-66 systems and their hydrothermal stability, J. Porous Mater. 24 (2017) 1327–1333.

[114]

Chen Dan-Dan, Yi Xiao-Hong, W. Chong-Chen, Preparation of metal-organic frameworks and their composites using mechanochemical methods, Chinese J. Inorg. Chem. 36 (2020) 1805–1821.

[115]

K. Uzarevic, T.C. Wang, S.Y. Moon, A.M. Fidelli, J.T. Hupp, O.K. Farha, T. Friscic, Mechanochemical and solvent-free assembly of zirconium-based metal-organic frameworks, Chem. Commun. 52 (2016) 2133–2136.

[116]

S. Tai, W. Zhang, J. Zhang, G. Luo, Y. Jia, M. Deng, Y. Ling, Facile preparation of UiO-66 nanoparticles with tunable sizes in a continuous flow microreactor and its application in drug delivery, Microporous Mesoporous Mater. 220 (2016) 148–154.

[117]

S. Waitschat, M.T. Wharmby, N. Stock, Flow-synthesis of carboxylate and phosphonate based metal-organic frameworks under non-solvothermal reaction conditions, Dalton Trans. 44 (2015) 11235–11240.

[118]

M. Rubio-Martinez, M.P. Batten, A. Polyzos, K.C. Carey, J.I. Mardel, K.S. Lim, M.R. Hill, Versatile, high quality and scalable continuous flow production of metal-organic frameworks, Sci. Rep. 4 (2014) 5443.

[119]

M. Pourmadadi, M.M. Eshaghi, S. Ostovar, A. Shamsabadipour, S. Safakhah, M.S. Mousavi, A. Rahdar, S. Pandey, UiO-66 metal-organic framework nanoparticles as gifted MOFs to the biomedical application: a comprehensive review, J. Drug Deliv. Sci. Technol. 76 (2022) 103758.

[120]

C.L. Luu, T.T.V. Nguyen, T. Nguyen, T.C. Hoang, Synthesis, characterization and adsorption ability of UiO-66-NH2, Adv. Nat. Sci. Nanosci. Nanotechnol. 6 (2015) 025004.

[121]

S.J. Garibay, S.M. Cohen, Isoreticular synthesis and modification of frameworks with the UiO-66 topology, Chem. Comm. 46 (2010) 7700–7702.

[122]

H. Xie, D. Ma, W. Liu, Q. Chen, Y. Zhang, J. Huang, H. Zhang, Z. Jin, T. Luo, F. Peng, Zr-Based MOFs as new photocatalysts for the rapid reduction of Cr(Ⅵ) in water, New J. Chem. 44 (2020) 7218–7225.

[123]

V. Colombo, C. Montoro, A. Maspero, G. Palmisano, N. Masciocchi, S. Galli, E. Barea, J.A. Navarro, Tuning the adsorption properties of isoreticular pyrazolate-based metal-organic frameworks through ligand modification, J. Am. Chem. Soc. 134 (2012) 12830–12843.

[124]

L. Shen, R. Liang, M. Luo, F. Jing, L. Wu, Electronic effects of ligand substitution on metal-organic framework photocatalysts: the case study of UiO-66, Phys. Chem. Chem. Phys. 17 (2015) 117–121.

[125]

S.T. Zhuang, R. Cheng, J.L. Wang, Adsorption of diclofenac from aqueous solution using UiO-66-type metal-organic frameworks, Chem. Eng. J. 359 (2019) 354–362.

[126]

A. Helal, M. Nasiruzzaman Shaikh, M. Abdul Aziz, Dual sensing of copper ion and chromium (Ⅵ) oxyanions by benzotriazole functionalized UiO-66 metal-organic framework in aqueous media, J. Photochem. Photobiol., A 389 (2020) 112238.

[127]

Y.H. Li, X.H. Yi, Y.X. Li, C.C. Wang, P. Wang, C. Zhao, W. Zheng, Robust Cr(Ⅵ) reduction over hydroxyl modified UiO-66 photocatalyst constructed from mixed ligands: performances and mechanism insight with or without tartaric acid, Environ. Res. 201 (2021) 111596.

[128]

P. Deria, J.E. Mondloch, O. Karagiaridi, W. Bury, J.T. Hupp, O.K. Farha, Beyond post-synthesis modification: evolution of metal-organic frameworks via building block replacement, Chem. Soc. Rev. 43 (2014) 5896–5912.

[129]

Y. Bian, N. Xiong, G. Zhu, Technology for the remediation of water pollution: a review on the fabrication of metal organic frameworks, Processes 6 (2018) 122.

[130]

Y.-H. Li, C.-C. Wang, X. Zeng, X.-Z. Sun, C. Zhao, H. Fu, P. Wang, Seignette salt induced defects in Zr-MOFs for boosted Pb(Ⅱ) adsorption: universal strategy and mechanism insight, Chem. Eng. J. 442 (2022) 136276.

[131]

X. Ren, C.C. Wang, Y. Li, P. Wang, S. Gao, Defective SO3H-MIL-101(Cr) for capturing different cationic metal ions: performances and mechanisms, J. Hazard Mater. 445 (2022) 130552.

[132]

Y. Yan, Y. Chu, M.A. Khan, M. Xia, M. Shi, S. Zhu, W. Lei, F. Wang, Facile immobilization of ethylenediamine tetramethylene-phosphonic acid into UiO-66 for toxic divalent heavy metal ions removal: an experimental and theoretical exploration, Sci. Total Environ. 806 (2022) 150652.

[133]

G.S. Morcos, A.A. Ibrahim, M.M.H. El-Sayed, M.S. El-Shall, High performance functionalized UiO metal organic frameworks for the efficient and selective adsorption of Pb(Ⅱ) ions in concentrated multi-ion systems, J. Environ. Chem. Eng. 9 (2021) 105191.

[134]

X.-Y. Xu, B. Yan, Eu(Ⅲ) functionalized Zr-based metal-organic framework as excellent fluorescent probe for Cd2+ detection in aqueous environment, Sens. Actuators B Chem. 222 (2016) 347–353.

[135]

L. Fu, S. Wang, G. Lin, L. Zhang, Q. Liu, H. Zhou, C. Kang, S. Wan, H. Li, S. Wen, Post-modification of UiO-66-NH2 by resorcyl aldehyde for selective removal of Pb(Ⅱ) in aqueous media, J. Clean. Prod. 229 (2019) 470–479.

[136]

J. Tang, Y. Chen, M. Zhao, S. Wang, L. Zhang, Phenylthiosemicarbazide-functionalized UiO-66-NH2 as highly efficient adsorbent for the selective removal of lead from aqueous solutions, J. Hazard Mater. 413 (2021) 125278.

[137]

Y.-H. Li, P. Wang, C.-C. Wang, Y.B. L, State-of-the-Art review of defective metal-organic frameworks for pollutant removal from water, Chinese J. Inorg. Chem. 38 (2022) 2342–2362.

[138]

S. Dissegna, K. Epp, W.R. Heinz, G. Kieslich, R.A. Fischer, Defective metal-organic frameworks, Adv. Mater. 30 (2018) e1704501.

[139]

J. Ren, M. Ledwaba, N.M. Musyoka, H.W. Langmi, M. Mathe, S. Liao, W. Pang, Structural defects in metal-organic frameworks (MOFs): formation, detection and control towards practices of interests, Coord. Chem. Rev. 349 (2017) 169–197.

[140]

B. Bueken, N. Van Velthoven, A. Krajnc, S. Smolders, F. Taulelle, C. Mellot-Draznieks, G. Mali, T.D. Bennett, D. De Vos, Tackling the defect Conundrum in UiO-66: a mixed-linker approach to engineering missing linker defects, Chem. Mater. 29 (2017) 10478–10486.

[141]

Y.-H. Li, M.-Y. Liu, Y.-W. Wei, C.-C. Wang, P. Wang, Adsorption and photocatalytic desorption toward Cr(Ⅵ) over defect-induced hierarchically porous UiO-66-(OH)2: a sustainable approach, Environ. Sci.: Nano 10 (2023) 672–682.

[142]

L. Yin, D. Wang, X. Li, Y. He, X. Liu, Y. Xu, H. Chen, One-pot synthesis of oxygen-vacancy-rich Cu-doped UiO-66 for collaborative adsorption and photocatalytic degradation of ciprofloxacin, Sci. Total Environ. 815 (2022) 151962.

[143]

D. Zhao, C. Cai, Cerium-based UiO-66 metal-organic framework for synergistic dye adsorption and photodegradation: a discussion of the mechanism, Dyes Pigm 185 (2021) 108957.

[144]

A. Wang, Y. Zhou, Z. Wang, M. Chen, L. Sun, X. Liu, Titanium incorporated with UiO-66(Zr)-type metal-organic framework (MOF) for photocatalytic application, RSC Adv. 6 (2016) 3671–3679.

[145]

R. Xu, Q. Ji, P. Zhao, M. Jian, C. Xiang, C. Hu, G. Zhang, C. Tang, R. Liu, X. Zhang, J. Qu, Hierarchically porous UiO-66 with tunable mesopores and oxygen vacancies for enhanced arsenic removal, J. Mater. Chem. A 8 (2020) 7870–7879.

[146]

A. Kirchon, J. Li, F. Xia, G.S. Day, B. Becker, W. Chen, H.J. Sue, Y. Fang, H.C. Zhou, Modulation versus templating: Fine-tuning of Hierarchally porous PCN-250 using fatty acids to engineer guest adsorption, Angew. Chem. Int. Ed. Engl. 58 (2019) 12425–12430.

[147]

B. Li, X. Zhu, K. Hu, Y. Li, J. Feng, J. Shi, J. Gu, Defect creation in metal-organic frameworks for rapid and controllable decontamination of roxarsone from aqueous solution, J. Hazard Mater. 302 (2016) 57–64.

[148]

M. Li, Y. Liu, F. Li, C. Shen, Y.V. Kaneti, Y. Yamauchi, B. Yuliarto, B. Chen, C.-C. Wang, Defect-rich hierarchical porous UiO-66(Zr) for tunable phosphate removal, Environ. Sci. Technol. 55 (2021) 13209–13218.

[149]

G.C. Shearer, S. Chavan, J. Ethiraj, J.G. Vitillo, S. Svelle, U. Olsbye, C. Lamberti, S. Bordiga, K.P. Lillerud, Tuned to perfection: Ironing out the defects in metal-organic framework UiO-66, Chem. Mater. 26 (2014) 4068–4071.

[150]

J.M. Yang, R.J. Ying, C.X. Han, Q.T. Hu, H.M. Xu, J.H. Li, Q. Wang, W. Zhang, Adsorptive removal of organic dyes from aqueous solution by a Zr-based metal-organic framework: effects of Ce(Ⅲ) doping, Dalton Trans. 47 (2018) 3913–3920.

[151]

V.R. Bakuru, S.R. Churipard, S.P. Maradur, S.B. Kalidindi, Exploring the Bronsted acidity of UiO-66 (Zr, Ce, Hf) metal-organic frameworks for efficient solketal synthesis from glycerol acetalization, Dalton Trans. 48 (2019) 843–847.

[152]

J. Cao, Z.H. Yang, W.P. Xiong, Y.Y. Zhou, Y.R. Peng, X. Li, C.Y. Zhou, R. Xu, Y.R. Zhang, One-step synthesis of Co-doped UiO-66 nanoparticle with enhanced removal efficiency of tetracycline: simultaneous adsorption and photocatalysis, Chem. Eng. J. 353 (2018) 126–137.

[153]

F. Nouar, M.I. Breeze, B.C. Campo, A. Vimont, G. Clet, M. Daturi, T. Devic, R.I. Walton, C. Serre, Tuning the properties of the UiO-66 metal organic framework by Ce substitution, Chem. Comm. 51 (2015) 14458–14461.

[154]

X. Min, X. Wu, P. Shao, Z. Ren, L. Ding, X. Luo, Ultra-high capacity of lanthanum-doped UiO-66 for phosphate capture: unusual doping of lanthanum by the reduction of coordination number, Chem. Eng. J. 358 (2019) 321–330.

[155]

J.F. Feng, T.F. Liu, J. Shi, S.Y. Gao, R. Cao, Dual-Emitting UiO-66(Zr&Eu) metal-organic framework films for ratiometric temperature sensing, ACS Appl. Mater. Interfaces 10 (2018) 20854–20861.

[156]

J. Tu, X. Zeng, F. Xu, X. Wu, Y. Tian, X. Hou, Z. Long, Microwave-induced fast incorporation of titanium into UiO-66 metal-organic frameworks for enhanced photocatalytic properties, Chem. Comm. 53 (2017) 3361–3364.

[157]

S.J. Smith, B.P. Ladewig, A.J. Hill, C.H. Lau, M.R. Hill, Post-synthetic Ti exchanged UiO-66 metal-organic frameworks that deliver exceptional gas permeability in mixed matrix membranes, Sci. Rep. 5 (2015) 7823.

[158]

Z.-C. Zhang, F.-X. Wang, F. Wang, C.-C. Wang, P. Wang, Efficient atrazine degradation via photoactivated SR-AOP over S-BUC-21(Fe): the formation and contribution of different reactive oxygen species, Sep. Purif. Technol. 307 (2023).

[159]

K.-X. Shi, F. Qiu, J.-W. Wang, P. Wang, H.-Y. Li, C.-C. Wang, Sulfamethoxazole degradation via peroxydisulfate activation over WO3/MIL-100(Fe) under low power LED visible light, Sep. Purif. Technol. 309 (2023) 122991.

[160]

Y. Lin, Y. Zhang, G. Li, Promotion of sulfameter degradation by coupling persulfate and photocatalytic advanced oxidation processes with Fe-doped MOFs, Sep. Purif. Technol. 282 (2022) 119632.

[161]

H.G.T. Nguyen, L. Mao, A.W. Peters, C.O. Audu, Z.J. Brown, O.K. Farha, J.T. Hupp, S.T. Nguyen, Comparative study of titanium-functionalized UiO-66: support effect on the oxidation of cyclohexene using hydrogen peroxide, Catal. Sci. Technol. 5 (2015) 4444–4451.

[162]

J. Low, J. Yu, M. Jaroniec, S. Wageh, A.A. Al-Ghamdi, Heterojunction photocatalysts, Adv. Mater. 29 (2017) 1601694.

[163]

Z. Wang, Z. Lin, S. Shen, W. Zhong, S. Cao, Advances in designing heterojunction photocatalytic materials, Chinese J. Catal. 42 (2021) 710–730.

[164]

L. Shen, R. Liang, M. Luo, F. Jing, L. Wu, Electronic effects of ligand substitution on metal-organic framework photocatalysts: the case study of UiO-66, Phys. Chem. Chem. Phys. 17 (2015) 117–121.

[165]

X. Wei, C.-C. Wang, Y. Li, P. Wang, Q. Wei, The Z-scheme NH2-UiO-66/PTCDA composite for enhanced photocatalytic Cr(Ⅵ) reduction under low-power LED visible light, Chemosphere 280 (2021) 130734.

[166]

Y. Li, Y.-H. Li, P. Wang, C. Zhao, C.-Y. Tang, S.-J. Gao, C.-C. Wang, The NH2-UiO-66/3,4,9,10-perylenetetracarboxylicdiimide for Cr(Ⅵ) reduction: DFT calculation, performance, and mechanism, J. Environ. Chem. Eng. 11 (2023) 109205.

[167]

J.-B. Huo, L. Xu, X. Chen, Y. Zhang, J.-C.E. Yang, B. Yuan, M.-L. Fu, Direct epitaxial synthesis of magnetic Fe3O4@UiO-66 composite for efficient removal of arsenate from water, Microporous Mesoporous Mater. 276 (2019) 68–75.

[168]

S. Ahmadipouya, M.H. Haris, F. Ahmadijokani, A. Jarahiyan, H. Molavi, F.M. Moghaddam, M. Rezakazemi, M. Arjmand, Magnetic Fe3O4@UiO-66 nanocomposite for rapid adsorption of organic dyes from aqueous solution, J. Mol. Liq. 322 (2021) 114910.

[169]

C. Yao, Y. Xu, Z. Xia, A carbon dot-encapsulated UiO-type metal organic framework as a multifunctional fluorescent sensor for temperature, metal ion and pH detection, J. Mater. Chem. C 6 (2018) 4396–4399.

[170]

J.X. Wu, B. Yan, Visible detection of copper ions using a fluorescent probe based on red carbon dots and zirconium metal-organic frameworks, Dalton Trans. 46 (2017) 15080–15086.

[171]

Y. Zhang, J. Liu, X. Wu, W. Tao, Z. Li, Ultrasensitive detection of Cr(Ⅵ) (Cr2O72-/CrO42-) ions in water environment with a fluorescent sensor based on metal-organic frameworks combined with sulfur quantum dots, Anal. Chim. Acta 1131 (2020) 68–79.

[172]

X. Liu, X. Zhao, H. Meng, J. Jin, Dual MOFs composites: MIL-53 coated with amorphous UiO-66 for enhanced photocatalytic oxidation of tetracycline and methylene blue, Nano Res. 16 (2023) 6160–6166.

[173]

Q. Liang, S. Cui, C. Liu, S. Xu, C. Yao, Z. Li, Construction of CdS@UIO-66-NH2 core-shell nanorods for enhanced photocatalytic activity with excellent photostability, J. Colloid Interface Sci. 524 (2018) 379–387.

[174]

Y. Zhang, J. Zhou, Q. Feng, X. Chen, Z. Hu, Visible light photocatalytic degradation of MB using UiO-66/g-C3N4 heterojunction nanocatalyst, Chemosphere 212 (2018) 523–532.

[175]

P. Qi, R. Luo, T. Pichler, J. Zeng, Y. Wang, Y. Fan, K. Sui, Development of a magnetic core-shell Fe3O4@TA@UiO-66 microsphere for removal of arsenic(Ⅲ) and antimony(Ⅲ) from aqueous solution, J. Hazard Mater. 378 (2019) 120721.

[176]

Y.-C. Zhou, C.-C. Wang, P. Wang, H. f Fu, C. Zhao, In Situ photochemical reduction of Ag-UiO-66-NH2 composite for enhanced photocatalytic performance, Chinese J. Inorg. Chem. 36 (2020) 2100–2112.

[177]

Chen Zhao, Zhihua Wang, Xiang Li, Xiaohong Yi, Hongyu Chu, Xi Chen, Chong-Chen W, Facile fabrication of BUC-21/Bi24O31Br10 composites for enhanced photocatalytic Cr(Ⅵ) reduction under white light, Chem. Eng. J. 389 (2020) 123431.

[178]

X. Wang, W. Liu, H. Fu, X.-H. Yi, P. Wang, C. Zhao, C.-C. Wang, W. Zheng, Simultaneous Cr(Ⅵ) reduction and Cr(Ⅲ) removal of bifunctional MOF/Titanate nanotube composites, Environ. Pollut. 249 (2019) 502–511.

[179]

A. Du, H. Fu, P. Wang, C. Zhao, C.C. Wang, Enhanced catalytic peroxymonosulfate activation for sulfonamide antibiotics degradation over the supported CoSx-CuSx derived from ZIF-L(Co) immobilized on copper foam, J. Hazard Mater. 426 (2022) 128134.

[180]

S.S. Chen, C. Hu, C.H. Liu, Y.H. Chen, T. Ahamad, S.M. Alshehri, P.H. Huang, K.C. Wu, De Novo synthesis of platinum-nanoparticle-encapsulated UiO-66-NH2 for photocatalytic thin film fabrication with enhanced performance of phenol degradation, J. Hazard Mater. 397 (2020) 122431.

[181]

R. Guo, X. Cai, H. Liu, Z. Yang, Y. Meng, F. Chen, Y. Li, B. Wang, In situ growth of metal-organic frameworks in three-dimensional Aligned lumen Arrays of wood for rapid and highly efficient organic pollutant removal, Environ. Sci. Technol. 53 (2019) 2705–2712.

[182]

S. Li, F. Feng, S. Chen, X. Zhang, Y. Liang, S. Shan, Preparation of UiO-66-NH2 and UiO-66-NH2/sponge for adsorption of 2,4-dichlorophenoxyacetic acid in water, Ecotoxicol. Environ. Saf. 194 (2020) 110440.

[183]

X.-H. Yi, Y. Gao, C.-C. Wang, Y.-H. Li, H.-Y. Chu, P. Wang, Photocatalytic Cr(Ⅵ) reduction over MIL-88A(Fe) on polyurethane sponge: from batch to continuous-flow operation, Chin. Chem. Lett. (2022) 108029.

[184]

Z. Chen, J. Zhao, J. Chen, Y. Zhang, D. Chen, Q. Wang, D. Xia, UiO-66/BiOBr heterojunction functionalized cotton fabrics as flexible photocatalyst for visible-light driven degradation of dyes and Cr(Ⅵ), Sep. Purif. Technol. 258 (2021) 118007.

[185]

O. Semyonov, D. Kogolev, G. Mamontov, E. Kolobova, A. Trelin, M.S. Yusubov, O. Guselnikova, P.S. Postnikov, Synergetic effect of UiO-66 and plasmonic AgNPs on PET waste support towards degradation of nerve agent simulant, Chem. Eng. J. 431 (2022) 133450.

[186]

S. Zhou, J. Zhu, Z. Wang, Z. Yang, W. Yang, Z. Yin, Defective MOFs-based electrocatalytic self-cleaning membrane for wastewater reclamation: enhanced antibiotics removal, membrane fouling control and mechanisms, Water Res. 220 (2022) 118635.

[187]

Z. Li, W. Zhang, M. Tao, L. Shen, R. Li, M. Zhang, Y. Jiao, H. Hong, Y. Xu, H. Lin, In-situ growth of UiO-66-NH2 in porous polymeric substrates at room temperature for fabrication of mixed matrix membranes with fast molecular separation performance, Chem. Eng. J. 435 (2022).

[188]

Y. Wang, D. Li, J. Li, J. Li, M. Fan, M. Han, Z. Liu, Z. Li, F. Kong, Metal organic framework UiO-66 incorporated ultrafiltration membranes for simultaneous natural organic matter and heavy metal ions removal, Environ. Res. 208 (2022) 112651.

[189]

Y.-Z. Wu, H.-X. Li, Z.-L. Xu, P. Li, Z.-M. Zhan, P.-P. Li, S.-J. Xu, Ceramic hollow fiber NF membrane incorporating UiO-66 for the chlorinated hydrocarbons removal, Chem. Eng. J. 435 (2022) 134789.

[190]

Y. Zhang, X. Xu, C. Yue, L. Song, Y. Lv, F. Liu, A. Li, Insight into the efficient co-removal of Cr(Ⅵ) and Cr(Ⅲ) by positively charged UiO-66-NH2 decorated ultrafiltration membrane, Chem. Eng. J. 404 (2021) 126546.

[191]

G.W. Peterson, A.X. Lu, T.H. Epps 3rd, Tuning the morphology and activity of Electrospun polystyrene/UiO-66-NH2 metal-organic framework composites to enhance chemical Warfare agent removal, ACS Appl. Mater. Interfaces 9 (2017) 32248–32254.

[192]

W.P.R. Deleu, I. Stassen, D. Jonckheere, R. Ameloot, D.E. De Vos, Waste PET (bottles) as a resource or substrate for MOF synthesis, J. Mater. Chem. A 4 (2016) 9519–9525.

[193]

J. Chen, K. Shen, Y. Li, Greening the processes of metal-organic framework synthesis and their Use in sustainable catalysis, ChemSusChem 10 (2017) 3165–3187.

[194]

D. Xie, Y. Gu, H. Wang, Y. Wang, W. Qin, G. Wang, H. Zhang, Y. Zhang, Enhanced fluoride removal by hierarchically porous carbon foam monolith with high loading of UiO-66, J. Colloid Interface Sci. 542 (2019) 269–280.

[195]

J. Dechnik, J. Gascon, C.J. Doonan, C. Janiak, C.J. Sumby, Mixed-matrix membranes, Angew. Chem. Int. Ed. Engl. 56 (2017) 9292–9310.

[196]

M. Kadhom, M. Al-Furaiji, S. Salih, M.A. Al-Obaidi, G.H. Abdullah, N. Albayati, A review on UiO-66 applications in membrane-based water treatment processes, J. Water Process Eng. 51 (2023) 103402.

[197]

T. Kitao, Y. Zhang, S. Kitagawa, B. Wang, T. Uemura, Hybridization of MOFs and polymers, Chem. Soc. Rev. 46 (2017) 3108–3133.

[198]

H. Molavi, A. Shojaei, Mixed-matrix composite membranes based on UiO-66-derived MOFs for CO2 separation, ACS Appl. Mater. Interfaces 11 (2019) 9448–9461.

[199]

H. Molavi, A. Shojaei, S.A. Mousavi, S.A. Ahmadi, Effect of reactive diluent on gas separation behavior of photocurable acrylated polyurethane composite membranes, J. Appl. Polym. Sci. 137 (2019).

[200]

D.B. Dwyer, N. Dugan, N. Hoffman, D.J. Cooke, M.G. Hall, T.M. Tovar, W.E. Bernier, J. DeCoste, N.L. Pomerantz, W.E. Jones Jr., Chemical protective Textiles of UiO-66-integrated PVDF composite fibers with rapid heterogeneous decontamination of toxic Organophosphates, ACS Appl. Mater. Interfaces 10 (2018) 34585–34591.

[201]

J. Li, J.L. Gong, G.M. Zeng, P. Zhang, B. Song, W.C. Cao, S.Y. Fang, S.Y. Huan, J. Ye, The performance of UiO-66-NH2/graphene oxide (GO) composite membrane for removal of differently charged mixed dyes, Chemosphere 237 (2019) 124517.

[202]

H. Zeng, Z. Yu, L. Shao, X. Li, M. Zhu, Y. Liu, X. Feng, X. Zhu, A novel strategy for enhancing the performance of membranes for dyes separation: Embedding PAA@UiO-66-NH2 between graphene oxide sheets, Chem. Eng. J. 403 (2021) 126281.

[203]

W. Huang, N. Liu, X. Zhang, M. Wu, L. Tang, Metal organic framework g-C3N4/MIL-53(Fe) heterojunctions with enhanced photocatalytic activity for Cr(Ⅵ) reduction under visible light, Appl. Surf. Sci. 425 (2017) 107–116.

[204]

J.J. Testa, M.A. Grela, M.I. Litter, Heterogeneous photocatalytic reduction of chromium(Ⅵ) over TiO2 particles in the presence of oxalate: involvement of Cr(Ⅴ) species, Environ. Sci. Technol. 38 (2004) 1589–1594.

[205]

G. Chen, J. Han, Y. Mu, H. Yu, L. Qin, Two-stage chromium isotope fractionation during microbial Cr(Ⅵ) reduction, Water Res. 148 (2019) 10–18.

[206]

M. Owlad, M.K. Aroua, W.A.W. Daud, S. Baroutian, Removal of hexavalent chromium-contaminated water and wastewater: a review, Water Air Soil Pollut. 200 (2008) 59–77.

[207]

C.-C. Wang, X.-D. Du, J. Li, X.-X. Guo, P. Wang, J. Zhang, Photocatalytic Cr(Ⅵ) reduction in metal-organic frameworks: a mini-review, Appl. Catal., B 193 (2016) 198–216.

[208]

Q. Chen, Y. Feng, R. Tian, J. Chen, A. Wang, J. Yao, Defect rich UiO-66 with enhanced adsorption and photosensitized reduction of Cr(Ⅵ) under visible light, Ind. Eng. Chem. Res. 58 (2019) 21562–21568.

[209]

X. Li, E. Almatrafi, H. Wang, X. Liu, Y. Yang, C. Zhou, X. Tang, X. Ren, L. Yin, G. Zeng, D. Wang, Novel synthesis strategy for Z-scheme BiOCl/UiO-66 photocatalyst: enhanced surface area and improved Cr(Ⅵ) removal efficiency, Chem. Eng. J. 457 (2023) 141087.

[210]

S. Zheng, H. Du, L. Yang, M. Tan, N. Li, Y. Fu, D. Hao, Q. Wang, PDINH bridged NH2-UiO-66(Zr) Z-scheme heterojunction for promoted photocatalytic Cr(Ⅵ) reduction and antibacterial activity, J. Hazard Mater. 447 (2023) 130849.

[211]

Z. Lin, Y. Wu, X. Jin, D. Liang, Y. Jin, S. Huang, Z. Wang, H. Liu, P. Chen, W. Lv, G. Liu, Facile synthesis of direct Z-scheme UiO-66-NH2/PhC2Cu heterojunction with ultrahigh redox potential for enhanced photocatalytic Cr(Ⅵ) reduction and NOR degradation, J. Hazard Mater. 443 (2023) 130195.

[212]

Y.-C. Zhou, X.-Y. Xu, P. Wang, H. Fu, C. Zhao, C.-C. Wang, Facile fabrication and enhanced photocatalytic performance of visible light responsive UiO-66-NH2/Ag2CO3 composite, Chinese J. Catal. 40 (2019) 1912–1923.

[213]

X.Y. Wang, L.Y. Li, J.Q. Meng, P.Y. Xia, Y.X. Yang, Y.H. Guo, Enhanced simulated sunlight photocatalytic reduction of an aqueous hexavalent chromium over hydroxyl-modified graphitic carbon nitride, Appl. Surf. Sci. 506 (2020) 144181.

[214]

H. Xie, D. Ma, W. Liu, Q. Chen, Y. Zhang, J. Huang, H. Zhang, Z. Jin, T. Luo, F. Peng, Zr-Based MOFs as new photocatalysts for the rapid reduction of Cr(Ⅵ) in water, New J. Chem. 44 (2020) 7218–7225.

[215]

H. Wang, H. Wang, Z. Wang, L. Tang, G. Zeng, P. Xu, M. Chen, T. Xiong, C. Zhou, X. Li, D. Huang, Y. Zhu, Z. Wang, J. Tang, Covalent organic framework photocatalysts: structures and applications, Chem. Soc. Rev. 49 (2020) 4135–4165.

[216]

C. Zhou, W. Xia, D. Huang, M. Cheng, H. Zhang, T. Cai, W. Xiong, Y. Yang, B. Song, W. Wang, M. Zhou, G. Zeng, Strategies for enhancing the perylene diimide photocatalytic degradation activity: method, effect factor, and mechanism, Environ. Sci.: Nano 8 (2021) 602–618.

[217]

M. Zhang, C. Xiao, C. Zhang, J. Qi, C. Wang, X. Sun, L. Wang, Q. Xu, J. Li, Large-scale synthesis of Biomass@MOF-derived porous carbon/cobalt nanofiber for environmental remediation by advanced oxidation processes, Environ. Sci. Technol. Eng. 1 (2020) 249–260.

[218]

Q. Zhao, X.-H. Yi, C.-C. Wang, P. Wang, W. Zheng, Photocatalytic Cr(Ⅵ) reduction over MIL-101(Fe)–NH2 immobilized on alumina substrate: from batch test to continuous operation, Chem. Eng. J. 429 (2022) 132497.

[219]

Y. Cao, X. Chen, X. Li, B. Wang, Tuning surface functionalization and pore structure of UiO-66 metal-organic framework nanoparticles for organic pollutant elimination, ACS Appl. Nano Mater. 4 (2021) 5486–5495.

[220]

V. Ashouri, K. Adib, M.R. Nasrabadi, M. Ghalkhani, Preparation of the extruded UiO-66-based Metal-Organic Framework for the diazinon removal from the real samples, J. Mol. Struct. 1240 (2021) 130607.

[221]

X. Zhang, J. Chen, S. Jiang, X. Zhang, F. Bi, Y. Yang, Y. Wang, Z. Wang, Enhanced photocatalytic degradation of gaseous toluene and liquidus tetracycline by anatase/rutile titanium dioxide with heterophase junction derived from materials of Institut Lavoisier-125(Ti): degradation pathway and mechanism studies, J. Colloid Interface Sci. 588 (2021) 122–137.

[222]

Y.L. Wang, S. Zhang, Y.F. Zhao, J. Bedia, J.J. Rodriguez, C. Belver, UiO-66-based metal organic frameworks for the photodegradation of acetaminophen under simulated solar irradiation, J. Environ. Chem. Eng. 9 (2021) 106087.

[223]

M. Peñas-Garzón, M.J. Sampaio, Y.L. Wang, J. Bedia, J.J. Rodriguez, C. Belver, C.G. Silva, J.L. Faria, Solar photocatalytic degradation of parabens using UiO-66-NH2, Sep. Purif. Technol. 286 (2022) 120467.

[224]

Z. Guo, N. Li, S. Zuo, C. Qiang, W. Zhan, Z. Li, J. Ma, Construction of a novel metal–organic framework adenine-UiO-66 piezocatalyst for efficient diclofenac removal, Sep. Purif. Technol. 289 (2022) 120743.

[225]

X. Mu, J. Jiang, F. Chao, Y. Lou, J. Chen, Ligand modification of UiO-66 with an unusual visible light photocatalytic behavior for RhB degradation, Dalton Trans. 47 (2018) 1895–1902.

[226]

Z. Guan, S. Zhu, S. Ding, D. Xia, D. Li, Fe-O-Zr in MOF for effective photo-Fenton Bisphenol A degradation: boosting mechanism of electronic transmission, Chemosphere 299 (2022) 134481.

[227]

M.-S. Hosseini, A. Abbasi, M. Masteri-Farahani, Improving the photocatalytic activity of NH2-UiO-66 by facile modification with Fe(acac)3 complex for photocatalytic water remediation under visible light illumination, J. Hazard Mater. 425 (2022) 127975.

[228]

J. Wang, X. Liu, C. Li, M. Yuan, B. Zhang, J. Zhu, Y. Ma, Fabrication of perylene imide-modified NH2-UiO-66 for enhanced visible-light photocatalytic degradation of tetracycline, J. Photochem. Photobiol., A 401 (2020) 112795.

[229]

Z. Man, Y. Meng, X. Lin, X. Dai, L. Wang, D. Liu, Assembling UiO-66@TiO2 nanocomposites for efficient photocatalytic degradation of dimethyl sulfide, Chem. Eng. J. 431 (2022) 133952.

[230]

Y.L. Wang, M. Peñas-Garzón, J.J. Rodriguez, J. Bedia, C. Belver, Enhanced photodegradation of acetaminophen over Sr@TiO2/UiO-66-NH2 heterostructures under solar light irradiation, Chem. Eng. J. 446 (2022) 137229.

[231]

Z. Sha, H.S. Chan, J. Wu, Ag2CO3/UiO-66(Zr) composite with enhanced visible-light promoted photocatalytic activity for dye degradation, J. Hazard Mater. 299 (2015) 132–140.

[232]

Q. Zhao, J. Wang, Z. Li, Y. Guo, J. Wang, B. Tang, Y. Kansha, A. Yoshida, A. Abudula, G. Guan, UiO-66-NH2/Cu2O composite as an enhanced visible light photocatalyst for decomposition of organic pollutants, J. Photochem. Photobiol., A 399 (2020) 112625.

[233]

J. Huang, P. Xue, S. Wang, S. Han, L. Lin, X. Chen, Z. Wang, Fabrication of zirconium-based metal-organic frameworks@tungsten trioxide (UiO-66-NH2@WO3) heterostructure on carbon cloth for efficient photocatalytic removal of tetracycline antibiotic under visible light, J. Colloid Interface Sci. 606 (2021) 1509–1523.

[234]

Q. Du, P. Wu, Y. Sun, J. Zhang, H. He, Selective photodegradation of tetracycline by molecularly imprinted ZnO@NH2-UiO-66 composites, Chem. Eng. J. 390 (2020) 124614.

[235]

Y. Zhou, S. Feng, X. Duan, W. Zheng, C. Shao, W. Wu, Z. Jiang, W. Lai, MnO2/UiO-66 improves the catalysed degradation of oxytetracycline under UV/H2O2/PMS system, J. Solid State Chem. 300 (2021) 122231.

[236]

Z. Huang, H. Yu, L. Wang, X. Liu, S. Ren, J. Liu, Ferrocene-modified Uio-66-NH2 hybrids with g-C3N4 as enhanced photocatalysts for degradation of bisphenol A under visible light, J. Hazard Mater. 436 (2022) 129052.

[237]

Y. Wang, C. Liu, C. Wang, Q. Hu, L. Ding, 0D/3D NiCo2O4/defected UiO-66 catalysts for enhanced degradation of tetracycline in peroxymonosulfate/simulated sunlight systems: degradation mechanisms and pathways, Chemosphere 299 (2022) 134322.

[238]

L. Wang, P. Zheng, X. Zhou, M. Xu, X. Liu, Facile fabrication of CdS/UiO-66-NH2 heterojunction photocatalysts for efficient and stable photodegradation of pollution, J. Photochem. Photobiol., A 376 (2019) 80–87.

[239]

J. Wei, Y. Chen, H. Zhang, Z. Zhuang, Y. Yu, Hierarchically porous S-scheme CdS/UiO-66 photocatalyst for efficient 4-nitroaniline reduction, Chinese J. Catal. 42 (2021) 78–86.

[240]

W. Dong, D. Wang, H. Wang, M. Li, F. Chen, F. Jia, Q. Yang, X. Li, X. Yuan, J. Gong, H. Li, J. Ye, Facile synthesis of In2S3/UiO-66 composite with enhanced adsorption performance and photocatalytic activity for the removal of tetracycline under visible light irradiation, J. Colloid Interface Sci. 535 (2019) 444–457.

[241]

X. Zhang, N. Zhang, C. Gan, Y. Liu, L. Chen, C. Zhang, Y. Fang, Synthesis of In2S3/UiO-66 hybrid with enhanced photocatalytic activity towards methyl orange and tetracycline hydrochloride degradation under visible-light irradiation, Mater. Sci. Semicond. Process. 91 (2019) 212–221.

[242]

C. Wang, Y. Xue, P. Wang, Y. Ao, Effects of water environmental factors on the photocatalytic degradation of sulfamethoxazole by AgI/UiO-66 composite under visible light irradiation, J. Alloys Compd. 748 (2018) 314–322.

[243]

R. Karuppannan, S. Mohan, T.-O. Do, Amine-functionalized metal–organic framework integrated bismuth tungstate (Bi2WO6/NH2-UiO-66) composite for the enhanced solar-driven photocatalytic degradation of ciprofloxacin molecules, New J. Chem. 45 (2021) 22650–22660.

[244]

Q. Su, J. Li, B. Wang, Y. Li, L.a. Hou, Direct Z-scheme Bi2MoO6/UiO-66-NH2 heterojunctions for enhanced photocatalytic degradation of ofloxacin and ciprofloxacin under visible light, Appl. Catal., B 318 (2022) 121820.

[245]

F. Wang, T. He, Y. Gao, Y. Li, S. Cui, H. Huang, J. Yang, Z-scheme heterojunction Bi2MoO6/NH2-UiO-66(Zr/Ce) for efficient photocatalytic degradation of oxytetracycline: pathways and mechanism, Sep. Purif. Technol. 325 (2023) 124596.

[246]

Q. Hu, Y. Chen, M. Li, Y. Zhang, B. Wang, Y. Zhao, J. Xia, S. Yin, H. Li, Construction of NH2-UiO-66/BiOBr composites with boosted photocatalytic activity for the removal of contaminants, Colloids Surf. A Physicochem. Eng. Asp. 579 (2019) 123625.

[247]

Z. Sha, J. Wu, Enhanced visible-light photocatalytic performance of BiOBr/UiO-66(Zr) composite for dye degradation with the assistance of UiO-66, RSC Adv. 5 (2015) 39592–39600.

[248]

Y. Xue, P. Wang, C. Wang, Y. Ao, Efficient degradation of atrazine by BiOBr/UiO-66 composite photocatalyst under visible light irradiation: environmental factors, mechanisms and degradation pathways, Chemosphere 203 (2018) 497–505.

[249]

X. Li, D. Zhang, R. Bai, R. Mo, C. Yang, C. Li, Y. Han, Zr-MOFs based BiOBr/UiO-66 nanoplates with enhanced photocatalytic activity for tetracycline degradation under visible light irradiation, AIP Adv. 10 (2020) 125228.

[250]

H. Tian, Y. Gu, H. Zhou, Y. Huang, Y. Fang, R. Li, C. Tang, BiOBr@UiO-66 photocatalysts with abundant activated sites for the enhanced photodegradation of rhodamine b under visible light irradiation, Mater. Sci. Eng. B 271 (2021) 115297.

[251]

Z. Yang, X. Tong, J. Feng, S. He, M. Fu, X. Niu, T. Zhang, H. Liang, A. Ding, X. Feng, Flower-like BiOBr/UiO-66-NH2 nanosphere with improved photocatalytic property for norfloxacin removal, Chemosphere 220 (2019) 98–106.

[252]

X. Tong, Z. Yang, J. Feng, Y. Li, H. Zhang, BiOCl/UiO-66 composite with enhanced performance for photo-assisted degradation of dye from water, Appl. Organomet. Chem. 32 (2017) e4049.

[253]

Y. Li, X. Shang, C. Li, X. Huang, J. Zheng, Novel p-n junction UiO-66/BiOI photocatalysts with efficient visible-light-induced photocatalytic activity, Water Sci. Technol. 77 (2018) 1441–1448.

[254]

R. Ji, Z. Zhang, L. Tian, L. Jin, Q. Xu, J. Lu, Z- scheme heterojunction of BiOI nanosheets grown in situ on NH2-UiO-66 crystals with rapid degradation of BPA in real water, Chem. Eng. J. 453 (2023) 139897.

[255]

Z. Xu, Y. Qi, Y. Fang, P. Tian, G. Ning, J. Ye, Efficient photocatalysis-Fenton for degradation of rhodamine B and inhibition of bacteria by core-shell Fe3O4@UiO-66-NH2 nanospheres, J. Alloys Compd. 976 (2024) 173084.

[256]

W. Zheng, Y. Sun, Y. Gu, Assembly of UiO-66 onto Co-doped Fe3O4 nanoparticles to activate peroxymonosulfate for efficient degradation of fenitrothion and simultaneous in-situ adsorption of released phosphate, J. Hazard Mater. 436 (2022) 129058.

[257]

G. Li, Y. Wang, R. Huang, Y. Hu, J. Guo, S. Zhang, Q. Zhong, In-situ growth UiO-66-NH2 on the Bi2WO6 to fabrication Z-scheme heterojunction with enhanced visible-light driven photocatalytic degradation performance, Colloids Surf. A Physicochem. Eng. Asp. 603 (2020) 125256.

[258]

J. Ding, Z. Yang, C. He, X. Tong, Y. Li, X. Niu, H. Zhang, UiO-66(Zr) coupled with Bi2MoO6 as photocatalyst for visible-light promoted dye degradation, J. Colloid Interface Sci. 497 (2017) 126–133.

[259]

X.m. Qi, Q. Wu, X. Wang, K.x. Li, C. Liu, S.j. Li, Design of UiO-66@BiOIO3 heterostructural composites with remarkable boosted photocatalytic activities in removing diverse industrial pollutants, J. Phys. Chem. Solids 151 (2021) 109903.

[260]

S. Bargozideh, M. Tasviri, S. Shekarabi, H. Daneshgar, Magnetic BiFeO3 decorated UiO-66 as a p-n heterojunction photocatalyst for simultaneous degradation of a binary mixture of anionic and cationic dyes, New J. Chem. 44 (2020) 13083–13092.

[261]

P. Cao, Y. Zhang, D. Gao, H. Chen, M. Zhou, Y. He, P. Song, R. Wang, Constructing nano-heterojunction of MOFs with crystal regrowth for efficient degradation of tetracycline under visible light, J. Alloys Compd. 904 (2022) 164061.

[262]

M.-S. Hosseini, A. Abbasi, M. Masteri-Farahani, Decoration of NH2-UiO-66 with FeOOH quantum dots for improving photo-degradation of organic dyes upon visible light irradiation, Appl. Surf. Sci. 604 (2022) 154514.

[263]

Z.M. Niaki, M. Ghorbani, S.A. Ghoreishi, Synthesis of ZnFe2O4@UiO-66 nanocomposite for the photocatalytic degradation of metronidazole antibiotic under visible light irradiation, J. Environ. Health Sci. 19 (2021) 1583–1596.

[264]

X. Zhang, C. Chen, C. Jiang, H. Zhou, W. Cao, Y. Wang, Construction and mechanism of Ag3PO4/UiO-66-NH2 Z-scheme heterojunction with enhanced photocatalytic activity, Catal Letters 151 (2020) 734–747.

[265]

Sunfeng Li, Xing Wang, Qinqin He, Qi Chen, Yanli Xu, Hanbiao Yang, Mengmeng Lü, Fengyu Wei, X. Liu, Synergistic effects in N-K2Ti4O9/UiO-66-NH2 composites and their photocatalysis degradation of cationic dyes, Chinese J. Catal. 37 (2016) 367–377.

[266]

G. Zhu, S. Feng, S. Feng, Z. Zhang, One-pot synthesis of C-dots/UiO-66-NH2 with enhanced photocatalytic activity for degrading ketoprofen, Mater. Lett. 246 (2019) 36–39.

[267]

Z. Yang, X. Xu, X. Liang, C. Lei, L. Gao, R. Hao, D. Lu, Z. Lei, Fabrication of Ce doped UiO-66/graphene nanocomposites with enhanced visible light driven photoactivity for reduction of nitroaromatic compounds, Appl. Surf. Sci. 420 (2017) 276–285.

[268]

X. Liu, Z.-Y. Zhu, G.-L. Dai, S.-J. Ma, J.-X. Wang, S.-Q. Gao, J.-H. Li, Y.-J. Tian, L. Jin, Z.-X. Lin, Pd/UiO-66(Zr) as efficient catalyst material of hydrogen promoted fenton system for enhancing oxidation of sulfamethazine, J. Clean. Prod. 337 (2022) 130481.

[269]

M.L. Chen, S.S. Li, L. Wen, Z. Xu, H.H. Li, L. Ding, Y.H. Cheng, Exploration of double Z-type ternary composite long-afterglow/graphitic carbon nitride@metal-organic framework for photocatalytic degradation of methylene blue, J. Colloid Interface Sci. 629 (2023) 409–421.

[270]

Y.J. Lai, J.S. Chang, D.J. Lee, Synthesis of a novel solid mediator Z-scheme heterojunction photocatalysis CuFe2O4/Cu/UiO-66-NH2 for oxidation of dye in water, Chemosphere 296 (2022) 134080.

[271]

M. Ghorbani, A.R. Solaimany Nazar, M. Frahadian, S. Tangestaninejad, Fabrication of novel ZnO@BiOBr/UiO-66-NH2 core-shell heterojunction for improved tetracycline degradation, Appl. Surf. Sci. 612 (2023) 155819.

[272]

T. Sun, X. Zhang, Y. Hu, L. Xu, Y. Zhao, Design and enhancement of photocatalytic activity of porphyrin functionalized UiO-66 and Keggin unit co-doped titanium dioxide heterojunction, Appl. Surf. Sci. 572 (2022) 151512.

[273]

S. Cui, Z. Ye, C. Qian, J. Liu, J. Jin, Q. Liang, C. Liu, S. Xu, Z. Li, Construction of ternary Ag/AgBr@UiO-66(NH2) heterojunctions with enhanced photocatalytic performance for the degradation of methyl orange, J. Mater. Sci. Mater. Electron. 29 (2018) 15138–15146.

[274]

M. Zhu, H. Chen, Y. Dai, X. Wu, Z. Han, Y. Zhu, Novel n-p-n heterojunction of AgI/BiOI/UiO-66 composites with boosting visible light photocatalytic activities, Appl. Organomet. Chem. 35 (2021) e6186.

[275]

E. Safaralizadeh, A.R. Mahjoub, F. Fazlali, H. Bagheri, Facile construction of C3N4-TE@TiO2/UiO-66 with double Z-scheme structure as high performance photocatalyst for degradation of tetracycline, Ceram. Int. 47 (2021) 2374–2387.

[276]

Q. Ni, S. Feng, X. Ke, Z. Yan, J. Luan, Multi-dimensional (2D–3D) assembly of BiOI/BiOBr/UiO-66-NH2 composites to form multi-heterojunction structures for synergistic removal of Rhodamine B, J. Alloys Compd. 935 (2023) 168103.

[277]

G. Zhu, S. Feng, J. Chao, W. Zheng, C. Shao, One-pot synthesis of C-dots modified TiO2 nanosheets/UiO-66-NH2 with improved photocatalytic activity under visible light, Ceram. Int. 46 (2020) 2530–2537.

[278]

J. Sun, S. Feng, S. Feng, Hydrothermally synthesis of MWCNT/N-TiO2/UiO-66-NH2 ternary composite with enhanced photocatalytic performance for ketoprofen, Inorg. Chem. Commun. 111 (2020) 107669.

[279]

F. Wang, Y.T. Zhang, Y. Xu, X. Wang, S. Li, H. Yang, X. Liu, F. Wei, Enhanced photodegradation of Rhodamine B by coupling direct solid-state Z-scheme N-K2Ti4O9/g-C3N4 heterojunction with high adsorption capacity of UiO-66, J. Environ. Chem. Eng. 4 (2016) 3364–3373.

[280]

C. Gan, C. Xu, H. Wang, N. Zhang, J. Zhang, Y. Fang, Facile synthesis of rGO@In2S3@UiO-66 ternary composite with enhanced visible-light photodegradation activity for methyl orange, J. Photochem. Photobiol., A 384 (2019) 112025.

[281]

X. Zhao, X. Liu, Z. Zhang, X. Liu, W. Zhang, Facile preparation of a novel SnO2@UiO-66/rGO hybrid with enhanced photocatalytic activity under visible light irradiation, RSC Adv. 6 (2016) 92011–92019.

[282]

L. Ling, Y. Wang, W. Zhang, Z. Ge, W. Duan, B. Liu, Preparation of a novel ternary composite of TiO2/UiO-66-NH2/graphene oxide with enhanced photocatalytic activities, Catal. Letters 148 (2018) 1978–1984.

[283]

Q. Liang, S. Cui, J. Jin, C. Liu, S. Xu, C. Yao, Z. Li, Fabrication of BiOI@UIO-66(NH2)@g-C3N4 ternary Z-scheme heterojunction with enhanced visible-light photocatalytic activity, Appl. Surf. Sci. 456 (2018) 899–907.

[284]

H. Sepehrmansourie, H. Alamgholiloo, N. Noroozi Pesyan, M.A. Zolfigol, A MOF-on-MOF strategy to construct double Z-scheme heterojunction for high-performance photocatalytic degradation, Appl. Catal., B 321 (2023) 122082.

[285]

B. Yan, N. Wang, Z. Sun, Y. Han, H. Meng, Y. Xu, X. Zhang, Cobalt phthalocyanine sensitized MOF on MOF: UiO-66@MIL-88B(Fe)/CoTAPc, photocatalytic activity in the degradation of acid black 210, CrystEngComm 24 (2022) 8089–8098.

[286]

J. Li, F. Wu, L. Lin, Y. Guo, H. Liu, X. Zhang, Flow fabrication of a highly efficient Pd/UiO-66-NH2 film capillary microreactor for 4-nitrophenol reduction, Chem. Eng. J. 333 (2018) 146–152.

[287]

M. Lammert, M.T. Wharmby, S. Smolders, B. Bueken, A. Lieb, K.A. Lomachenko, D.D. Vos, N. Stock, Cerium-based metal organic frameworks with UiO-66 architecture: synthesis, properties and redox catalytic activity, Chem. Comm. 51 (2015) 12578–12581.

[288]

Y. Xiong, S. Chen, F. Ye, L. Su, C. Zhang, S. Shen, S. Zhao, Synthesis of a mixed valence state Ce-MOF as an oxidase mimetic for the colorimetric detection of biothiols, Chem. Comm. 51 (2015) 4635–4638.

[289]

S.-W. Lv, J.-M. Liu, N. Zhao, C.-Y. Li, Z.-H. Wang, S. Wang, A novel cobalt doped MOF-based photocatalyst with great applicability as an efficient mediator of peroxydisulfate activation for enhanced degradation of organic pollutants, New J. Chem. 44 (2020) 1245–1252.

[290]

X.-H. Yi, H. Ji, C.-C. Wang, Y. Li, Y.-H. Li, C. Zhao, A. Wang, H. Fu, P. Wang, X. Zhao, W. Liu, Photocatalysis-activated SR-AOP over PDINH/MIL-88A(Fe) composites for boosted chloroquine phosphate degradation: performance, mechanism, pathway and DFT calculations, Appl. Catal., B 293 (2021) 120229.

[291]

X.-Y. Xu, C. Chu, H. f Fu, X.-D. Du, P. Wang, W. w Zheng, C.-C. Wang, Light-responsive UiO-66-NH2/Ag3PO4 MOF-nanoparticle composites for the capture and release of sulfamethoxazole, Chem. Eng. J. 350 (2018) 436–444.

[292]

C. Wang, L. Zhu, M. Wei, P. Chen, G. Shan, Photolytic reaction mechanism and impacts of coexisting substances on photodegradation of bisphenol A by Bi2WO6 in water, Water Res. 46 (2012) 845–853.

[293]

S. Shen, J. Chen, M. Wang, X. Sheng, X. Chen, X. Feng, S.S. Mao, Titanium dioxide nanostructures for photoelectrochemical applications, Prog. Mater. Sci. 98 (2018) 299–385.

[294]

W. Liu, J. Ni, X. Yin, Synergy of photocatalysis and adsorption for simultaneous removal of Cr(Ⅵ) and Cr(Ⅲ) with TiO2 and titanate nanotubes, Water Res. 53 (2014) 12–25.

[295]

L. Bai, S. Wang, Z. Wang, E. Hong, Y. Wang, C. Xia, B. Wang, Kinetics and mechanism of photocatalytic degradation of methyl orange in water by mesoporous Nd-TiO2-SBA-15 nanocatalyst, Environ. Pollut. 248 (2019) 516–525.

[296]

C.-C. Wang, X. Wang, W. Liu, The synthesis strategies and photocatalytic performances of TiO2/MOFs composites: a state-of-the-art review, Chem. Eng. J. 391 (2020) 123601.

[297]

M. Gurulakshmi, M. Selvaraj, A. Selvamani, P. Vijayan, N.R. Sasi Rekha, K. Shanthi, Enhanced visible-light photocatalytic activity of V2O5/S-TiO2 nanocomposites, Appl. Catal. A 449 (2012) 31–46.

[298]

T. Wang, C. Zhao, L. Meng, Y. Li, H. Chu, F. Wang, Y. Tao, W. Liu, C.-C. Wang, In-situ-construction of BiOI/UiO-66 heterostructure via nanoplate-on-octahedron: a novel p-n heterojunction photocatalyst for efficient sulfadiazine elimination, Chem. Eng. J. 451 (2023) 138624.

[299]

A. Iwase, Y.H. Ng, Y. Ishiguro, A. Kudo, R. Amal, Reduced graphene oxide as a solid-state electron mediator in Z-scheme photocatalytic water splitting under visible light, J. Am. Chem. Soc. 133 (2011) 11054–11057.

[300]

P. Zhou, J. Yu, M. Jaroniec, All-solid-state Z-scheme photocatalytic systems, Adv. Mater. 26 (2014) 4920–4935.

[301]

A.J. Bard, Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors, J. Photochem. 10 (1979) 59–75.

[302]

R. Zhang, B. Du, Q. Li, Z. Cao, G. Feng, X. Wang, α-Fe2O3 nanoclusters confined into UiO-66 for efficient visible-light photodegradation performance, Appl. Surf. Sci. 466 (2019) 956–963.

[303]

J.-P. Zou, D.-D. Wu, J. Luo, Q.-J. Xing, X.-B. Luo, W.-H. Dong, S.-L. Luo, H.-M. Du, S.L. Suib, A strategy for one-pot conversion of organic pollutants into useful hydrocarbons through coupling photodegradation of MB with photoreduction of CO2, ACS Catal. 6 (2016) 6861–6867.

[304]

C.-K. Huang, T. Wu, C.-W. Huang, C.-Y. Lai, M.-Y. Wu, Y.-W. Lin, Enhanced photocatalytic performance of BiVO4 in aqueous AgNO3 solution under visible light irradiation, Appl. Surf. Sci. 399 (2017) 10–19.

[305]

Y.-X. Li, C.-C. Wang, F. h Fu, P. Wang, Marigold-flower-like TiO2/MIL-125 core-shell composite for enhanced photocatalytic Cr(Ⅵ) reduction, J. Environ. Chem. Eng. 9 (2021) 105451.

[306]

Y.-X. Li, H. f Fu, P. Wang, C. Zhao, W. Liu, C.-C. Wang, Porous tube-like ZnS derived from rod-like ZIF-L for photocatalytic Cr(Ⅵ) reduction and organic pollutants degradation, Environ. Pollut. 256 (2020) 113417.

[307]

L. Chen, J. Duan, P. Du, W. Sun, B. Lai, W. Liu, Accurate identification of radicals by in-situ electron paramagnetic resonance in ultraviolet-based homogenous advanced oxidation processes, Water Res. 221 (2022) 118747.

[308]

S. Sun, X. Yu, Q. Yang, Z. Yang, S. Liang, Mesocrystals for photocatalysis: a comprehensive review on synthesis engineering and functional modifications, Nanoscale Adv. 1 (2019) 34–63.

[309]

S. Sun, L. He, M. Yang, J. Cui, S. Liang, Facet junction engineering for photocatalysis: a comprehensive review on elementary Knowledge, Facet-synergistic mechanisms, functional modifications, and future perspectives, Adv. Funct. Mater. 32 (2021) 2106982.

[310]

Y. Xu, H. Li, B. Sun, P. Qiao, L. Ren, G. Tian, B. Jiang, K. Pan, W. Zhou, Surface oxygen vacancy defect-promoted electron-hole separation for porous defective ZnO hexagonal plates and enhanced solar-driven photocatalytic performance, Chem. Eng. J. 379 (2020) 122295.

[311]

J. He, J. Hu, Y. Hu, S. Guo, Q. Huang, Y. Li, G. Zhou, T. Gui, N. Hu, X. Chen, Hierarchical S-scheme heterostructure of CdIn2S4@UiO-66-NH2 toward Synchronously boosting photocatalytic removal of Cr(Ⅵ) and tetracycline, Inorg. Chem. 61 (2022) 19961–19973.

[312]

Z. Li, H. Dong, Z. Wu, J. Shen, D. Xu, R. He, L. Wan, S. Zhang, Novel p-n type porous Ag2O/Bi5O7I heterojunction for Uv–Vis-NIR activated high efficient photocatalytic degradation of bisphenol A: Photoelectric properties and degradation mechanism, Appl. Surf. Sci. 529 (2020) 147162.

[313]

C. Zhao, J. Wang, X. Chen, Z. Wang, H. Ji, L. Chen, W. Liu, C.C. Wang, Bifunctional Bi12O17Cl2/MIL-100(Fe) composites toward photocatalytic Cr(Ⅵ) sequestration and activation of persulfate for bisphenol A degradation, Sci. Total Environ. 752 (2021) 141901.

[314]

J.-W. Wang, F.-G. Qiu, P. Wang, C. Ge, C.-C. Wang, Boosted bisphenol A and Cr(Ⅵ) cleanup over Z-scheme WO3/MIL-100(Fe) composites under visible light, J. Clean. Prod. 279 (2021) 123408.

[315]

M. Ding, R. Xiao, C. Zhao, D. Bukhvalov, Z. Chen, H. Xu, H. Tang, J. Xu, X. Yang, Evidencing Interfacial charge transfer in 2D CdS/2D MXene Schottky heterojunctions toward high-efficiency photocatalytic hydrogen production, Sol. RRL 5 (2020) 2000414.

[316]

D. Li, S. Hussain, Y. Wang, C. Huang, P. Li, M. Wang, T. He, ZnSe/CdSe Z-scheme composites with Se vacancy for efficient photocatalytic CO2 reduction, Appl. Catal., B 286 (2021) 119887.

[317]

J. Wei, W. Zhang, W. Pan, C. Li, W. Sun, Experimental and theoretical investigations on Se(Ⅳ) and Se(Ⅵ) adsorption to UiO-66-based metal–organic frameworks, Environ. Sci.: Nano 5 (2018) 1441–1453.

[318]

X. Zhang, B. Shen, S. Zhu, H. Xu, L. Tian, UiO-66 and its Br-modified derivates for elemental mercury removal, J. Hazard Mater. 320 (2016) 556–563.

[319]

Y. Xu, J. Lv, Y. Song, X. Zhou, C. Tian, X. Hong, Y. Cai, C. Zhao, Z. Lin, Efficient removal of low-concentration organoarsenic by Zr-based metal-organic frameworks: cooperation of defects and hydrogen bonds, Environ. Sci.: Nano 6 (2019) 3590–3600.

[320]

J. Shao, P. Shao, M. Peng, M. Li, Z. Yao, X. Xiong, C. Qiu, Y. Zheng, L. Yang, X. Luo, A pyrazine based metal-organic framework for selective removal of copper from strongly acidic solutions, Front. Environ. Sci. Eng. 17 (2023) 33.

[321]

S. Wu, Y. Ge, Y. Wang, X. Chen, F. Li, H. Xuan, X. Li, Adsorption of Cr(Ⅵ) on nano Uio-66-NH2 MOFs in water, Environ. Technol. 39 (2018) 1937–1948.

[322]

S.M. Prabhu, C. Chuaicham, C.M. Park, B.H. Jeon, K. Sasaki, Synthesis and characterization of defective UiO-66 for efficient co-immobilization of arsenate and fluoride from single/binary solutions, Environ. Pollut. 278 (2021) 116841.

[323]

M. Peng, D. You, Z. Jin, C. Ni, H. Shi, J. Shao, X. Shi, L. Zhou, P. Shao, L. Yang, X. Luo, Investigating the potential of structurally defective UiO-66 for Sb (Ⅴ) removal from tailing wastewater, Environ. Res. 236 (2023) 116752.

[324]

N. Zhang, L.Y. Yuan, W.L. Guo, S.Z. Luo, Z.F. Chai, W.Q. Shi, Extending the use of highly porous and functionalized MOFs to Th(Ⅳ) capture, ACS Appl. Mater. Interfaces 9 (2017) 25216–25224.

[325]

S. Wang, H. Wang, S. Wang, L. Zhang, Selective and highly efficient recovery of Au(Ⅲ) by poly(ethylene sulfide)-functionalized UiO-66-NH2: characterization and mechanisms, J. Mol. Liq. 367 (2022) 120584.

[326]

H. Wang, S. Wang, S. Wang, J. Tang, Y. Chen, L. Zhang, Adenosine-functionalized UiO-66-NH2 to efficiently remove Pb(Ⅱ) and Cr(Ⅵ) from aqueous solution: thermodynamics, kinetics and isothermal adsorption, J. Hazard Mater. 425 (2022) 127771.

[327]

N. Shokouhfar, L. Aboutorabi, A. Morsali, Improving the capability of UiO-66 for Cr(Ⅵ) adsorption from aqueous solutions by introducing isonicotinate N-oxide as the functional group, Dalton Trans. 47 (2018) 14549–14555.

[328]

M. Zhao, Z. Huang, S. Wang, L. Zhang, Y. Zhou, Design of l-cysteine functionalized UiO-66 MOFs for selective adsorption of Hg(Ⅱ) in aqueous medium, ACS Appl. Mater. Interfaces 11 (2019) 46973–46983.

[329]

I. Ahmed, Y.-R. Lee, K. Yu, S. Bhattacharjee, W.-S. Ahn, Gd3+ adsorption over carboxylic- and amino-group dual-functionalized UiO-66, Ind. Eng. Chem. Res. 58 (2019) 2324–2332.

[330]

H. Wang, S. Wang, S. Wang, L. Zhang, Y. Zhou, F. Yang, Efficient and selective removal of Cr(Ⅵ) by the modified UiO-66-NH2 with phenothiazine-N-rhodanine from aqueous solution: performance and mechanisms, Microporous Mesoporous Mater. 336 (2022) 111834.

[331]

H. Wei, S. Li, J. Bao, S. Jalil Shah, X. Luan, C. He, Z. Zhao, Z. Zhao, Construction of dual-imprinted UiO-66 s for highly efficient and synergistic Co-adsorption of diclofenac sodium and Cu(Ⅱ), Sep. Purif. Technol. 300 (2022) 121901.

[332]

H. Saleem, U. Rafique, R.P. Davies, Investigations on post-synthetically modified UiO-66-NH2 for the adsorptive removal of heavy metal ions from aqueous solution, Microporous Mesoporous Mater. 221 (2016) 238–244.

[333]

L. Feng, T. Zeng, H. Hou, Post-functionalized metal organic framework for effective and selective removal of Hg(Ⅱ) in aqueous media, Microporous Mesoporous Mater. 328 (2021) 111479.

[334]

F.S. Awad, A.M. Bakry, A.A. Ibrahim, A. Lin, M.S. El-Shall, Thiol- and amine-incorporated UIO-66-NH2 as an efficient adsorbent for the removal of mercury(Ⅱ) and phosphate ions from aqueous solutions, Ind. Eng. Chem. Res. 60 (2021) 12675–12688.

[335]

Y. Wu, B. Li, X. Wang, S. Yu, Y. Liu, H. Pang, H. Wang, J. Chen, X. Wang, Determination of practical application potential of highly stable UiO-66-AO in Eu(Ⅲ) elimination investigated by macroscopic and spectroscopic techniques, Chem. Eng. J. 365 (2019) 249–258.

[336]

L. Chen, Z. Bai, L. Zhu, L. Zhang, Y. Cai, Y. Li, W. Liu, Y. Wang, L. Chen, J. Diwu, J. Wang, Z. Chai, S. Wang, Ultrafast and efficient extraction of uranium from seawater using an amidoxime appended metal-organic framework, ACS Appl. Mater. Interfaces 9 (2017) 32446–32451.

[337]

J.-m. Liu, X.-h. Yin, T. Liu, Amidoxime-functionalized metal-organic frameworks UiO-66 for U(Ⅵ) adsorption from aqueous solution, J. Taiwan Inst. Chem. Eng. 95 (2019) 416–423.

[338]

Z. Huang, C. Wang, J. Zhao, S. Wang, Y. Zhou, L. Zhang, Adsorption behavior of Pd(Ⅱ) ions from aqueous solution onto pyromellitic acid modified-UiO-66-NH2, Arab. J. Chem. 13 (2020) 7007–7019.

[339]

Z. Ji, H. Sun, Y. Zhu, D. Zhang, L. Wang, F. Dai, Y. Zhao, L. Chen, Enhanced selective removal of lead ions using a functionalized PAMAM@UiO-66-NH2 nanocomposite: experiment and mechanism, Microporous Mesoporous Mater. 328 (2021) 111433.

[340]

G. Yuan, Y. Yu, J. Li, D. Jiang, J. Gu, Y. Tang, H. Qiu, W. Xiong, N. Liu, Facile fabrication of a noval melamine derivative-doped UiO-66 composite for enhanced Co(Ⅱ) removal from aqueous solution, J. Mol. Liq. 328 (2021) 115484.

[341]

K.L.B. Solis, Y.H. Kwon, M.H. Kim, H.R. An, C. Jeon, Y. Hong, Metal organic framework UiO-66 and activated carbon composite sorbent for the concurrent adsorption of cationic and anionic metals, Chemosphere 238 (2020) 124656.

[342]

D. Zhang, H. Tang, B. Zhao, L. Liu, H. Pang, X. Wang, S. Yu, Immobilization of uranium by S-NZVI and UiO-66-NO2 composite through combined adsorption and reduction, J. Clean. Prod. 390 (2023) 136149.

[343]

W. Li, C. Zhou, C. Li, W. Zhu, J. Shi, G. Liu, Synthesis of UiO-66 series metal–organic framework composites and the adsorption effect on gallium, Chem. Eng. J. 455 (2023) 140881.

[344]

Y. Cheng, J. Zhang, Facile design of UiO-66-NH2@La(OH)3 composite with enhanced efficiency for phosphate removal, J. Environ. Chem. Eng. 9 (2021) 104632.

[345]

R. Soltani, R. Pelalak, M. Pishnamazi, A. Marjani, S.M. Sarkar, A.B. Albadarin, S. Shirazian, Novel bimodal micro-mesoporous Ni50Co50-LDH/UiO-66-NH2 nanocomposite for Tl(Ⅰ) adsorption, Arab. J. Chem. 14 (2021) 103058.

[346]

W. Yu, Q. Liang, Y. Yin, J. Geng, W. Chen, X. Tan, H. Luo, Adsorption of arsenite by core-shell K-OMS-2@UiO-66 microspheres: performance and mechanism, New J. Chem. 44 (2020) 14389–14400.

[347]

F. Yang, S. Xie, G. Wang, C.W. Yu, H. Liu, Y. Liu, Investigation of a modified metal-organic framework UiO-66 with nanoscale zero-valent iron for removal of uranium (Ⅵ) from aqueous solution, Environ. Sci. Pollut. Res. Int. 27 (2020) 20246–20258.

[348]

Z.R. Jiang, Y. Li, D. Zhang, Y.X. Zhou, G. Xu, C. Wang, Y. Lan, J. Guo, Decorating S-doped Cu-La bimetallic oxides with UIO-66 to increase the As(Ⅲ) adsorption capacity via synchronous oxidation and adsorption, J. Hazard Mater. 418 (2021) 126238.

[349]

S. Jamshidifard, S. Koushkbaghi, S. Hosseini, S. Rezaei, A. Karamipour, A. Jafari Rad, M. Irani, Incorporation of UiO-66-NH2 MOF into the PAN/chitosan nanofibers for adsorption and membrane filtration of Pb(Ⅱ), Cd(Ⅱ) and Cr(Ⅵ) ions from aqueous solutions, J. Hazard Mater. 368 (2019) 10–20.

[350]

L. Li, Y. Xu, D. Zhong, Highly efficient adsorption and reduction of Cr(Ⅵ) ions by a core-shell Fe3O4@UiO-66@PANI composite, J. Phys. Chem. A 124 (2020) 2854–2862.

[351]

G. Zhang, H. Fan, R.Y. Zhou, W. Yin, R. Wang, M. Yang, Z. Xue, Y. Yang, J.X. Yu, Decorating UiO-66-NH2 crystals on recyclable fiber bearing polyamine and amidoxime bifunctional groups via cross-linking method with good stability for highly efficient capture of U(Ⅵ) from aqueous solution, J. Hazard Mater. 424 (2022) 127273.

[352]

J. Li, Y. Liu, X. Wang, G. Zhao, Y. Ai, B. Han, T. Wen, T. Hayat, A. Alsaedi, X. Wang, Experimental and theoretical study on selenate uptake to zirconium metal-organic frameworks: effect of defects and ligands, Chem. Eng. J. 330 (2017) 1012–1021.

[353]

Y. Wang, N. Zhang, D. Chen, D. Ma, G. Liu, X. Zou, Y. Chen, R. Shu, Q. Song, W. Lv, Facile synthesis of acid-modified UiO-66 to enhance the removal of Cr(Ⅵ) from aqueous solutions, Sci. Total Environ. 682 (2019) 118–127.

[354]

R. Xu, Q. Ji, P. Zhao, M. Jian, C. Xiang, C. Hu, G. Zhang, C. Tang, R. Liu, X. Zhang, J. Qu, Hierarchically porous UiO-66 with tunable mesopores and oxygen vacancies for enhanced arsenic removal, J. Mater. Chem. A 8 (2020) 7870–7879.

[355]

P. Wan, M. Yuan, X. Yu, Z. Zhang, B. Deng, Arsenate removal by reactive mixed matrix PVDF hollow fiber membranes with UIO-66 metal organic frameworks, Chem. Eng. J. 382 (2020) 122921.

[356]

F. Zhao, C. Su, W. Yang, Y. Han, X. Luo, C. Li, W. Tang, T. Yue, Z. Li, In-situ growth of UiO-66-NH2 onto polyacrylamide-grafted nonwoven fabric for highly efficient Pb(Ⅱ) removal, Appl. Surf. Sci. 527 (2020) 146862.

[357]

X. Zhang, Q. Dong, Y. Wang, Z. Zhu, Z. Guo, J. Li, Y. Lv, Y.T. Chow, X. Wang, L. Zhu, G. Zhang, D. Xu, Water-stable metal–organic framework (UiO-66) supported on zirconia nanofibers membrane for the dynamic removal of tetracycline and arsenic from water, Appl. Surf. Sci. 596 (2022) 153559.

[358]

T. Hashem, A.H. Ibrahim, C. Wöll, M.H. Alkordi, Grafting zirconium-based metal–organic framework UiO-66-NH2 nanoparticles on cellulose fibers for the removal of Cr(Ⅵ) ions and methyl orange from water, ACS Appl. Nano Mater. 2 (2019) 5804–5808.

[359]

H. Qiu, M. Ye, Q. Zeng, W. Li, J. Fortner, L. Liu, L. Yang, Fabrication of agricultural waste supported UiO-66 nanoparticles with high utilization in phosphate removal from water, Chem. Eng. J. 360 (2019) 621–630.

[360]

S. Tian, Z. Yi, J. Chen, S. Fu, In situ growth of UiO-66-NH2 in wood-derived cellulose for iodine adsorption, J. Hazard Mater. 443 (2023) 130236.

[361]

I. Ali, P. Wan, S. Raza, C. Peng, X. Tan, H. Sun, J. Li, Development of novel MOF-mixed matrix three-dimensional membrane capsules for eradicating potentially toxic metals from water and real electroplating wastewater, Environ. Res. 215 (2022) 113945.

[362]

W. Ni, H. Dai, G. Ding, M. Ye, H. Qiu, Effective defluoridation of water using nanosized UiO-66-NH2 encapsulated within macroreticular polystyrene anion exchanger, Chemosphere 300 (2022) 134584.

[363]

J. Yan, M. Ma, B. Zhao, F. Li, Phosphate recovery from wastewater by rapid adsorption-desorption enrichment over UiO-66@melamine sponge composites, J. Water Process Eng. 55 (2023) 104253.

[364]

N. Chen, S. Cao, L. Zhang, X. Peng, X. Wang, Z. Ai, L. Zhang, Structural dependent Cr(Ⅵ) adsorption and reduction of biochar: hydrochar versus pyrochar, Sci. Total Environ. 783 (2021) 147084.

[365]

A. Nakajima, Y. Baba, Mechanism of hexavalent chromium adsorption by persimmon tannin gel, Water Res. 38 (2004) 2859–2864.

[366]

Y. Peng, H. Huang, Y. Zhang, C. Kang, S. Chen, L. Song, D. Liu, C. Zhong, A versatile MOF-based trap for heavy metal ion capture and dispersion, Nat. Commun. 9 (2018) 187.

[367]

P.W. Seo, N.A. Khan, Z. Hasan, S.H. Jhung, Adsorptive removal of artificial sweeteners from water using metal-organic frameworks functionalized with urea or melamine, ACS Appl. Mater. Interfaces 8 (2016) 29799–29807.

[368]

P.W. Seo, N.A. Khan, S.H. Jhung, Removal of nitroimidazole antibiotics from water by adsorption over metal-organic frameworks modified with urea or melamine, Chem. Eng. J. 315 (2017) 92–100.

[369]

J. He, Y. Xu, Z. Xiong, B. Lai, Y. Sun, Y. Yang, L. Yang, The enhanced removal of phosphate by structural defects and competitive fluoride adsorption on cerium-based adsorbent, Chemosphere 256 (2020) 127056.

[370]

L. Feng, K.Y. Wang, X.L. Lv, T.H. Yan, H.C. Zhou, Hierarchically porous metal-organic frameworks: synthetic strategies and applications, Natl. Sci. Rev. 7 (2020) 1743–1758.

[371]

R.M. Rego, G. Sriram, K.V. Ajeya, H.-Y. Jung, M.D. Kurkuri, M. Kigga, Cerium based UiO-66 MOF as a multipollutant adsorbent for universal water purification, J. Hazard Mater. 416 (2021) 125941.

[372]

X. Min, Y. Wang, L. Chai, Z. Yang, Q. Liao, High-resolution analyses reveal structural diversity patterns of microbial communities in Chromite Ore Processing Residue (COPR) contaminated soils, Chemosphere 183 (2017) 266–276.

[373]

P. Shao, J. Tian, F. Yang, X. Duan, S. Gao, W. Shi, X. Luo, F. Cui, S. Luo, S. Wang, Identification and regulation of active sites on nanodiamonds: establishing a highly efficient catalytic system for oxidation of organic contaminants, Adv. Funct. Mater. 28 (2018) 1705295.

[374]

J. Xie, Z. Wang, S. Lu, D. Wu, Z. Zhang, H. Kong, Removal and recovery of phosphate from water by lanthanum hydroxide materials, Chem. Eng. J. 254 (2014) 163–170.

[375]

Xiaoye Min, Xing Wu, Penghui Shao, Zhong Ren, Lin Ding, X. Luo, Ultra-high capacity of lanthanum-doped UiO-66 for phosphate capture:unusual doping of lanthanum by the reduction of coordination number, Chem. Eng. J. 358 (2019) 321–330.

[376]

W. Hua, T. Zhang, M. Wang, Y. Zhu, X. Wang, Hierarchically structural PAN/UiO-66-(COOH)2 nanofibrous membranes for effective recovery of Terbium(Ⅲ) and Europium(Ⅲ) ions and their photoluminescence performances, Chem. Eng. J. 370 (2019) 729–741.

[377]

K.D. Zhang, F.C. Tsai, N. Ma, Y. Xia, H.L. Liu, X.Q. Zhan, X.Y. Yu, X.Z. Zeng, T. Jiang, D. Shi, C.J. Chang, Adsorption behavior of high stable Zr-based MOFs for the removal of acid organic dye from water, Materials 10 (2017) 205.

[378]

D.V. Mousavi, S. Ahmadipouya, A. Shokrgozar, H. Molavi, M. Rezakazemi, F. Ahmadijokani, M. Arjmand, Adsorption performance of UiO-66 towards organic dyes: effect of activation conditions, J. Mol. Liq. 321 (2021) 114487.

[379]

H. Molavi, M. Zamani, M. Aghajanzadeh, H. Kheiri Manjili, H. Danafar, A. Shojaei, Evaluation of UiO-66 metal organic framework as an effective sorbent for Curcumin's overdose, Appl. Organomet. Chem. 32 (2018) e4221.

[380]

W. Sun, H. Li, H. Li, S. Li, X. Cao, Adsorption mechanisms of ibuprofen and naproxen to UiO-66 and UiO-66-NH2: batch experiment and DFT calculation, Chem. Eng. J. 360 (2019) 645–653.

[381]

M.R. Azhar, H.R. Abid, V. Periasamy, H. Sun, M.O. Tade, S. Wang, Adsorptive removal of antibiotic sulfonamide by UiO-66 and ZIF-67 for wastewater treatment, J. Colloid Interface Sci. 500 (2017) 88–95.

[382]

F. Ahmadijokani, R. Mohammadkhani, S. Ahmadipouya, A. Shokrgozar, M. Rezakazemi, H. Molavi, T.M. Aminabhavi, M. Arjmand, Superior chemical stability of UiO-66 metal-organic frameworks (MOFs) for selective dye adsorption, Chem. Eng. J. 399 (2020) 125346.

[383]

M. Aghajanzadeh, M. Zamani, H. Molavi, H. Khieri Manjili, H. Danafar, A. Shojaei, Preparation of metal–organic frameworks UiO-66 for adsorptive removal of methotrexate from aqueous solution, J. Inorg. Organomet. Polym. Mater. 28 (2017) 177–186.

[384]

G. Lv, J. Liu, Z. Xiong, Z. Zhang, Z. Guan, Selectivity adsorptive mechanism of different nitrophenols on UIO-66 and UIO-66-NH2 in aqueous solution, J. Chem. Eng. Data 61 (2016) 3868–3876.

[385]

Q. Chen, Q. He, M. Lv, Y. Xu, H. Yang, X. Liu, F. Wei, Selective adsorption of cationic dyes by UiO-66-NH2, Appl. Surf. Sci. 327 (2015) 77–85.

[386]

S. Cheng, P. Xie, Z. Yu, R. Gu, Y. Su, Enhanced adsorption performance of UiO-66 via modification with functional groups and integration into hydrogels, Environ. Res. 212 (2022) 113354.

[387]

S. Cheng, P. Xie, Z. Yu, R. Gu, W. Wu, Hydroxyl-modified zirconia/porous carbon nanocomposite used as a highly efficient and renewable adsorbent for removal of carbamazepine from water, Environ. Res. 214 (2022) 114030.

[388]

X. Fang, S. Wu, Y. Wu, W. Yang, Y. Li, J. He, P. Hong, M. Nie, C. Xie, Z. Wu, K. Zhang, L. Kong, J. Liu, High-efficiency adsorption of norfloxacin using octahedral UiO-66-NH2 nanomaterials: dynamics, thermodynamics, and mechanisms, Appl. Surf. Sci. 518 (2020) 146226.

[389]

R. Wang, L. Liu, S. Subhan, Y. Muhammad, Y. Hu, M. Huang, Y. Peng, Z. Zhao, Z. Zhao, Engineering pH-switchable UiO-66 via in-situ amino acid doping for highly selective adsorption of anionic dyes, Chem. Eng. J. 395 (2020) 124958.

[390]

J. Ouyang, J. Chen, S. Ma, X. Xing, L. Zhou, Z. Liu, C. Zhang, Adsorption removal of sulfamethoxazole from water using UiO-66 and UiO-66-BC composites, Particuology 62 (2021) 71–78.

[391]

C.A. Clark, K.N. Heck, C.D. Powell, M.S. Wong, Highly defective UiO-66 materials for the adsorptive removal of perfluorooctanesulfonate, ACS Sustain. Chem. Eng. 7 (2019) 6619–6628.

[392]

M. Qin, Y. Shi, D. Lu, J. Deng, G. Shi, T. Zhou, High-performance Hf/Ti-doped defective Zr-MOFs for cefoperazone adsorption: behavior and mechanisms, Appl. Surf. Sci. 595 (2022) 153494.

[393]

G. Li, Y. Zhang, X. Hu, W. Tan, J. Li, D. Su, H. Wang, M. Yang, A study on the performance of a novel adsorbent UiO-66 modified by a nickel on removing tetracycline in wastewater, Chemosphere 338 (2023) 139399.

[394]

S. Zhuang, J. Wang, Adsorptive removal of pharmaceutical pollutants by defective metal organic framework UiO-66: insight into the contribution of defects, Chemosphere 281 (2021) 130997.

[395]

T. He, Y. Wang, R. Han, X. Li, S. Cui, J. Yang, Hierarchical porous UiO-66 composites modified by dual competitive strategy for adsorption of oxytetracycline, J. Environ. Chem. Eng. 12 (2024) 111662.

[396]

A.S. Eltaweil, H.M. Elshishini, Z.F. Ghatass, G.M. Elsubruiti, Ultra-high adsorption capacity and selective removal of Congo red over aminated graphene oxide modified Mn-doped UiO-66 MOF, Powder Technol. 379 (2021) 407–416.

[397]

Y.-J. Chen, Y. Chen, C. Miao, Y.-R. Wang, G.-K. Gao, R.-X. Yang, H.-J. Zhu, J.-H. Wang, S.-L. Li, Y.-Q. Lan, Metal–organic framework-based foams for efficient microplastics removal, J. Mater. Chem. A 8 (2020) 14644–14652.

[398]

S.-W. Lv, J.-M. Liu, C.-Y. Li, H. Ma, Z.-H. Wang, N. Zhao, S. Wang, Fabrication of Fe3O4@UiO-66-SO3H core–shell functional adsorbents for highly selective and efficient removal of organic dyes, New J. Chem. 43 (2019) 7770–7777.

[399]

Y. Zhao, D. Wang, Y. Luan, X. Du, NIR-light propelled bowl-like mesoporous polydopamine@UiO-66 metal organic framework nanomotors for enhanced removal of organic contaminant, Materials Today Sustainability 18 (2022) 100129.

[400]

S. Kavak, H. Kulak, H.M. Polat, S. Keskin, A. Uzun, Fast and selective adsorption of methylene blue from water using[BMIM][PF6]-incorporated UiO-66 and NH2-UiO-66, cryst, Growth Des 20 (2020) 3590–3595.

[401]

X.-Y. Xu, J. Zhang, X. d Zhao, H. f Fu, C. Chu, P. Wang, C.-C. Wang, Visible-light-triggered release of sulfonamides in MOF/Ag-based nanoparticle composites: performance, mechanism, and DFT calculations, ACS Appl. Nano Mater. 2 (2018) 418–428.

[402]

K. Wang, J. Wu, M. Zhu, Y.-Z. Zheng, X. Tao, Highly effective pH-universal removal of tetracycline hydrochloride antibiotics by UiO-66-(COOH)2/GO metal-organic framework composites, J. Solid State Chem. 284 (2020) 121200.

[403]

D. Mukherjee, P. Das, G.N. Prasad, A.R. Katha, S. Gumma, B. Mandal, Hierarchical graphite oxide decorated UiO-66 for ultrahigh adsorption of dye with synergistic effect of ultrasonication: experimental and density functional theory study, Sep. Purif. Technol. 294 (2022) 121217.

[404]

Y. Sun, M. Chen, H. Liu, Y. Zhu, D. Wang, M. Yan, Adsorptive removal of dye and antibiotic from water with functionalized zirconium-based metal organic framework and graphene oxide composite nanomaterial Uio-66-(OH)2/GO, Appl. Surf. Sci. 525 (2020) 146614.

[405]

A.S. Eltaweil, E.M. Abd El-Monaem, G.M. El-Subruiti, M.M. Abd El-Latif, A.M. Omer, Fabrication of UiO-66/MIL-101(Fe) binary MOF/carboxylated-GO composite for adsorptive removal of methylene blue dye from aqueous solutions, RSC Adv. 10 (2020) 19008–19019.

[406]

F. Ahmadijokani, S. Tajahmadi, M.H. Haris, A. Bahi, M. Rezakazemi, H. Molavi, F. Ko, M. Arjmand, Fe3O4@PAA@UiO-66-NH2 magnetic nanocomposite for selective adsorption of Quercetin, Chemosphere 275 (2021) 130087.

[407]

Z. Yang, L. Zhu, L. Chen, Selective adsorption and separation of dyes from aqueous solution by core-shell structured NH2-functionalized UiO-66 magnetic composites, J. Colloid Interface Sci. 539 (2019) 76–86.

[408]

Y. Han, M. Liu, K. Li, Q. Sun, W. Zhang, C. Song, G. Zhang, Z. Conrad Zhang, X. Guo, In situ synthesis of titanium doped hybrid metal–organic framework UiO-66 with enhanced adsorption capacity for organic dyes, Inorg. Chem. Front. 4 (2017) 1870–1880.

[409]

E.M. Abd El-Monaem, A.M. Omer, R.E. Khalifa, A.S. Eltaweil, Floatable cellulose acetate beads embedded with flower-like zwitterionic binary MOF/PDA for efficient removal of tetracycline, J. Colloid Interface Sci. 620 (2022) 333–345.

[410]

J. Chen, J. Ouyang, W. Chen, Z. Zheng, Z. Yang, Z. Liu, L. Zhou, Fabrication and adsorption mechanism of chitosan/Zr-MOF (UiO-66) composite foams for efficient removal of ketoprofen from aqueous solution, Chem. Eng. J. 431 (2022) 134045.

[411]

Y. Yang, Z. Niu, H. Li, Y. Ma, Y. Zhang, H. Wang, PVBA-UiO-66 using a flexible PVBA with multi-coordination groups as mixed ligands and their super adsorption towards methylene blue, Dalton Trans. 47 (2018) 6538–6548.

[412]

P. Hu, Z. Zhao, X. Sun, Y. Muhammad, J. Li, S. Chen, C. Pang, T. Liao, Z. Zhao, Construction of crystal defect sites in N-coordinated UiO-66 via mechanochemical in-situ N-doping strategy for highly selective adsorption of cationic dyes, Chem. Eng. J. 356 (2019) 329–340.

[413]

W. Yang, T. Yu, L. Sun, Q. Liu, Z. Fei, X. Chen, Z. Zhang, J. Tang, M. Cui, X. Qiao, Pore-expanded UiO-66 pellets for efficient bisphenol A adsorption, Chem. Eng. J. 455 (2023) 140843.

[414]

L. Luo, H. Huang, Y. Heng, R. Shi, W. Wang, B. Yang, C. Zhong, Hierarchical-pore UiO-66-NH2 xerogel with turned mesopore size for highly efficient organic pollutants removal, J. Colloid Interface Sci. 628 (2022) 705–716.

[415]

Z. Chen, Z.-B. Zhang, J. Zeng, Z.-J. Zhang, S. Ma, C.-M. Tang, J.-Q. Xu, Preparation of polyethyleneimine-modified chitosan/Ce-UIO-66 composite hydrogel for the adsorption of methyl orange, Carbohydr. Polym. 299 (2023) 120079.

[416]

C. Zhou, B. Yuan, S. Zhang, G. Yang, L. Lu, H. Li, C.A. Tao, Ultrafast degradation and high adsorption capability of a sulfur mustard simulant under ambient conditions using granular UiO-66-NH2 metal-organic gels, ACS Appl. Mater. Interfaces 14 (2022) 23383–23391.

[417]

J. Cui, X. Xu, L. Yang, C. Chen, J. Qian, X. Chen, D. Sun, Soft foam-like UiO-66/Polydopamine/Bacterial cellulose composite for the removal of aspirin and tetracycline hydrochloride, Chem. Eng. J. 395 (2020) 125174.

[418]

J. Qiu, Y. Feng, X. Zhang, M. Jia, J. Yao, Acid-promoted synthesis of UiO-66 for highly selective adsorption of anionic dyes: adsorption performance and mechanisms, J. Colloid Interface Sci. 499 (2017) 151–158.

[419]

C.-C. Wang, Z.-C. Zhang, X.-H. Yi, MOFs-based functional materials for aqueous micro/nanoplastics elimination, Chin. Chem. Lett. 34 (2023) 108182.

[420]

K.D. Cox, G.A. Covernton, H.L. Davies, J.F. Dower, F. Juanes, S.E. Dudas, Human consumption of microplastics, Environ. Sci. Technol. 53 (2019) 7068–7074.

[421]

K.-Y.A. Lin, S.-Y. Chen, A.P. Jochems, Zirconium-based metal organic frameworks: highly selective adsorbents for removal of phosphate from water and urine, Mater. Chem. Phys. 160 (2015) 168–176.

[422]

K.A. Lin, H. Yang, F.K. Hsu, Zr-metal organic framework and derivatives for adsorptive and photocatalytic removal of acid dyes, Water Environ. Res. 90 (2018) 144–154.

[423]

X. Zhao, D. Liu, H. Huang, W. Zhang, Q. Yang, C. Zhong, The stability and defluoridation performance of MOFs in fluoride solutions, Microporous Mesoporous Mater. 185 (2014) 72–78.

[424]

S.-W. Lv, J.-M. Liu, C.-Y. Li, H. Ma, Z.-H. Wang, N. Zhao, S. Wang, Fabrication of Fe3O4@UiO-66-SO3H core-shell functional adsorbents for highly selective and efficient removal of organic dyes, New J. Chem. 43 (2019) 7770–7777.

[425]

Y. Gao, X.-H. Yi, C.-C. Wang, F. Wang, P. Wang, Effective Cr(Ⅵ) reduction over high throughput Bi-BDC MOF photocatalyst, Mater. Res. Bull. 158 (2023) 112072.

[426]

Y.-X. Li, Y.-C. Han, C.-C. Wang, Fabrication strategies and Cr(Ⅵ) elimination activities of the MOF-derivatives and their composites, Chem. Eng. J. 405 (2021) 126648.

[427]

X.-D. Du, C.-C. Wang, J.G. Liu, X.D. Zhao, J. Zhong, Y.-X. Li, J. Li, P. Wang, Extensive and selective adsorption of ZIF-67 towards organic dyes: performance and mechanism, J. Colloid Interface Sci. 506 (2017) 437–441.

[428]

L. Wang, X. Wen, J. Li, P. Zeng, Y. Song, H. Yu, Roles of defects and linker exchange in phosphate adsorption on UiO-66 type metal organic frameworks: influence of phosphate concentration, Chem. Eng. J. 405 (2021) 126681.

[429]

Z.W. Chang, Y.J. Lee, D.J. Lee, Adsorption of hydrogen arsenate and dihydrogen arsenate ions from neutral water by UiO-66-NH2, J. Environ. Manage. 247 (2019) 263–268.

[430]

X. He, F. Deng, T. Shen, L. Yang, D. Chen, J. Luo, X. Luo, X. Min, F. Wang, Exceptional adsorption of arsenic by zirconium metal-organic frameworks: engineering exploration and mechanism insight, J. Colloid Interface Sci. 539 (2019) 223–234.

[431]

H. Zhu, J. Huang, Q. Zhou, Z. Lv, C. Li, G. Hu, Enhanced luminescence of NH2-UiO-66 for selectively sensing fluoride anion in water medium, J. Lumin. 208 (2019) 67–74.

[432]

J. Yang, Y. Dai, X. Zhu, Z. Wang, Y. Li, Q. Zhuang, J. Shi, J. Gu, Metal-organic frameworks with inherent recognition sites for selective phosphate sensing through their coordination-induced fluorescence enhancement effect, J. Mater. Chem. A 3 (2015) 7445–7452.

[433]

X. Hao, Y. Liang, H. Zhen, X. Sun, X. Liu, M. Li, A. Shen, Y. Yang, Fast and sensitive fluorescent detection of nitrite based on an amino-functionalized MOFs of UiO-66-NH2, J. Solid State Chem. 287 (2020) 121323.

[434]

J.Z. Wei, F.X. Gong, X.J. Sun, Y. Li, T. Zhang, X.J. Zhao, F.M. Zhang, Rapid and low-cost electrochemical synthesis of UiO-66-NH2 with enhanced fluorescence detection performance, Inorg. Chem. 58 (2019) 6742–6747.

[435]

Q. Wang, X.-M. Du, B. Zhao, M. Pang, Y. Li, W.-J. Ruan, A luminescent MOF as a fluorescent sensor for the sequential detection of Al3+ and phenylpyruvic acid, New J. Chem. 44 (2020) 1307–1312.

[436]

M. Nazari, A. Amini, N.T. Eden, M.C. Duke, C. Cheng, M.R. Hill, Highly-efficient sulfonated UiO-66(Zr) optical fiber for rapid detection of trace levels of Pb2+, Int. J. Mol. Sci. 22 (2021) 6053.

[437]

Y. Dong, H. Zhang, F. Lei, M. Liang, X. Qian, P. Shen, H. Xu, Z. Chen, J. Gao, J. Yao, Benzimidazole-functionalized Zr-UiO-66 nanocrystals for luminescent sensing of Fe3+ in water, J. Solid State Chem. 245 (2017) 160–163.

[438]

X.L. Yang, M.H. Xie, W. Cai, R. Shao, R.B. Zang, R.F. Guan, Y. Feng, Postmodified dual functional UiO sensor for selective detection of ozone and tandemly derived sensing of Al3+, Anal. Chem. 92 (2020) 11600–11606.

[439]

M.K. Bera, L. Behera, S. Mohapatra, A fluorescence turn-down-up detection of Cu2+ and pesticide quinalphos using carbon quantum dot integrated UiO-66-NH2, Colloids Surf. A Physicochem. Eng. Asp. 624 (2021) 126792.

[440]

Y. He, L. Shi, J. Wang, J. Yan, Y. Chen, X. Wang, Y. Song, G. Han, UiO-66-NDC (1,4-naphthalenedicarboxilic acid) as a novel fluorescent probe for the selective detection of Fe3+, J. Solid State Chem. 285 (2020) 121206.

[441]

A. Helal, M.E. Arafat, M.M. Rahman, Pyridinyl conjugate of UiO-66-NH2 as chemosensor for the sequential detection of iron and pyrophosphate ion in aqueous media, Chemosensors 8 (2020) 122.

[442]

S. Mukherjee, S. Ghosh, S. Biswas, A MOF chemosensor for highly sensitive and ultrafast detection of folic acid in biofriendly medium, paper strips and real samples, Inorg. Chem. Front. 9 (2022) 6288–6298.

[443]

X. Gao, L. Pei, W. Xue, H. Huang, Z. Gao, X. Zhao, Monodentate AIEgen anchored on metal-organic framework for fast fluorescence sensing of phosphate, Chinese J. Chem. 39 (2020) 99–105.

[444]

Y. Tang, H. Wu, J. Chen, J. Jia, J. Yu, W. Xu, Y. Fu, Q. He, H. Cao, J. Cheng, A highly fluorescent metal organic framework probe for 2,4,6-trinitrophenol detection via post-synthetic modification of UiO-66-NH2, Dyes Pigm 167 (2019) 10–15.

[445]

X. Zhao, Y. Wang, X. Hao, W. Liu, Fluorescent molecule incorporated metal-organic framework for fluoride sensing in aqueous solution, Appl. Surf. Sci. 402 (2017) 129–135.

[446]

Y. Liu, X.-Y. Xie, C. Cheng, Z.-S. Shao, H.-S. Wang, Strategies to fabricate metal–organic framework (MOF)-based luminescent sensing platforms, J. Mater. Chem. C 7 (2019) 10743–10763.

[447]

J.-M. Yang, X.-W. Hu, Y.-X. Liu, W. Zhang, Fabrication of a carbon quantum dots-immobilized zirconium-based metal-organic framework composite fluorescence sensor for highly sensitive detection of 4-nitrophenol, Microporous Mesoporous Mater. 274 (2019) 149–154.

[448]

S.Y. Zhu, B. Yan, A novel sensitive fluorescent probe of S2O82- and Fe3+ based on covalent post-functionalization of a zirconium(Ⅳ) metal-organic framework, Dalton Trans. 47 (2018) 11586–11592.

[449]

S.Y. Zhu, B. Yan, A novel covalent post-synthetically modified MOF hybrid as a sensitive and selective fluorescent probe for Al3+ detection in aqueous media, Dalton Trans. 47 (2018) 1674–1681.

[450]

X. Zhao, D. Liu, H. Huang, C. Zhong, Highly selective and sensitive metal-organic framework fluorescent probe for Cu2+ through rational design of binding sites, Microporous Mesoporous Mater. 224 (2016) 149–154.

[451]

L. Li, S. Shen, W. Ai, S. Song, Y. Bai, H. Liu, Facilely synthesized Eu3+ post-functionalized UiO-66-type metal-organic framework for rapid and highly selective detection of Fe3+ in aqueous solution, Sens. Actuators B Chem. 267 (2018) 542–548.

[452]

Y. Wu, X. Chen, X. Luo, M. Yang, C. Hou, D. Huo, Bimetallic organic framework Cu/UiO-66 mediated "fluorescence turn-on" method for ultrasensitive and rapid detection of carcinoembryonic antigen (CEA), Anal. Chim. Acta 1183 (2021) 339000.

[453]

Z. Xiaoxiong, Z. Wenjun, L. Cuiliu, Q. Xiaohong, Z. Chengyu, Eu3+-Postdoped UIO-66-Type metal-organic framework as a luminescent sensor for Hg2+ detection in aqueous media, Inorg. Chem. 58 (2019) 3910–3915.

[454]

T. Du, J. Wang, L. Zhang, S. Wang, C. Yang, L. Xie, Z. Liu, Y. Ni, X. Xie, J. Sun, W. Zhang, J. Wang, Missing-linker engineering of Eu(Ⅲ)-doped UiO-MOF for enhanced detection of heavy metal ions, Chem. Eng. J. 431 (2022) 134050.

[455]

C. Gong, Z. Li, G. Liu, S. Pu, Ratiometric fluorescent sensing for phosphate based on Eu/Ce/UiO-66-(COOH)2 nanoprobe, Spectrochim, Acta A Mol. Biomol. Spectrosc. 252 (2021) 119493.

[456]

X. Zheng, Y. Zhao, P. Jia, Q. Wang, Y. Liu, T. Bu, M. Zhang, F. Bai, L. Wang, Dual-emission Zr-MOF-Based composite material as a fluorescence turn-on sensor for the ultrasensitive detection of Al3+, Inorg. Chem. 59 (2020) 18205–18213.

[457]

S. Govindaraju, P. Puthiaraj, M.H. Lee, K. Yun, Photoluminescent AuNCs@UiO-66 for ultrasensitive detection of mercury in water samples, ACS Omega 3 (2018) 12052–12059.

[458]

L. Jia, S. Guo, J. Xu, X. Chen, T. Zhu, T. Zhao, A ratiometric fluorescent nano-probe for rapid and specific detection of tetracycline residues based on a dye-doped functionalized nanoscaled metal-organic framework, Nanomaterials 9 (2019) 976.

[459]

S. Joshi, S. Kumari, R. Bhattacharjee, A. Sarmah, R. Sakhuja, D.D. Pant, Experimental and theoretical study: determination of dipole moment of synthesized coumarin–triazole derivatives and application as turn off fluorescence sensor: high sensitivity for iron(Ⅲ) ions, Sens. Actuators B Chem. 220 (2015) 1266–1278.

[460]

S. Bhattacharyya, A. Chakraborty, K. Jayaramulu, A. Hazra, T.K. Maji, A bimodal anionic MOF: turn-off sensing of Cu(Ⅱ) and specific sensitization of Eu(Ⅲ), Chem. Comm. 50 (2014) 13567–13570.

[461]

Y. Zhao, G. Zhang, Z. Liu, C. Guo, C. Peng, M. Pei, P. Li, Benzimidazo[2,1-a]benz[de]isoquinoline-7-one-12-carboxylic acid based fluorescent sensors for pH and Fe3+, J. Photochem. Photobiol., A 314 (2016) 52–59.

[462]

X. Wu, Q. Niu, T. Li, A novel urea-based “turn-on” fluorescent sensor for detection of Fe3+/F ions with high selectivity and sensitivity, Sens. Actuators B Chem. 222 (2016) 714–720.

[463]

L. Wang, G. Fang, D. Cao, A novel phenol-based BODIPY chemosensor for selective detection Fe3+ with colorimetric and fluorometric dual-mode, Sens. Actuators B Chem. 207 (2015) 849–857.

[464]

H. Xu, X. Rao, J. Gao, J. Yu, Z. Wang, Z. Dou, Y. Cui, Y. Yang, B. Chen, G. Qian, A luminescent nanoscale metal-organic framework with controllable morphologies for spore detection, Chem. Comm. 48 (2012) 7377–7379.

[465]

N.B. Shustova, A.F. Cozzolino, M. Dinca, Conformational locking by design: relating strain energy with luminescence and stability in rigid metal-organic frameworks, J. Am. Chem. Soc. 134 (2012) 19596–19599.

[466]

E.M. Nolan, S.J. Lippard, Tools and tactics for the optical detection of mercuric ion, Chem. Rev. 108 (2008) 3443–3480.

[467]

X.-Y. Xu, B. Yan, Fabrication and application of a ratiometric and colorimetric fluorescent probe for Hg2+ based on dual-emissive metal–organic framework hybrids with carbon dots and Eu3+, J. Mater. Chem. C 4 (2016) 1543–1549.

[468]

Y. Cui, R. Song, J. Yu, M. Liu, Z. Wang, C. Wu, Y. Yang, Z. Wang, B. Chen, G. Qian, Dual-emitting MOF supersetdye composite for ratiometric temperature sensing, Adv. Mater. 27 (2015) 1420–1425.

[469]

C.A. Grande, R. Blom, A. Spjelkavik, V. Moreau, J. Payet, Life-cycle assessment as a tool for eco-design of metal-organic frameworks (MOFs), SMT Trends 14 (2017) 11–18.

[470]

H. Luo, F. Cheng, L. Huelsenbeck, N. Smith, Comparison between conventional solvothermal and aqueous solution-based production of UiO-66-NH2: life cycle assessment, techno-economic assessment, and implications for CO2 capture and storage, J. Environ. Chem. Eng. 9 (2021) 105159.

[471]

V. Ntouros, I. Kousis, D. Papadaki, A.L. Pisello, M.N. Assimakopoulos, Life cycle assessment on different synthetic routes of ZIF-8 nanomaterials, Energies 14 (2021) 4998.

[472]

C. Larabi, E.A. Quadrelli, Titration of Zr3(μ-OH) hydroxy groups at the cornerstones of bulk MOF UiO-67, [Zr6O4(OH)4(biphenyldicarboxylate)6], and their reaction with[AuMe(PMe3)], Eur. J. Inorg. Chem. (2012) 3014–3022, 2012.

[473]

C.-C. Wang, Y.-S. Ho, Research trend of metal-organic frameworks: a bibliometric analysis, Scientometrics 109 (2016) 481–513.

[474]

K. Uzarevic, T.C. Wang, S.Y. Moon, A.M. Fidelli, J.T. Hupp, O.K. Farha, T. Friscic, Mechanochemical and solvent-free assembly of zirconium-based metal-organic frameworks, Chem. Comm. 52 (2016) 2133–2136.

[475]

M. Taddei, P.V. Dau, S.M. Cohen, M. Ranocchiari, J.A. van Bokhoven, F. Costantino, S. Sabatini, R. Vivani, Efficient microwave assisted synthesis of metal-organic framework UiO-66: optimization and scale up, Dalton Trans. 44 (2015) 14019–14026.

[476]

X. Zhang, X. Lv, X. Shi, Y. Yang, Y. Yang, Enhanced hydrophobic UiO-66 (University of Oslo 66) metal-organic framework with high capacity and selectivity for toluene capture from high humid air, J. Colloid Interface Sci. 539 (2019) 152–160.

[477]

Y. Zhan, S. He, J. Hu, S. Zhao, G. Zeng, M. Zhou, G. Zhang, A. Sengupta, Robust super-hydrophobic/super-oleophilic sandwich-like UIO-66-F4@rGO composites for efficient and multitasking oil/water separation applications, J. Hazard Mater. 388 (2020) 121752.

[478]

A.S. Abou-Elyazed, Y. Sun, A.M. El-Nahas, A.M. Yousif, A green approach for enhancing the hydrophobicity of UiO-66(Zr) catalysts for biodiesel production at 298 K, RSC Adv. 10 (2020) 41283–41295.

[479]

J. Ran, H. Chen, S. Bi, Q. Guo, Z. Deng, G. Cai, D. Cheng, X. Tang, X. Wang, One-step in-situ growth of zeolitic imidazole frameworks-8 on cotton fabrics for photocatalysis and antimicrobial activity, Cellulose 27 (2020) 10447–10459.

[480]

M. Zhang, W. Jiang, D. Liu, J. Wang, Y. Liu, Y. Zhu, Y. Zhu, Photodegradation of phenol via C3N4-agar hybrid hydrogel 3D photocatalysts with free separation, Appl. Catal., B 183 (2016) 263–268.

[481]

S. Sadeghian, H. Pourfakhar, M. Baghdadi, B. Aminzadeh, Application of sand particles modified with NH2-MIL-101(Fe) as an efficient visible-light photocatalyst for Cr(Ⅵ) reduction, Chemosphere 268 (2021) 129365.

[482]

M.-J. Chang, W.-N. Cui, X.-J. Chai, J. Liu, K. Wang, L. Qiu, Fabrication of flexible MIL-100(Fe) supported SiO2 nanofibrous membrane for visible light photocatalysis, J. Mater. Sci. Mater. Electron. 30 (2018) 1009–1016.

[483]

J. Wen, J. Xie, X. Chen, X. Li, A review on g-C3N4 -based photocatalysts, Appl. Surf. Sci. 391 (2017) 72–123.

[484]

D. Masih, Y. Ma, S. Rohani, Graphitic C3N4 based noble-metal-free photocatalyst systems: a review, Appl. Catal., B 206 (2017) 556–588.

[485]

X. Zhou, X. Li, Y. Gao, L. Li, L. Huang, J. Ye, Preparation and characterization of 2D ZnO nanosheets/regenerated cellulose photocatalytic composite thin films by a two-step synthesis method, Mater. Lett. 234 (2019) 26–29.

[486]

A.A. Ismail, D.W. Bahnemann, Mesoporous titania photocatalysts: preparation, characterization and reaction mechanisms, J. Mater. Chem. 21 (2011) 11686.

[487]

C. Li, S. Yu, H. Dong, C. Liu, H. Wu, H. Che, G. Chen, Z-scheme mesoporous photocatalyst constructed by modification of Sn3O4 nanoclusters on g-C3N4 nanosheets with improved photocatalytic performance and mechanism insight, Appl. Catal., B 238 (2018) 284–293.

[488]

R. Miao, Z. Luo, W. Zhong, S.-Y. Chen, T. Jiang, B. Dutta, Y. Nasr, Y. Zhang, S.L. Suib, Mesoporous TiO2 modified with carbon quantum dots as a high-performance visible light photocatalyst, Appl. Catal., B 189 (2016) 26–38.

[489]

C. Zhu, B. Lu, Q. Su, E. Xie, W. Lan, A simple method for the preparation of hollow ZnO nanospheres for use as a high performance photocatalyst, Nanoscale 4 (2012) 3060–3064.

[490]

Y. Jiang, F. Li, Y. Liu, Y. Hong, P. Liu, L. Ni, Construction of TiO2 hollow nanosphere/g-C3N4 composites with superior visible-light photocatalytic activity and mechanism insight, J. Ind. Eng. Chem. 41 (2016) 130–140.

[491]

Ya jun Zou, Jian-Wen Shi, Dandan Ma, Zhaoyang Fan, Lu Lu, C. Niu, In-situ synthesis of C-doped TiO2@g-C3N4 core-shell hollow nanospheres with enhanced visible-light photocatalytic activity for H2 evolution, Chem. Eng. J. 322 (2017) 435–444.

[492]

S. Dong, J. Sun, Y. Li, C. Yu, Y. Li, J. Sun, ZnSnO3 hollow nanospheres/reduced graphene oxide nanocomposites as high-performance photocatalysts for degradation of metronidazole, Appl. Catal., B 144 (2014) 386–393.

[493]

M. Faisal, A.A. Ismail, A.A. Ibrahim, H. Bouzid, S.A. Al-Sayari, Highly efficient photocatalyst based on Ce doped ZnO nanorods: controllable synthesis and enhanced photocatalytic activity, Chem. Eng. J. 229 (2013) 225–233.

[494]

Y. Zhang, S.-J. Park, Facile construction of MoO3@ZIF-8 core-shell nanorods for efficient photoreduction of aqueous Cr(Ⅵ), Appl. Catal., B 240 (2019) 92–101.

[495]

C. Zhao, Z. h Wang, X. Chen, H.y Chu, H. f Fu, C.-C. Wang, Robust photocatalytic benzene degradation using mesoporous disk-like N-TiO2 derived from MIL-125(Ti), Chinese J. Catal. 41 (2020) 1186–1197.

[496]

A. Kumar, A. Kumari, G. Sharma, B. Du, M. Naushad, F.J. Stadler, Carbon quantum dots and reduced graphene oxide modified self-assembled S@C3N4/B@C3N4 metal-free nano-photocatalyst for high performance degradation of chloramphenicol, J. Mol. Liq. 300 (2020) 112356.

[497]

M. Singh, S. Kaushal, P. Singh, J. Sharma, Boron doped graphene oxide with enhanced photocatalytic activity for organic pollutants, J. Photochem. Photobiol., A 364 (2018) 130–139.

[498]

X. Li, R. Lv, W. Zhang, M. Li, J. Lu, Y. Ren, Y. Yin, J. Liu, Amorphous zirconium oxide activates peroxymonosulfate for selective degradation of organic compounds: performance, mechanisms and structure-activity relationship, Water Res. 228 (2023) 119363.

[499]

T. Liu, S. Xiao, N. Li, J. Chen, X. Zhou, Y. Qian, C.H. Huang, Y. Zhang, Water decontamination via nonradical process by nanoconfined Fenton-like catalysts, Nat. Commun. 14 (2023) 2881.

[500]

X. Huang, X. Fan, A. Li, Y. Tian, D. Li, Bisthiourea immobilized UiO-66-NH2 supported Fe2O3 nanoparticles to accelerate dual centers Fenton-like reaction, Sci. Total Environ. 875 (2023) 162651.

[501]

Y. Feng, Q. Chen, M. Cao, N. Ling, J. Yao, Defect-tailoring and titanium substitution in metal-organic framework UiO-66-NH2 for the photocatalytic degradation of Cr(Ⅵ) to Cr(Ⅲ), ACS Appl. Nano Mater. 2 (2019) 5973–5980.

[502]

Y. Huang, Y. Liang, Y. Rao, D. Zhu, J.J. Cao, Z. Shen, W. Ho, S.C. Lee, Environment-friendly carbon quantum dots/ZnFe2O4 photocatalysts: characterization, biocompatibility, and mechanisms for NO removal, Environ. Sci. Technol. 51 (2017) 2924–2933.

[503]

T. Wu, X. Liu, Y. Liu, M. Cheng, Z. Liu, G. Zeng, B. Shao, Q. Liang, W. Zhang, Q. He, W. Zhang, Application of QD-MOF composites for photocatalysis: energy production and environmental remediation, Coord. Chem. Rev. 403 (2020) 213097.

[504]

G. Wang, Q. Sun, Y. Liu, B. Huang, Y. Dai, X. Zhang, X. Qin, A bismuth-based metal-organic framework as an efficient visible-light-driven photocatalyst, Chemistry 21 (2015) 2364–2367.

[505]

W. Ren, L. Xiong, X. Yuan, Z. Yu, H. Zhang, X. Duan, S. Wang, Activation of peroxydisulfate on carbon nanotubes: electron-transfer mechanism, Environ. Sci. Technol. 53 (2019) 14595–14603.

[506]

B. Wang, C. Cheng, M. Jin, J. He, H. Zhang, W. Ren, J. Li, D. Wang, Y. Li, A site distance effect induced by reactant molecule matchup in single-atom catalysts for fenton-like reactions, Angew. Chem. Int. Ed. Engl. 134 (2022) e202207268.

[507]

W. Ren, G. Nie, P. Zhou, H. Zhang, X. Duan, S. Wang, The intrinsic nature of persulfate activation and N-doping in carbocatalysis, Environ. Sci. Technol. 54 (2020) 6438–6447.

[508]

W. Ren, C. Cheng, P. Shao, X. Luo, H. Zhang, S. Wang, X. Duan, Origins of electron-transfer regime in persulfate-based nonradical oxidation processes, Environ. Sci. Technol. 56 (2022) 78–97.

[509]

S.Y. Jia, Y.F. Zhang, Y. Liu, F.X. Qin, H.T. Ren, S.H. Wu, Adsorptive removal of dibenzothiophene from model fuels over one-pot synthesized PTA@MIL-101(Cr) hybrid material, J. Hazard Mater. 262 (2013) 589–597.

[510]

X. Hu, J. Wen, H. Zhang, Q. Wang, C. Yan, L. Xing, Can epicatechin gallate increase Cr(Ⅵ) adsorption and reduction on ZIF-8? Chem. Eng. J. 391 (2020) 123501.

[511]

P.A. M, S. Pardhiya, P. Rajamani, Carbon dots: an excellent fluorescent probe for contaminant sensing and remediation, Small 18 (2022) e2105579.

[512]

D. Zhao, X. Wan, H. Song, L. Hao, Y. Su, Y. Lv, Metal-organic frameworks (MOFs) combined with ZnO quantum dots as a fluorescent sensing platform for phosphate, Sens. Actuators B Chem. 197 (2014) 50–57.

[513]

F. Asadi, S.N. Azizi, M.J. Chaichi, Green synthesis of fluorescent PEG-ZnS QDs encapsulated into Co-MOFs as an effective sensor for ultrasensitive detection of copper ions in tap water, Mater. Sci. Eng. C 105 (2019) 110058.

[514]

L. Yang, Y. Song, L. Wang, Multi-emission metal-organic framework composites for multicomponent ratiometric fluorescence sensing: recent developments and future challenges, J. Mater. Chem. B 8 (2020) 3292–3315.

[515]

B. Li, T. Suo, S. Xie, A. Xia, Y.-j. Ma, H. Huang, X. Zhang, Q. Hu, Rational design, synthesis, and applications of carbon dots@metal-organic frameworks (CD@MOF) based sensors, Trends Anal. Chem. 135 (2021) 116163.

[516]

P. Kukkar, K.-H. Kim, D. Kukkar, P. Singh, Recent advances in the synthesis techniques for zeolitic imidazolate frameworks and their sensing applications, Coord. Chem. Rev. 446 (2021) 214109.

[517]

K. Müller-Buschbaum, F. Beuerle, C. Feldmann, MOF based luminescence tuning and chemical/physical sensing, Microporous Mesoporous Mater. 216 (2015) 171–199.

Environmental Functional Materials
Pages 93-132
Cite this article:
Li Y-H, Wang C-C, Yi X-H, et al. UiO-66(Zr)-based functional materials for water purification: An updated review. Environmental Functional Materials , 2023, 2(2): 93-132. https://doi.org/10.1016/j.efmat.2024.02.001

404

Views

24

Downloads

0

Crossref

Altmetrics

Received: 03 January 2024
Revised: 22 January 2024
Accepted: 01 February 2024
Published: 11 February 2024
© 2024 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return