AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Copper-based electro-catalytic nitrate reduction to ammonia from water: Mechanism, preparation, and research directions

Jinshan Wei1( )Yi Li1Hexing Lin1Xihui Lu1Chucheng ZhouYa-yun Li( )
Shenzhen Key Laboratory of Special Functional Materials & Shenzhen Engineering Laboratory for Advance Technology of Ceramics, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, PR China

1 These authors contributed equally to this paper.

Show Author Information

Abstract

Global water bodies are increasingly imperiled by nitrate pollution, primarily originating from industrial waste, agricultural runoffs, and urban sewage. This escalating environmental crisis challenges traditional water treatment paradigms and necessitates innovative solutions. Electro-catalysis, especially utilizing copper-based catalysts, known for their efficiency, cost-effectiveness, and eco-friendliness, offer a promising avenue for the electro-catalytic reduction of nitrate to ammonia. In this review, we systematically consolidate current research on diverse copper-based catalysts, including pure Cu, Cu alloys, oxides, single-atom entities, and composites. Furthermore, we assess their catalytic performance, operational mechanisms, and future research directions to find effective, long-term solutions to water purification and ammonia synthesis. Electro-catalysis technology shows the potential in mitigating nitrate pollution and has strategic importance in sustainable environmental management. As to the application, challenges regarding complexity of the real water, the scale-up of the commerical catalysts, and the efficient collection of produced NH3 are still exist. Following reseraches of catalyst specially on long term stability and in situ mechanisms are proposed.

References

[1]

E. Abascal, L. Gómez-Coma, I. Ortiz, A. Ortiz, Global diagnosis of nitrate pollution in groundwater and review of removal technologies, Sci. Total Environ. 810 (2022) 152233, https://doi.org/10.1016/j.scitotenv.2021.152233.

[2]

X. Zhang, Y. Zhang, P. Shi, Z. Bi, Z. Shan, L. Ren, The deep challenge of nitrate pollution in river water of China, Sci. Total Environ. 770 (2021) 144674, https://doi.org/10.1016/j.scitotenv.2020.144674.

[3]

A. Rahman, N.C. Mondal, K. K Tiwari, Anthropogenic nitrate in groundwater and its health risks in the view of background concentration in a semi arid area of Rajasthan, India, Sci. Rep. 11 (2021) 9279, https://doi.org/10.1038/s41598-021-88600-1.

[4]

M.H. Ward, R.R. Jones, J.D. Brender, T.M. de Kok, P.J. Weyer, B.T. Nolan, C.M. Villanueva, S.G. van Breda, Drinking water nitrate and human health: an updated review, Int. J. Environ. Res. Publ. Health 15 (7) (2018) 1557, https://doi.org/10.3390/ijerph15071557.

[5]

S. Singh, A.G. Anil, V. Kumar, D. Kapoor, S.S.J. Singh, P. C Ramamurthy, Nitrates in the environment: a critical review of their distribution, sensing techniques, ecological effects and remediation, Chemosphere 287 (2022) 131996, https://doi.org/10.1016/j.chemosphere.2021.131996.

[6]

M.J. Ahmed, B.H. Hameed, M.A. Khan, Recent advances on activated carbon-based materials for nitrate adsorption: a review, J. Anal. Appl. Pyrol. 169 (2023) 105856, https://doi.org/10.1016/j.jaap.2022.105856.

[7]

P.L. McCarty, What is the best biological process for nitrogen removal: when and why? Environ. Sci. Technol. 52 (7) (2018) 3835-3841, https://doi.org/10.1021/acs.est.7b05832.

[8]

J. Theerthagiri, K. Karuppasamy, S.J. Lee, R. Shwetharani, H.-S. Kim, S.K.K. Pasha, M. Ashokkumar, M.Y. Choi, Fundamentals and comprehensive insights on pulsed laser synthesis of advanced materials for diverse photo- and electrocatalytic applications, Light Sci. Appl. 11 (1) (2022) 250, https://doi.org/10.1038/s41377-022-00904-7.

[9]

Z. Gu, N. Ni, G. He, Y. Shan, K. Wu, C. Hu, J. Qu, Enhanced hydrosaturation selectivity and electron transfer for electrocatalytic chlorophenols hydrogenation on Ru sites, Environ. Sci. Technol. 57 (43) (2023) 16695-16706, https://doi.org/10.1021/acs.est.3c06669.

[10]

J. Theerthagiri, Seung J. Lee, K. Karuppasamy, S. Arulmani, S. Veeralakshmi, M. Ashokkumar, M.Y. Choi, Application of advanced materials in sonophotocatalytic processes for the remediation of environmental pollutants, J. Hazard Mater. 412 (2021) 125245, https://doi.org/10.1016/j.jhazmat.2021.125245.

[11]

E.M. Bennett, J.W. Murray, M. Isalan, Engineering nitrogenases for synthetic nitrogen fixation: from pathway engineering to directed evolution, Bio Design Res (2023) 0005, https://doi.org/10.34133/bdr.0005.

[12]

T. Yoshiaki, N. Yoshiaki, Comprehensive insights into synthetic nitrogen fixation assisted by molecular catalysts under ambient or mild conditions, Chem. Soc. Rev. 50 (2021) 5201-5242, https://doi.org/10.1039/D0CS01341B.

[13]

Q.S. Wang, D.B. Sun, W.P. Hao, Y. Li, Human activities and nitrogen in waters, Acta Ecol. Sin. 32 (4) (2012) 174-179, https://doi.org/10.1016/j.chnaes.2012.04.010.

[14]

P.J. Martikainen, Heterotrophic nitrification – an eternal mystery in the nitrogen cycle, Soil Biol. Biochem. 168 (2022) 108611, https://doi.org/10.1016/j.soilbio.2022.108611.

[15]

S.J. Ergas, V. Aponte-Morales, 3.8 - biological nitrogen removal, Comprehensive Water Quality and Purification 3 (2014) 123-149, https://doi.org/10.1016/B978-0-12-382182-9.00047-5.

[16]

X. Lu, H. Song, J. Cai, S. Lu, Recent development of electrochemical nitrate reduction to ammonia: a mini review, Electrochem. Commun. 129 (2021) 107094, https://doi.org/10.1016/j.elecom.2021.107094.

[17]

Q. Liu, L. Xie, J. Liang, Y. Ren, Y. Wang, L. Zhang, L. Yue, T. Li, Y. Luo, N. Li, B. Tang, Y. Liu, S. Gao, A.A. Alshehri, I. Shakir, P.O. Agboola, Q. Kong, Q. Wang, D. Ma, X. Sun, Ambient ammonia synthesis via electrochemical reduction of nitrate enabled by NiCo2O4 nanowire array, Small 18 (13) (2022) 2106961, https://doi.org/10.1002/smll.202106961.

[18]

J. Theerthagiri, J. Park, H.T. Das, N. Rahamathulla, E.S.F. Cardoso, A.P. Murthy, G. Maia, D.V.N. Vo, M.Y. Choi, Electrocatalytic conversion of nitrate waste into ammonia: a review, Environ. Chem. Lett. 20 (5) (2022) 2929-2949, https://doi.org/10.1007/s10311-022-01469-y.

[19]

X. Fan, D. Zhao, Z. Deng, L. Zhang, J. Li, Z. Li, S. Sun, Y. Luo, D. Zheng, Y. Wang, B. Ying, J. Zhang, A.A. Alshehri, Y. Lin, C. Tang, X. Sun, Y. Zheng, Constructing Co@TiO2 nanoarray heterostructure with Schottky contact for selective electrocatalytic nitrate reduction to ammonia, Small 19 (17) (2023) 22080, https://doi.org/10.1002/smll.202208036.

[20]

Y. Yao, L. Zhang, Electrochemical nitrate reduction to ammonia on copper-based materials for nitrate-containing wastewater treatment, Sci. Bull. 67 (12) (2022) 1194-1196, https://doi.org/10.1016/j.scib.2022.05.004.

[21]

S. Garcia-Segura, M. Lanzarini-Lopes, K. Hristovski, Westerhoff Paul, Electrocatalytic reduction of nitrate: fundamentals to full-scale water treatment applications, Appl. Catal. B Environ. 236 (2018) 546-568, https://doi.org/10.1016/j.apcatb.2018.05.041.

[22]

Y. Wang, C. Wang, M. Li, Y. Yu, B. Zhang, Nitrate electroreduction: mechanism insight, in situ characterization, performance evaluation, and challenges, Chem. Soc. Rev. 50 (2021) 6720-6733, https://doi.org/10.1039/D1CS00116G.

[23]

Z. Wang, D. Richards, N. Singh, Recent discoveries in the reaction mechanism of heterogeneous electrocatalytic nitrate reduction, Catal. Sci. Technol. 11 (2021) 705-725, https://doi.org/10.1039/D0CY02025G.

[24]

H. Jiang, G. Chen, O. Savateev, J. Xue, L. Ding, Z. Liang, M. Antonietti, H. Wang, Enabled efficient ammonia synthesis and energy supply in a zinc–nitrate battery system by separating nitrate reduction process into two stages, Angew. Chem. Int. Ed. 62 (13) (2023) e202218717, https://doi.org/10.1002/anie.202218717.

[25]

W. Jung, Y.J. Hwang, Material strategies in the electrochemical nitrate reduction reaction to ammonia production, Mater. Chem. Front. 5 (2021) 6803-6823, https://doi.org/10.1039/D1QM00456E.

[26]

H. Phebe, van Langevelde, Ioannis Katsounaros, Marc T.M. Koper, Electrocatalytic nitrate reduction for sustainable ammonia production, Joule 5 (2) (2021) 290-294, https://doi.org/10.1016/j.joule.2020.12.025.

[27]

X. Zhang, Y. Wang, C. Liu, Y. Yu, S. Lu, B. Zhang, Recent advances in non-noble metal electrocatalysts for nitrate reduction, Chem. Eng. J. 403 (2021) 126269, https://doi.org/10.1016/j.cej.2020.126269.

[28]

Mohammadreza Karamad, Tiago J. Goncalves, Santiago Jimenez-Villegas, Ian D. Gates, Samira Siahrostami, Why copper catalyzes electrochemical reduction of nitrate to ammonia, Faraday Discuss 243 (2023) 502-519, https://doi.org/10.1039/D2FD00145D.

[29]

Z. Liu, F. Shen, L. Shi, Q. Tong, M. Tang, Y. Li, M. Peng, Z. Jiao, Y. Jiang, L. Ao, W. Fu, X. Lv, G. Jiang, L. Hou, Electronic structure optimization and proton-transfer enhancement on titanium oxide-supported copper nanoparticles for enhanced nitrogen recycling from nitrate-contaminated water, Environ. Sci. Technol. 57 (27) (2023) 10117-10126, https://doi.org/10.1021/acs.est.3c03431.

[30]

C. Sandford, M.A. Edwards, K.J. Klunder, D.P. Hickey, M. Li, K. Barman, M.S. Sigman, H.S. White, S.D. Minteer, A synthetic chemist's guide to electroanalytical tools for studying reaction mechanisms, Chem. Sci. 10 (2019) 6404-6422, https://doi.org/10.1039/C9SC01545K.

[31]

J. Gao, B. Jiang, C. Ni, Y. Qi, Y. Zhang, N. Oturan, M.A. Oturan, Non-precious Co3O4-TiO2/Ti cathode based electrocatalytic nitrate reduction: preparation, performance and mechanism, Appl. Catal. B Environ. 254 (2019) 391-402, https://doi.org/10.1016/j.apcatb.2019.05.016.

[32]

T. Ren, Y. Sheng, M. Wang, K. Ren, L. Wang, Y. Xu, Recent advances of Cu-based materials for electrochemical nitrate reduction to ammonia, Chin. J. Struct. Chem. 41 (2022) 2212089-2212106, https://doi.org/10.14102/j.cnki.0254-5861.2022-0201.

[33]

Y. Guo, Rong Zhang, S. Zhang, Y. Zhao, Q. Yang, Z. Huang, B. Dong, C. Zhi, Pd doping-weakened intermediate adsorption to promote electrocatalytic nitrate reduction on TiO2 nanoarrays for ammonia production and energy supply with zinc–nitrate batteries, Energy Environ. Sci. 14 (2021) 3938, https://doi.org/10.1039/d1ee00806d.

[34]

L. Wu, J. Feng, L. Zhang, S. Jia, X. Song, Q. Zhu, X. Kang, X. Xing, X. Sun, B. Han, Boosting electrocatalytic nitrate-to-ammonia via tuning of N intermediate adsorption on a Zn-Cu catalyst, Angew. Chem. Int. Ed. 62 (2023) e202307952, https://doi.org/10.1002/anie.202307952.

[35]

D. Wang, X. Zhu, X. Tu, X. Zhang, C. Chen, X. Wei, Y. Li, S. Wang, Oxygen-bridged copper-iron atomic pair as dual-metal active sites for boosting electrocatalytic NO reduction, Adv. Mater. 35 (39) (2023) e2304646, https://doi.org/10.1002/adma.202304646.

[36]

J. Gao, B. Jiang, C. Ni, Y. Qi, X. Bi, Enhanced reduction of nitrate by noble metal-free electrocatalysis on P doped three-dimensional Co3O4 cathode: mechanism exploration from both experimental and DFT studies, Chem. Eng. J. 382 (2020) 123034, https://doi.org/10.1016/j.cej.2019.123034.

[37]

Q. Gao, H.S. Pillai, Y. Huang, S. Liu, Q. Mu, X. Han, Z. Yan, H. Zhou, Q. He, H. Xin, H. Zhu, Breaking adsorption-energy scaling limitations of electrocatalytic nitrate reduction on intermetallic CuPd nanocubes by machine-learned insights, Nat. Commun. 13 (2022) 2338, https://doi.org/10.1038/s41467-022-29926-w.

[38]

R. Liu, H. Zhao, X. Zhao, Z. He, Y. Lai, W. Shan, D. Bekana, G. Li, J. Liu, Defect sites in ultrathin Pd nanowires facilitate the highly efficient electrochemical hydrodechlorination of pollutants by H∗ads, Environ. Sci. Technol. 52 (2018) 9992-10002, https://doi.org/10.1021/acs.est.8b02740.

[39]

J. Martínez, A. Ortiz, I. Ortiz, State-of-the-art and perspectives of the catalytic and electrocatalytic reduction of aqueous nitrates, Appl. Catal. B Environ. 207 (2017) 42-59, https://doi.org/10.1016/j.apcatb.2017.02.016.

[40]

A.C.A. de Vooys, R.A. van Santen, J.A. R van Veen, Electrocatalytic reduction of NO3- on palladium/copper electrodes, J. Mol. Catal. Chem. 154 (2000) 203-215, https://doi.org/10.1016/S1381-1169(99)00375-1.

[41]

P. Li, Z. Jin, Z. Fang, G. Yu, A single-site iron catalyst with preoccupied active centers that achieves selective ammonia electrosynthesis from nitrate, Energy Environ. Sci. 14 (2021) 3522-3531, https://doi.org/10.1039/D1EE00545F.

[42]

Y. Zeng, C. Priest, G. Wang, G. Wu, Restoring the nitrogen cycle by electrochemical reduction of nitrate: progress and prospects, Small Methods 4 (2020) 2000672, https://doi.org/10.1002/smtd.202000672.

[43]

D.H. Kim, S. Ringe, H. Kim, Sejun Kim, B. Kim, G. Bae, H.S. Oh, F. Jaouen, W. Kim, H. Kim, C.H. Choi, Selective electrochemical reduction of nitric oxide to hydroxylamine by atomically dispersed iron catalyst, Nat. Commun. 12 (2021) 1856, https://doi.org/10.1038/s41467-021-22147-7.

[44]

J. Crawford, H. Yin, A. Du, A.P. O'Mullane, Nitrate-to-ammonia conversion at an insn-enriched liquid-metal electrode, Angew. Chem., Int. Ed. Engl. 61 (23) (2022) e202201604, https://doi.org/10.1002/anie.202201604.

[45]

J.-X. Liu, D. Richards, N. Singh, B.R. Goldsmith, Activity and selectivity trends in electrocatalytic nitrate reduction on transition metals, ACS Catal. 9 (2019) 7052-7064, https://doi.org/10.1021/acscatal.9b02179.

[46]

M. Teng, J. Ye, C. Wan, G. He, H. Chen, Research progress on Cu-based catalysts for electrochemical nitrate reduction reaction to ammonia, Ind. Eng. Chem. Res. 61 (2022) 14731-14746, https://doi.org/10.1021/acs.iecr.2c02495.

[47]

T. Hu, C. Wang M. Wang, C.M. Li, C. Guo, Theoretical insights into superior nitrate reduction to ammonia performance of copper catalysts, ACS Catal. 11 (2021) 14417-14427, https://doi.org/10.1021/acscatal.1c03666.

[48]

T. Li, T. Hu, L. Dai, C.M. Li, Metal-free photo- and electrocatalysts for hydrogen evolution reaction, J. Mater. Chem. A 8 (2020) 23674-23698, https://doi.org/10.1039/D0TA08704A.

[49]

J. Yuan, Z. Xing, Y. Tang, C. Liu, Tuning the oxidation state of Cu electrodes for selective electrosynthesis of ammonia from nitrate, ACS Appl. Mater. Interfaces 13 (44) (2021) 52469-52478, https://doi.org/10.1021/acsami.1c10946.

[50]

Q. Gao, H.S. Pillai, Y. Huang, S. Liu, Q. Mu, X. Han, Z. Yan, H. Zhou, Q. He, H. Xin, H. Zhu, Breaking adsorption-energy scaling limitations of electrocatalytic nitrate reduction on intermetallic CuPd nanocubes by machine-learned insights, Nat. Commun. 13 (1) (2022) 2338, https://doi.org/10.1038/s41467-022-29926-w.

[51]

A. Paliwal, C.D. Bandas, E.S. Thornburg, R.T. Haasch, A.A. Gewirth, Enhanced nitrate reduction activity from Cu-alloy electrodes in an alkaline electrolyte, ACS Catal. 13 (10) (2023) 6754-6762, https://doi.org/10.1021/acscatal.3c00999.

[52]

W. Gao, K. Xie, J. Xie, X. Wang, H. Zhang, S. Chen, H. Wang, Z. Li, C. Li, Alloying of Cu with Ru enabling the relay catalysis for reduction of nitrate to ammonia, Adv. Mater. 35 (19) (2023) e2202952, https://doi.org/10.1002/adma.202202952.

[53]

W. Wen, P. Yan, W. Sun, Y. Zhou, X.-Y. Yu, Metastable phase Cu with optimized local electronic state for efficient electrocatalytic production of ammonia from nitrate, Adv. Funct. Mater. 33 (6) (2023) 2212236, https://doi.org/10.1002/adfm.202212236.

[54]

J. Wang, L.L. Zhang, Y.Y. Wang, Y.J. Niu, D. Fang, Q.X. Su, C. Wang, Facet and d-band center engineering of CuNi nanocrystals for efficient nitrate electroreduction to ammonia, Dalton Trans. 51 (39) (2022) 15111-15120, https://doi.org/10.1039/D2DT02256G.

[55]

L. Zhang, H. Jang, H. Liu, M.G. Kim, D. Yang, S. Liu, X. Liu, J. Cho, Sodium-decorated amorphous/crystalline RuO2 with rich oxygen vacancies: a robust pH-universal oxygen evolution electrocatalyst, Angew. Chem. Int. Ed. 60 (34) (2021) 18821-18829, https://doi.org/10.1002/anie.202106631.

[56]

S. Ma, Z. Han, K. Leng, X. Liu, Y. Wang, Y. Qu, J. Bai, Ionic exchange of metal-organic frameworks for constructing unsaturated copper single-atom catalysts for boosting oxygen reduction reaction, Small 16 (23) (2020) 2001384, https://doi.org/10.1002/smll.202001384.

[57]

S. Kuang, Y. Su, M. Li, H. Liu, H. Chuai, X. Chen, E.J.M. Hensen, T.J. Meyer, S. Zhang, X. Ma, Asymmetrical electrohydrogenation of CO2 to ethanol with copper-gold heterojunctions, Proc. Natl. Acad. Sci. USA 120 (4) (2023) e2214175120, https://doi.org/10.1073/pnas.2214175120.

[58]

W. Zhang, C. Huang, Q. Xiao, L. Yu, L. Shuai, P. An, J. Zhang, M. Qiu, Z. Ren, Y. Yu, Atypical oxygen-bearing copper boosts ethylene selectivity toward electrocatalytic CO2 reduction, J. Am. Chem. Soc. 142 (26) (2020) 11417-11427, https://doi.org/10.1021/jacs.0c01562.

[59]

M.M.F. Espinosa, T. Cheng, M. Xu, L. Abatemarco, C. Choi, X. Pan, W.A. Goddard Ⅲ, Z. Zhao, Y. Huang, Compressed intermetallic PdCu for enhanced electrocatalysis, ACS Energy Lett. 5 (12) (2020) 3672-3680, https://doi.org/10.1021/acsenergylett.0c01959.

[60]

Y. Tan, R. Xie, S. Zhao, X. Lu, L. Liu, F. Zhao, C. Li, H. Jiang, G. Chai, D.J.L. Brett, P.R. Shearing, G. He, I.P. Parkin, Facile fabrication of robust hydrogen evolution electrodes under high current densities via Pt@Cu interactions, Adv. Funct. Mater. 31 (45) (2021) 2105579, https://doi.org/10.1002/adfm.202105579.

[61]

G.E. Dima, A.C.A. de Vooys, M.T.M. Koper, Electrocatalytic reduction of nitrate at low concentration on coinage and transition-metal electrodes in acid solutions, J. Electroanal. Chem. 554 (2003) 15-23, https://doi.org/10.1016/S0022-0728(02)01443-2.

[62]

G.A. Cerrón-Calle, A.S. Fajardo, C.M. Sánchez-Sánchez, S. Garcia-Segura, Highly reactive Cu-Pt bimetallic 3D-electrocatalyst for selective nitrate reduction to ammonia, Appl. Catal. B Environ. 302 (2022) 120844, https://doi.org/10.1016/j.apcatb.2021.120844.

[63]

Y. Zhao, Y. Liu, Z. Zhang, Z. Mo, C. Wang, S. Gao, Flower-like open-structured polycrystalline copper with synergistic multi-crystal plane for efficient electrocatalytic reduction of nitrate to ammonia, Nano Energy 97 (2022) 107124, https://doi.org/10.1016/j.nanoen.2022.107124.

[64]

X. Fu, X. Zhao, X. Hu, K. He, Y. Yu, T. Li, Q. Tu, X. Qian, Q. Yue, M.R. Wasielewski, Y. Kang, Alternative route for electrochemical ammonia synthesis by reduction of nitrate on copper nanosheets, Appl. Mater. Today 19 (2020) 100620, https://doi.org/10.1016/j.apmt.2020.100620.

[65]

Y. Xu, M. Wang, K. Ren, T. Ren, M. Liu, Z. Wang, X. Li, L. Wang, H. Wang, Atomic defects in pothole-rich two-dimensional copper nanoplates triggering enhanced electrocatalytic selective nitrate-to-ammonia transformation, J. Mater. Chem. A 9 (30) (2021) 16411-16417, https://doi.org/10.1039/D1TA04743D.

[66]

X. Wang, M. Zhu, G. Zeng, X. Liu, C. Fang, C. Li, A three-dimensional Cu nanobelt cathode for highly efficient electrocatalytic nitrate reduction, Nanoscale 12 (17) (2020) 9385-9391, https://doi.org/10.1039/C9NR10743F.

[67]

C. Zhou, J. Li, Y. Zhang, J. Bai, L. Li, X. Mei, X. Guan, B. Zhou, Novel denitrification fuel cell for energy recovery of nitrate-N and TN removal based on NH4+ generation on a CNW@CF cathode, Environ. Sci. Technol. 56 (4) (2022) 2562-2571, https://doi.org/10.1021/acs.est.1c04363.

[68]

X. Zhao, K. Zhao, X. Quan, S. Chen, H. Yu, Z. Zhang, J. Niu, S. Zhang, Efficient electrochemical nitrate removal on Cu and nitrogen doped carbon, Chem. Eng. J. 415 (2021) 128958, https://doi.org/10.1016/j.cej.2021.128958.

[69]

M. Hong, Q. Wang, J. Sun, C. Wu, A highly active copper-nanoparticle-based nitrate reduction electrocatalyst prepared by in situ electrodeposition and annealing, Sci. Total Environ. 827 (2022) 154349, https://doi.org/10.1016/j.scitotenv.2022.154349.

[70]

K. Wu, C. Sun, Z. Wang, Q. Song, X. Bai, X. Yu, Q. Li, Z. Wang, H. Zhang, J. Zhang, X. Tong, Y. Liang, A. Khosla, Z. Zhao, Surface reconstruction on uniform Cu nanodisks boosted electrochemical nitrate reduction to ammonia, ACS Mater. Lett. 4 (4) (2022) 650-656, https://doi.org/10.1021/acsmaterialslett.2c00149.

[71]

Z. Song, Y. Liu, Y. Zhong, Q. Guo, J. Zeng, Z. Geng, Efficient electroreduction of nitrate into ammonia at ultralow concentrations via an enrichment effect, Adv. Mater. 34 (36) (2022) e2204306, https://doi.org/10.1002/adma.202204306.

[72]

L.H. Zhang, Y. Jia, J. Zhan, G. Liu, G. Liu, F. Li, F. Yu, Dopant-Induced electronic states regulation boosting electroreduction of dilute nitrate to ammonium, Angew. Chem. Int. Ed. 62 (22) (2023) e202303483, https://doi.org/10.1002/anie.202303483.

[73]

F. Gou, H. Wang, M. Fu, Y. Jiang, W. Shen, R. He, M. Li, Boron-induced electron localization in Cu nanowires promotes efficient nitrate reduction to ammonia in neutral media, Appl. Surf. Sci. 612 (2023) 155872, https://doi.org/10.1016/j.apsusc.2022.155872.

[74]

W. Wen, P. Yan, W. Sun, Y. Zhou, X.Y. Yu, Metastable phase Cu with optimized local electronic state for efficient electrocatalytic production of ammonia from nitrate, Adv. Funct. Mater. 33 (6) (2023) 2212236, https://doi.org/10.1002/adfm.202212236.

[75]

X. Wang, S. Qiu, J. Feng, Y. Tong, F. Zhou, Q. Li, L. Song, S. Chen, P. Su, S. Ye, F. Hou, S.X. Dou, H.K. Liu, G.Q. Lu, C. Sun, J. Liu, J. Liang, K.-H. Wu, Confined Fe-Cu clusters as sub-nanometer reactors for efficiently regulating the electrochemical nitrogen reduction reaction, Adv. Mater. 32 (40) (2020) 20043, https://doi.org/10.1002/adma.202004382.

[76]

Y. Chen, Y. Zhao, Z. Zhao, Y. Liu, Highly dispersed face-centered cubic copper-cobalt alloys constructed by ultrafast carbothermal shock for efficient electrocatalytic nitrate-to-ammonia conversion, Mater. Today Energy 29 (2022) 101112, https://doi.org/10.1016/j.mtener.2022.101112.

[77]

X. Fang, L. Tan, H.P. Luo, F. Jiang, H. Chen, Efficient electrochemical reduction of nitrate by bimetallic Cu-Fe phosphide derived from Prussian blue analogue, Colloids Surf. A Physicochem. Eng. Asp. 658 (2023) 130678, https://doi.org/10.1016/j.colsurfa.2022.130678.

[78]

J. Zhao, L. Liu, Y. Yang, D. Liu, X. Peng, S. Liang, L. Jiang, Insights into electrocatalytic nitrate reduction to ammonia via Cu-based bimetallic catalysts, ACS Sustain. Chem. Eng. 11 (6) (2023) 2468-2475, https://doi.org/10.1021/acssuschemeng.2c06498.

[79]

Z. Tang, Z. Bai, X. Li, L. Ding, B. Zhang, X. Chang, Chloride-derived bimetallic Cu-Fe nanoparticles for high-selective nitrate-to-ammonia electrochemical catalysis, Processes 10 (4) (2022) 751, https://doi.org/10.3390/pr10040751.

[80]

L. He, T. Zeng, F. Yao, Y. Zhong, C. Tan, Z. Pi, K. Hou, S. Chen, X. Li, Q. Yang, Electrocatalytic reduction of nitrate by carbon encapsulated Cu-Fe electroactive nanocatalysts on Ni foam, J. Colloid Interface Sci. 634 (2023) 440-449, https://doi.org/10.1016/j.jcis.2022.12.006.

[81]

X. Wang, S. Qiu, J. Feng, Y. Tong, F. Zhou, Q. Li, L. Song, S. Chen, P. Su, S. Ye, F. Hou, S.X. Dou, H.K. Liu, G.Q. Lu, C. Sun, J. Liu, J. Liang, K.-H. Wu, Confined Fe-Cu clusters as sub-nanometer reactors for efficiently regulating the electrochemical nitrogen reduction reaction, Adv. Mater. 32 (40) (2020) 2004382, https://doi.org/10.1002/adma.202004382.

[82]

Z. Wang, C. Sun, X. Bai, Z. Wang, X. Yu, X. Tong, Z. Wang, H. Zhang, H. Pang, L. Zhou, W. Wu, Y. Liang, A. Khosla, Z. Zhao, Facile synthesis of carbon nanobelts decorated with Cu and Pd for nitrate electroreduction to ammonia, ACS Appl. Mater. Interfaces 14 (27) (2022) 30969-30978, https://doi.org/10.1021/acsami.2c09357.

[83]

J. Lim, Y. Chen, D.A. Cullen, S.W. Lee, T.P. Senftle, M.C. Hatzell, PdCu electrocatalysts for selective nitrate and nitrite reduction to nitrogen, ACS Catal. 13 (1) (2022) 87-98, https://doi.org/10.1021/acscatal.2c04841.

[84]

Y. Zhang, X. Chen, W. Wang, L. Yin, J.C. Crittenden, Electrocatalytic nitrate reduction to ammonia on defective Au1Cu (111) single-atom alloys, Appl. Catal. B Environ. 310 (2022) 121346, https://doi.org/10.1016/j.apcatb.2022.121346.

[85]

F.Y. Chen, Z.Y. Wu, S. Gupta, D.J. Rivera, S.V. Lambeets, S. Pecaut, J.Y.T. Kim, P. Zhu, Y.Z. Finfrock, D.M. Meira, G. King, G.H. Gao, W.Q. Xu, D.A. Cullen, H. Zhou, Y.M. Han, D.E. Perea, C.L. Muhich, H.T. Wang, Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst, Nat. Nanotechnol. 17 (7) (2022) 759-767, https://doi.org/10.1038/s41565-022-01121-4.

[86]

N.Q. Tran, L.T. Duy, D.C. Truong, B.T. Nguyen Le, B.T. Phan, Y. Cho, X. Liu, H. Lee, Efficient ammonia synthesis via electroreduction of nitrite using single-atom Ru-doped Cu nanowire arrays, Chem. Commun. 58 (34) (2022) 5257-5260, https://doi.org/10.1039/D2CC00331G.

[87]

Z.X. Ge, T.J. Wang, Y. Ding, S.B. Yin, F.M. Li, P. Chen, Y. Chen, Interfacial engineering enhances the electroactivity of frame-like concave RhCu bimetallic nanocubes for nitrate reduction, Adv. Energy Mater. 12 (15) (2022) 2103916, https://doi.org/10.1002/aenm.202103916.

[88]

Y. Wang, A. Xu, Z. Wang, L. Huang, J. Li, F. Li, J. Wicks, M. Luo, D.H. Nam, C.S. Tan, Y. Ding, J. Wu, Y. Lum, C.T. Dinh, D. Sinton, G. Zheng, E.H. Sargent, Enhanced nitrate-to-ammonia activity on copper-nickel alloys via tuning of intermediate adsorption, J. Am. Chem. Soc. 142 (12) (2020) 5702-5708. https://hdl.handle.net/1807/100180.

[89]

L. Fang, S. Wang, C. Song, X. Yang, Y. Li, H. Liu, Enhanced nitrate reduction reaction via efficient intermediate nitrite conversion on tunable CuxNiy/NC electrocatalysts, J. Hazard Mater. 421 (2022) 126628, https://doi.org/10.1016/j.jhazmat.2021.126628.

[90]

J.Y. Fang, Q.Z. Zheng, Y.Y. Lou, K.M. Zhao, S.N. Hu, G. Li, O. Akdim, X.Y. Huang, S.G. Sun, Ampere-level current density ammonia electrochemical synthesis using CuCo nanosheets simulating nitrite reductase bifunctional nature, Nat. Commun. 13 (1) (2022) 7899, https://doi.org/10.6084/m9.figshare.21671075.

[91]

H. Liu, X. Lang, C. Zhu, J. Timoshenko, M. Ruscher, L. Bai, N. Guijarro, H. Yin, Y. Peng, J. Li, Z. Liu, W. Wang, B.R. Cuenya, J. Luo, Efficient electrochemical nitrate reduction to ammonia with copper-supported rhodium cluster and single-atom catalysts, Angew. Chem. Int. Ed. 61 (23) (2022) e202202556, https://doi.org/10.1002/anie.202202556.

[92]

A. Herzog, A. Bergmann, H.S. Jeon, J. Timoshenko, S. Kühl, C. Rettenmaier, M. Lopez Luna, F.T. Haase, B. Roldan Cuenya, Operando investigation of Ag-decorated Cu2O nanocube catalysts with enhanced CO2 electroreduction toward liquid products, Angew. Chem. Int. Ed. 60 (13) (2021) 7426-7435, https://doi.org/10.1002/anie.202017070.

[93]

T. Wang, X. Zhang, X. Zhu, Q. Liu, S. Lu, A.M. Asiri, Y. Luo, X. Sun, Hierarchical CuO@ZnCo LDH heterostructured nanowire arrays toward enhanced water oxidation electrocatalysis, Nanoscale 12 (9) (2020) 5359-5362, https://doi.org/10.1039/d0nr00752h.

[94]

Y. Cao, T. Wang, X. Li, L. Zhang, Y. Luo, F. Zhang, A.M. Asiri, J. Hu, Q. Liu, X. Sun, A hierarchical CuO@NiCo layered double hydroxide core–shell nanoarray as an efficient electrocatalyst for the oxygen evolution reaction, Inorg. Chem. Front. 8 (12) (2021) 3049-3054, https://doi.org/10.1039/d1qi00124h.

[95]

W. Liu, P. Zhai, A. Li, B. Wei, K. Si, Y. Wei, X. Wang, G. Zhu, Q. Chen, X. Gu, R. Zhang, W. Zhou, Y. Gong, Electrochemical CO2 reduction to ethylene by ultrathin CuO nanoplate arrays, Nat. Commun. 13 (1) (2022) 1877, https://doi.org/10.1038/s41467-022-29428-9.

[96]

S. Qiao, Y. Chen, Y. Tang, J. Yuan, J. Shen, D. Zhang, Y. Du, Z. Li, D. Yuan, H. Tang, C. Liu, Oxygen vacancy–rich Cu2O@Cu with a hydrophobic microenvironment for highly selective C C coupling to generate C2H4, Chem. Eng. J. 454 (2023) 140321, https://doi.org/10.1016/j.cej.2022.140321.

[97]

Y. Wang, W. Zhou, R. Jia, Y. Yu, B. Zhang, Unveiling the activity origin of a copper-based electrocatalyst for selective nitrate reduction to ammonia, Angew. Chem., Int. Ed. Engl. 59 (13) (2020) 5350-5354, https://doi.org/10.1002/anie.201915992.

[98]

J. Zhao, Z. Shen, J. Yu, Y. Guo, M.A. Mushtaq, Y. Ding, Z. Song, W. Zhang, X. Huang, Y. Li, D. Liu, X. Cai, Constructing Cu-CuO heterostructured skin on Cu cubes to promote electrocatalytic ammonia production from nitrate wastewater, J. Hazard Mater. 439 (2022) 129653, https://doi.org/10.1016/j.jhazmat.2022.129653.

[99]

X. Li, X. Zhao, J. Lv, X. Jia, S. Zhou, Y. Huang, F. Chang, H. Zhang, G. Hu, Self-supported porous copper oxide nanosheet arrays for efficient and selective electrochemical conversion of nitrate ions to nitrogen gas, J. Mater. Sci. Technol. 137 (2023) 104-111, https://doi.org/10.1016/j.jmst.2022.06.054.

[100]

M. Jiang, Q. Zhu, X. Song, Y. Gu, P. Zhang, C. Li, J. Cui, J. Ma, Z. Tie, Z. Jin, Batch-scale synthesis of nanoparticle-agminated three-dimensional porous Cu@Cu2O microspheres for highly selective electrocatalysis of nitrate to ammonia, Environ. Sci. Technol. 56 (14) (2022) 10299-10307, https://doi.org/10.1021/acs.est.2c01057.

[101]

W. Fu, Z. Hu, Y. Zheng, P. Su, Q. Zhang, Y. Jiao, M. Zhou, Tuning mobility of intermediate and electron transfer to enhance electrochemical reduction of nitrate to ammonia on Cu2O/Cu interface, Chem. Eng. J. 433 (2022) 133680, https://doi.org/10.1016/j.cej.2021.133680.

[102]

Q. Zhao, J.M.P. Martirez, E.A. Carter, Electrochemical hydrogenation of CO on Cu(100): insights from accurate multiconfigurational wavefunction methods, J. Phys. Chem. Lett. 13 (44) (2022) 10282-10290, https://doi.org/10.1021/acs.jpclett.2c02444.

[103]

T. Peng, N. Zhang, Y. Yang, M.J. Zhang, R.J. Luo, C. Chen, Y. Lu, Y.S. Luo, Crystal facet engineering of MXene-derived TiN nanoflakes as efficient bidirectional electrocatalyst for advanced lithium-sulfur batteries, Small 18 (38) (2022) 2202917, https://doi.org/10.1002/smll.202202917.

[104]

Y.S. Zhang, A.P. Jia, Z.R. Li, Z.X. Yuan, W.X. Huang, Titania-morphology-dependent Pt-TiO2 interfacial catalysis in water-gas shift reaction, ACS Catal. 13 (1) (2023) 392-399, https://doi.org/10.1021/acscatal.2c04046.

[105]

Y. Zhao, X.G. Zhang, N. Bodappa, W.M. Yang, Q. Liang, P.M. Radjenovica, Y.H. Wang, Y.J. Zhang, J.C. Dong, Z.Q. Tian, J.F. Li, Elucidating electrochemical CO2 reduction reaction processes on Cu(hkl) single-crystal surfaces by in situ Raman spectroscopy, Energy Environ. Sci. 15 (9) (2022) 3968-3977, https://doi.org/10.1039/d2ee01334g.

[106]

Q. Zhao, Z. Tang, B. Chen, C. Zhu, H. Tang, G. Meng, Efficient electrocatalytic reduction of nitrate to nitrogen gas by a cubic Cu2O film with predominant (111) orientation, Chem. Commun. 58 (22) (2022) 3613-3616, https://doi.org/10.1039/d1cc07299d.

[107]

W. Zhong, Z. Gong, Z. He, N. Zhang, X. Kang, X. Mao, Y. Chen, Modulating surface oxygen species via facet engineering for efficient conversion of nitrate to ammonia, J. Energy Chem. 78 (2023) 211-221, https://doi.org/10.1016/j.jechem.2022.11.024.

[108]

J. Qin, L. Chen, K. Wu, X. Wang, Q. Zhao, L. Li, B. Liu, Z. Ye, Electrochemical synthesis of ammonium from nitrates via surface engineering in Cu2O(100) facets, ACS Appl. Energy Mater. 5 (1) (2021) 71-76, https://doi.org/10.1021/acsaem.1c02319.

[109]

T. Feng, J. Wang, Y. Wang, C. Yu, X. Zhou, B. Xu, K. László, F. Li, W. Zhang, Selective electrocatalytic reduction of nitrate to dinitrogen by Cu2O nanowires with mixed oxidation-state, Chem. Eng. J. 433 (2022) 133495, https://doi.org/10.1016/j.cej.2021.133495.

[110]

R. Yang, H. Li, J. Long, H. Jing, X. Fu, J. Xiao, Potential dependence of ammonia selectivity of electrochemical nitrate reduction on copper oxide, ACS Sustain. Chem. Eng. 10 (43) (2022) 14343-14350, https://doi.org/10.1021/acssuschemeng.2c04847.

[111]

J. Zhou, F. Pan, Q. Yao, Y. Zhu, H. Ma, J. Niu, J. Xie, Achieving efficient and stable electrochemical nitrate removal by in-situ reconstruction of Cu2O/Cu electroactive nanocatalysts on Cu foam, Appl. Catal. B Environ. 317 (2022) 121811, https://doi.org/10.1016/j.apcatb.2022.121811.

[112]

Y.C. Sun, C.Y. Sun, Z.X. Chen, P. Wang, H.T. Wang, M.Z. Yao, S. Wu, P. Xu, Morphology control of Cu and Cu2O through electrodeposition on conducting polymer electrodes, Inorg. Chem. Front. 8 (6) (2021) 1449-1454, https://doi.org/10.1039/d0qi01367f.

[113]

S. Rahdar, K. Pal, L. Mohammadi, A. Rahdar, Y. Goharniya, S. Samani, G.Z. Kyzas, Response surface methodology for the removal of nitrate ions by adsorption onto copper oxide nanoparticles, J. Mol. Struct. 1231 (2021) 129686, https://doi.org/10.1016/j.molstruc.2020.129686.

[114]

J. Zhang, J.H. Ma, J. Bai, D. Yang, M. Zhang, Z. Yang, L. Fan, X.L. Chen, R.G. Guan, A facile template-assisted electrodeposition approach to porous Cu/Cu2O nanowires, RSC Adv. 11 (48) (2021) 30215-30221, https://doi.org/10.1039/d1ra04770a.

[115]

M. Sun, G. Wu, L. Dai, M. Oschatz, Q. Qin, A self-supported copper/copper oxide heterostructure derived from a copper-MOF for improved electrochemical nitrate reduction, Catal. Sci. Technol. 12 (21) (2022) 6572-6580, https://doi.org/10.1039/d2cy01427k.

[116]

C. Wang, F. Ye, J. Shen, K.H. Xue, Y. Zhu, C. Li, In situ loading of Cu2O active sites on island-like copper for efficient electrochemical reduction of nitrate to ammonia, ACS Appl. Mater. Interfaces 14 (5) (2022) 6680-6688, https://doi.org/10.1021/acsami.1c21691.

[117]

T. Ren, K. Ren, M. Wang, M. Liu, Z. Wang, H. Wang, X. Li, L. Wang, Y. Xu, Concave-convex surface oxide layers over copper nanowires boost electrochemical nitrate-to-ammonia conversion, Chem. Eng. J. 426 (2021) 130759, https://doi.org/10.1016/j.cej.2021.130759.

[118]

Z. Niu, S. Fan, X. Li, P. Wang, M.O. Tadé, S. Liu, Optimizing oxidation state of octahedral copper for boosting electroreduction nitrate to ammonia, ACS Appl. Energy Mater. 5 (3) (2022) 3339-3345, https://doi.org/10.1021/acsaem.1c03969.

[119]

F. Du, G.-H. Cui, B.-L. Yang, D.-S. Zhang, R.-F. Song, Z.-X. Li, Ingenious design of one mixed-valence dual-net copper metal-organic framework for deriving Cu2O/CuO heterojunction with highly electrocatalytic performances from NO3 to NH3, J. Power Sources 543 (2022) 231832, https://doi.org/10.1016/j.jpowsour.2022.231832.

[120]

Y. Xu, Y. Wen, T. Ren, H. Yu, K. Deng, Z. Wang, X. Li, L. Wang, H. Wang, Engineering the surface chemical microenvironment over CuO nanowire arrays by polyaniline modification for efficient ammonia electrosynthesis from nitrate, Appl. Catal. B Environ. 320 (2023) 121981, https://doi.org/10.1016/j.apcatb.2022.121981.

[121]

J. Gao, Q. Ma, J. Young, J.C. Crittenden, W. Zhang, Decoupling electron- and phase-transfer processes to enhance electrochemical nitrate-to-ammonia conversion by blending hydrophobic PTFE nanoparticles within the electrocatalyst layer, Adv. Energy Mater. 13 (9) (2023) 2203891, https://doi.org/10.1002/aenm.202203891.

[122]

Z. Li, L. Wang, Y. Cai, J.-R. Zhang, W. Zhu, Electrochemically reconstructed copper-polypyrrole nanofiber network for remediating nitrate-containing water at neutral pH, J. Hazard Mater. 440 (2022) 129828, https://doi.org/10.1016/j.jhazmat.2022.129828.

[123]

C.H. Chung, F.Y. Tu, T.A. Chiu, T.T. Wu, W.Y. Yu, Critical roles of surface oxygen vacancy in heterogeneous catalysis over ceria-based materials: a selected review, Chem. Lett. 50 (5) (2021) 856-865, https://doi.org/10.1246/cl.200845.

[124]

T.T. Jiang, W.W. Xie, S.P. Geng, R.C. Li, S.Q. Song, Y. Wang, Constructing oxygen vacancy-regulated cobalt molybdate nanoflakes for efficient oxygen evolution reaction catalysis, Chin. J. Catal. 43 (9) (2022) 2434-2442, https://doi.org/10.1016/s1872-2067(22)64137-8.

[125]

K.Y. Zhu, F. Shi, X.F. Zhu, W.S. Yang, The roles of oxygen vacancies in electrocatalytic oxygen evolution reaction, Nano Energy 73 (2020) 104761, https://doi.org/10.1016/j.nanoen.2020.104761.

[126]

P.L. Wang, X.Y. Li, S.Y. Fan, X. Chen, M.C. Qin, D. Long, M.O. Tad, S.M. Liu, Impact of oxygen vacancy occupancy on piezo-catalytic activity of BaTiO3 nanobelt, Appl. Catal. B Environ. 279 (2020) 119340, https://doi.org/10.1016/j.apcatb.2020.119340.

[127]

Z. Gong, W. Zhong, Z. He, Q. Liu, H. Chen, D. Zhou, N. Zhang, X. Kang, Y. Chen, Regulating surface oxygen species on copper (I) oxides via plasma treatment for effective reduction of nitrate to ammonia, Appl. Catal. B Environ. 305 (2022) 121021, https://doi.org/10.1016/j.apcatb.2021.121021.

[128]

R. Daiyan, T. Tran-Phu, P. Kumar, K. Iputera, Z. Tong, J. Leverett, M.H.A. Khan, A. Asghar Esmailpour, A. Jalili, M. Lim, A. Tricoli, R.-S. Liu, X. Lu, E. Lovell, R. Amal, Nitrate reduction to ammonium: from CuO defect engineering to waste NOx-to-NH3 economic feasibility, Energy Environ. Sci. 14 (6) (2021) 3588-3598, https://doi.org/10.1039/d1ee00594d.

[129]

X.H. Wang, Z.M. Wang, Q.L. Hong, Z.N. Zhang, F. Shi, D.S. Li, S.N. Li, Y. Chen, Oxygen-vacancy-rich Cu2O hollow nanocubes for nitrate electroreduction reaction to ammonia in a neutral electrolyte, Inorg. Chem. 61 (39) (2022) 15678-15685, https://doi.org/10.1021/acs.inorgchem.2c02716.

[130]

H. Wang, Y. Guo, C. Li, H. Yu, K. Deng, Z. Wang, X. Li, Y. Xu, L. Wang, Cu/CuO(x) in-plane heterostructured nanosheet arrays with rich oxygen vacancies enhance nitrate electroreduction to ammonia, ACS Appl. Mater. Interfaces 14 (30) (2022) 34761-34769, https://doi.org/10.1021/acsami.2c08534.

[131]

J. Geng, S. Ji, H. Xu, C. Zhao, S. Zhang, H. Zhang, Electrochemical reduction of nitrate to ammonia in a fluidized electrocatalysis system with oxygen vacancy-rich CuOx nanoparticles, Inorg. Chem. Front. 8 (24) (2021) 5209-5213, https://doi.org/10.1039/d1qi01062j.

[132]

Y. Xu, Y. Sheng, M. Wang, T. Ren, K. Shi, Z. Wang, X. Li, L. Wang, H. Wang, Interface coupling induced built-in electric fields boost electrochemical nitrate reduction to ammonia over CuO@MnO2 core–shell hierarchical nanoarrays, J. Mater. Chem. A 10 (32) (2022) 16883-16890, https://doi.org/10.1039/d2ta02006h.

[133]

H. Liu, J. Li, F. Du, L. Yang, S. Huang, J. Gao, C. Li, C. Guo, A core–shell copper oxides-cobalt oxides heterostructure nanowire arrays for nitrate reduction to ammonia with high yield rate, Green Energy Environ. 8 (6) (2022) 1619-1629, https://doi.org/10.1016/j.gee.2022.03.003.

[134]

X. Fan, C. Liu, Z. Li, Z. Cai, L. Ouyang, Z. Li, X. He, Y. Luo, D. Zheng, S. Sun, Y. Wang, B. Ying, Q. Liu, A. Farouk, M.S. Hamdy, F. Gong, X. Sun, Y. Zheng, Pd-Doped Co3O4 nanoarray for efficient eight-electron nitrate electrocatalytic reduction to ammonia synthesis, Small 19 (42) (2023) 2303424, https://doi.org/10.1002/smll.202303424.

[135]

N.C. Kani, N.H.L. Nguyen, K. Markel, R.R. Bhawnani, B. Shindel, K. Sharma, S. Kim, V.P. Dravid, V. Berry, J.A. Gauthier, M.R. Singh, Electrochemical reduction of nitrates on CoO nanoclusters-functionalized graphene with highest mass activity and nearly 100% selectivity to ammonia, Adv. Energy Mater. 13 (2023) 2204236, https://doi.org/10.1002/aenm.202204236.

[136]

X. Xu, L. Hu, Z.R. Li, L.S. Xie, S.J. Sun, L.C. Zhang, J. Li, Y.S. Luo, X.D. Yan, M.S. Hamdy, Q.Q. Kong, X.P. Sun, Q. Liu, Oxygen vacancies in Co3O4 nanoarrays promote nitrate electroreduction for ammonia synthesis, Sustain. Energy Fuels 6 (18) (2022) 4130-4136, https://doi.org/10.1039/D2SE00830K.

[137]

W. Qiu, X. Chen, Y. Liu, D. Xiao, P. Wang, R. Li, K. Liu, Z. Jin, P. Li, Confining intermediates within a catalytic nanoreactor facilitates nitrate-to-ammonia electrosynthesis, Appl. Catal. B Environ. 315 (2022) 121548, https://doi.org/10.1016/j.apcatb.2022.121548.

[138]

M. Yang, J. Wang, C. Shuang, A. Li, The improvement on total nitrogen removal in nitrate reduction by using a prepared CuO-Co3O4/Ti cathode, Chemosphere 255 (2020) 126970, https://doi.org/10.1016/j.chemosphere.2020.126970.

[139]

Z. Niu, S. Fan, X. Li, P. Wang, Z. Liu, J. Wang, C. Bai, D. Zhang, Bifunctional copper-cobalt spinel electrocatalysts for efficient tandem-like nitrate reduction to ammonia, Chem. Eng. J. 450 (2022) 138343, https://doi.org/10.1016/j.cej.2022.138343.

[140]

Y. Li, J. Ma, Z. Wu, Z. Wang, Direct electron transfer coordinated by oxygen vacancies boosts selective nitrate reduction to N2 on a Co-CuO(x) electroactive filter, Environ. Sci. Technol. 56 (12) (2022) 8673-8681, https://doi.org/10.1021/acs.est.1c05841.

[141]

D. Jang, J. Maeng, J. Kim, H. Han, G.H. Park, J. Ha, D. Shin, Y.J. Hwang, W.B. Kim, Boosting electrocatalytic nitrate reduction reaction for ammonia synthesis by plasma-induced oxygen vacancies over MnCuOx, Appl. Surf. Sci. 610 (2023) 155521, https://doi.org/10.1016/j.apsusc.2022.155521.

[142]

H. Zhu, S. Dong, X. Du, H. Du, J. Xia, Q. Liu, Y. Luo, H. Guo, T. Li, Defective CuO-rich CuFe2O4 nanofibers enable the efficient synergistic electrochemical reduction of nitrate to ammonia, Catal. Sci. Technol. 12 (16) (2022) 4998-5002, https://doi.org/10.1039/d2cy00910b.

[143]

J. Xia, H. Du, S. Dong, Y. Luo, Q. Liu, J.S. Chen, H. Guo, T. Li, Heterogenous Cu@ZrO(2) nanofibers enable efficient electrocatalytic nitrate reduction to ammonia under ambient conditions, Chem. Commun. 58 (99) (2022) 13811-13814, https://doi.org/10.1039/d2cc05331d.

[144]

M.A. Akram, B. Zhu, J. Cai, S. Qin, X. Hou, P. Jin, F. Wang, Y. He, X. Li, L. Feng, Hierarchical nanospheres with polycrystalline Ir&Cu and amorphous Cu(2) O toward energy-efficient nitrate electrolysis to ammonia, Small 19 (15) (2023) e2206966, https://doi.org/10.1002/smll.202206966.

[145]

M. Chen, X. Huang, N. Wang, T. Wang, J. Yang, Y. Wei, X. Dao, L. Zhou, H. Hao, Cu2O nanoparticles modified BiO2-x nanosheets for efficient electrochemical reduction of nitrate-N and nitrobenzene from wastewater, Sep. Purif. Technol. 289 (2022) 120728, https://doi.org/10.1016/j.seppur.2022.120728.

[146]

Y. Xu, K.L. Ren, T.L. Ren, M.Z. Wang, Z.Q. Wang, X.N. Li, L. Wang, H.J. Wang, Ultralow-content Pd in-situ incorporation mediated hierarchical defects in corner-etched Cu2O octahedra for enhanced electrocatalytic nitrate reduction to ammonia, Appl. Catal. B Environ. 306 (2022) 121094, https://doi.org/10.1016/j.apcatb.2022.121094.

[147]

Z. Du, K. Yang, H. Du, B. Li, K. Wang, S. He, T. Wang, W. Ai, Facile and scalable synthesis of self-supported Zn-doped CuO nanosheet arrays for efficient nitrate reduction to ammonium, ACS Appl. Mater. Interfaces 15 (4) (2023) 5172-5179, https://doi.org/10.1021/acsami.2c19011.

[148]

Z. Gong, W. Zhong, Z. He, C. Jia, D. Zhou, N. Zhang, X. Kang, Y. Chen, Improving electrochemical nitrate reduction activity of layered perovskite oxide La2CuO4 via B-site doping, Catal. Today 402 (2022) 259-265, https://doi.org/10.1016/j.cattod.2022.04.019.

[149]

L. Yang, J. Li, F. Du, J. Gao, H. Liu, S. Huang, H. Zhang, C. Li, C. Guo, Interface engineering cerium-doped copper nanocrystal for efficient electrochemical nitrate-to-ammonia production, Electrochim. Acta 411 (2022) 140095, https://doi.org/10.1016/j.electacta.2022.140095.

[150]

D. Zhang, B. Wang, X. Gong, Z. Yang, Y. Liu, Selective reduction of nitrate to nitrogen gas by novel Cu2O-Cu0@Fe0 composite combined with HCOOH under UV radiation, Chem. Eng. J. 359 (2019) 1195-1204, https://doi.org/10.1016/j.cej.2018.11.058.

[151]

J. Cai, S. Qin, M.A. Akram, X. Hou, P. Jin, F. Wang, B. Zhu, X. Li, L. Feng, In situ reconstruction enhanced dual-site catalysis towards nitrate electroreduction to ammonia, J. Mater. Chem. A 10 (23) (2022) 12669-12678, https://doi.org/10.1039/d2ta01772e.

[152]

T. Ren, Z. Yu, H. Yu, K. Deng, Z. Wang, X. Li, H. Wang, L. Wang, Y. Xu, Interfacial polarization in metal-organic framework reconstructed Cu/Pd/CuOx multi-phase heterostructures for electrocatalytic nitrate reduction to ammonia, Appl. Catal. B Environ. 318 (2022) 121805, https://doi.org/10.1016/j.apcatb.2022.121805.

[153]

J. Zhang, W. He, T. Quast, J.R.C. Junqueira, S. Saddeler, S. Schulz, W. Schuhmann, Single-entity electrochemistry unveils dynamic transformation during tandem catalysis of Cu2O and Co3O4 for converting NO3- to NH3, Angew. Chem., Int. Ed. Engl. 62 (8) (2023) e202214830, https://doi.org/10.1002/anie.202214830.

[154]

H. Yin, Z. Chen, S. Xiong, J. Chen, C. Wang, R. Wang, Y. Kuwahara, J. Luo, H. Yamashita, Y. Peng, J. Li, Alloying effect-induced electron polarization drives nitrate electroreduction to ammonia, Chem Catal. 1 (5) (2021) 1088-1103, https://doi.org/10.1016/j.checat.2021.08.014.

[155]

H. Yin, X. Zhao, S. Xiong, Y. Peng, Z. Chen, R. Wang, M. Wen, J. Luo, H. Yamashita, J. Li, New insight on electroreduction of nitrate to ammonia driven by oxygen vacancies-induced strong interface interactions, J. Catal. 406 (2022) 39-47, https://doi.org/10.1016/j.jcat.2021.12.031.

[156]

J. Wang, S. Wang, Z. Zhang, C. Wang, Preparation of Cu/GO/Ti electrode by electrodeposition and its enhanced electrochemical reduction for aqueous nitrate, J. Environ. Manag. 276 (2020) 111357, https://doi.org/10.1016/j.jenvman.2020.111357.

[157]

Y.N. Gong, C.Y. Cao, W.J. Shi, J.H. Zhang, J.H. Deng, T.B. Lu, D.C. Zhong, Modulating the electronic structures of dual-atom catalysts via coordination environment engineering for boosting CO2 electroreduction, Angew. Chem. Int. Ed. 61 (51) (2022) e202215187, https://doi.org/10.1002/anie.202215187.

[158]

Y. Yao, L. Zhao, J. Dai, J. Wang, C. Fang, G. Zhan, Q. Zheng, W. Hou, L. Zhang, Single atom Ru monolithic electrode for efficient chlorine evolution and nitrate reduction, Angew. Chem. Int. Ed. 61 (41) (2022) e202208215, https://doi.org/10.1002/anie.202208215.

[159]

N. Zhang, G. Zhang, P. Shen, H. Zhang, D. Ma, K. Chu, Lewis acid Fe-V pairs promote nitrate electroreduction to ammonia, Adv. Funct. Mater. 33 (2023) 2211537, https://doi.org/10.1002/adfm.202211537.

[160]

Y. Zhang, H. Zheng, K. Zhou, J. Ye, K. Chu, Z. Zhou, L. Zhang, T. Liu, Conjugated coordination polymer as a new platform for efficient and selective electroreduction of nitrate into ammonia, Adv. Mater. 35 (2023) 2209855, https://doi.org/10.1002/adma.202209855.

[161]

Y. Chen, S. Ji, C. Chen, Q. Peng, D. Wang, Y. Li, Single-atom catalysts: synthetic strategies and electrochemical applications, Joule 2 (7) (2018) 1242-1264, https://doi.org/10.1016/j.joule.2018.06.019.

[162]

P. Yin, T. Yao, Y. Wu, L. Zheng, Y. Lin, W. Liu, H. Ju, J. Zhu, X. Hong, Z. Deng, G. Zhou, S. Wei, Y. Li, Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts, Angew. Chem. Int. Ed. 55 (36) (2016) 10800-10805, https://doi.org/10.1002/anie.201604802.

[163]

X. Li, X. Yang, Y. Huang, T. Zhang, B. Liu, Supported noble-metal single atoms for heterogeneous catalysis, Adv. Mater. 31 (50) (2019) e1902031, https://doi.org/10.1002/adma.201902031.

[164]

X.F. Yang, A.Q. Wang, B.T. Qiao, J. Li, J.Y. Liu, T. Zhang, Single-atom catalysts: a new frontier in heterogeneous catalysis, Acc. Chem. Res. 46 (8) (2013) 1740-1748, https://doi.org/10.1021/ar300361m.

[165]

Z. Li, Z. Zhuang, F. Lv, H. Zhu, L. Zhou, M. Luo, J. Zhu, Z. Lang, S. Feng, W. Chen, L. Mai, S. Guo, The marriage of the FeN4 moiety and MXene boosts oxygen reduction catalysis: Fe 3d electron delocalization matters, Adv. Mater. 30 (43) (2018) 1803220, https://doi.org/10.1002/adma.201803220.

[166]

O. Yadorao Bisen, A. Kumar Yadav, B. Pavithra, K. Kar Nanda, Electronic structure modulation of molybdenum-iron double-atom catalyst for bifunctional oxygen electrochemistry, Chem. Eng. J. 449 (2022) 1377705, https://doi.org/10.1016/j.cej.2022.137705.

[167]

H. Liu, L. Jiang, J. Khan, X. Wang, J. Xiao, H. Zhang, H. Xie, L. Li, S. Wang, L. Han, Decorating single-atomic Mn sites with FeMn clusters to boost oxygen reduction reaction, Angew. Chem. Int. Ed. 62 (3) (2023) e202214988, https://doi.org/10.1002/anie.202214988.

[168]

Z. Luo, Y. Ouyang, H. Zhang, M. Xiao, J. Ge, Z. Jiang, J. Wang, D. Tang, X. Cao, C. Liu, W. Xing, Chemically activating MoS2 via spontaneous atomic palladium interfacial doping towards efficient hydrogen evolution, Nat. Commun. 9 (1) (2018) 2120, https://doi.org/10.1038/s41467-018-04501-4.

[169]

J. Yang, B. Chen, X. Liu, W. Liu, Z. Li, J. Dong, W. Chen, W. Yan, T. Yao, X. Duan, Y. Wu, Y. Li, Efficient and robust hydrogen evolution: phosphorus nitride imide nanotubes as supports for anchoring single ruthenium sites, Angew. Chem. Int. Ed. 57 (30) (2018) 9495-9500, https://doi.org/10.1002/anie.201804854.

[170]

S.M. Younan, Z. Li, X. Yan, D. He, W. Hu, N. Demetrashvili, G. Trulson, A. Washington, X. Xiao, X. Pan, J. Huang, J. Gu, Zinc single atom confinement effects on catalysis in 1T-phase molybdenum disulfide, ACS Nano 17 (2) (2023) 1414-1426, https://doi.org/10.1021/acsnano.2c09918.

[171]

S. Ji, Y. Qu, T. Wang, Y. Chen, G. Wang, X. Li, J. Dong, Q. Chen, W. Zhang, Z. Zhang, S. Liang, R. Yu, Y. Wang, D. Wang, Y. Li, Rare-earth single erbium atoms for enhanced photocatalytic CO2 reduction, Angew. Chem. Int. Ed. 59 (26) (2020) 10651-10657, https://doi.org/10.1002/anie.202003623.

[172]

C. Zhao, X. Dai, T. Yao, W. Chen, X. Wang, J. Wang, J. Yang, S. Wei, Y. Wu, Y. Li, Ionic exchange of metal-organic frameworks to access single nickel sites for efficient electroreduction of CO2, J. Am. Chem. Soc. 139 (24) (2017) 8078-8081, https://doi.org/10.1021/jacs.7b02736.

[173]

S. Back, J. Lim, N.-Y. Kim, Y.-H. Kim, Y. Jung, Single-atom catalysts for CO2 electroreduction with significant activity and selectivity improvements, Chem. Sci. 8 (2) (2017) 1090-1096, https://doi.org/10.1039/c6sc03911a.

[174]

Z. Jiang, W. Sun, H. Shang, W. Chen, T. Sun, H. Li, J. Dong, J. Zhou, Z. Li, Y. Wang, R. Cao, R. Sarangi, Z. Yang, D. Wang, J. Zhang, Y. Li, Atomic interface effect of a single atom copper catalyst for enhanced oxygen reduction reactions, Energy Environ. Sci. 12 (12) (2019) 3508-3514, https://doi.org/10.1039/c9ee02974e.

[175]

H. Shang, X. Zhou, J. Dong, A. Li, X. Zhao, Q. Liu, Y. Lin, J. Pei, Z. Li, Z. Jiang, D. Zhou, L. Zheng, Y. Wang, J. Zhou, Z. Yang, R. Cao, R. Sarangi, T. Sun, X. Yang, X. Zheng, W. Yan, Z. Zhuang, J. Li, W. Chen, D. Wang, J. Zhang, Y. Li, Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity, Nat. Commun. 11 (1) (2020) 3049, https://doi.org/10.1038/s41467-020-16848-8.

[176]

J. Wang, K. Li, R. Xu, S. Li, Y. Li, M. Xia, J.S. Tse, Z. Wu, Rational design of the first and second coordination spheres for copper single-atom catalyst to boost highly efficient oxygen reduction, Appl. Surf. Sci. 605 (2022) 154832, https://doi.org/10.1016/j.apsusc.2022.154832.

[177]

L. Zong, K. Fan, W. Wu, L. Cui, L. Zhang, B. Johannessen, D. Qi, H. Yin, Y. Wang, P. Liu, L. Wang, H. Zhao, Anchoring single copper atoms to microporous carbon spheres as high-performance electrocatalyst for oxygen reduction reaction, Adv. Funct. Mater. 31 (41) (2021) 2104864, https://doi.org/10.1002/adfm.202104864.

[178]

J. Jiao, R. Lin, S. Liu, W.C. Cheong, C. Zhang, Z. Chen, Y. Pan, J. Tang, K. Wu, S.F. Hung, H.M. Chen, L. Zheng, Q. Lu, X. Yang, B. Xu, H. Xiao, J. Li, D. Wang, Q. Peng, C. Chen, Y. Li, Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2, Nat. Chem. 11 (3) (2019) 222-228, https://doi.org/10.1038/s41557-018-0201-x.

[179]

H. Chen, C. Zhang, L. Sheng, M. Wang, W. Fu, S. Gao, Z. Zhang, S. Chen, R. Si, L. Wang, B. Yang, Copper single-atom catalyst as a high-performance electrocatalyst for nitrate-ammonium conversion, J. Hazard Mater. 434 (2022) 128892, https://doi.org/10.1016/j.jhazmat.2022.128892.

[180]

J. Cheng, W. Sun, G. Dai, X. Yang, R. Xia, Y. Xu, X. Yang, W. Tu, Electroreduction of nitrate to ammonia on atomically-dispersed Cu-N4 active sites with high efficiency and stability, Fuel 332 (2023) 126106, https://doi.org/10.1016/j.fuel.2022.126106.

[181]

M. Xu, Q. Xie, D. Duan, Y. Zhang, Y. Zhou, H. Zhou, X. Li, Y. Wang, P. Gao, W. Ye, Atomically dispersed Cu sites on dual-mesoporous N-doped carbon for efficient ammonia electrosynthesis from nitrate, ChemSusChem 15 (11) (2022) e202200231, https://doi.org/10.1002/cssc.202200231.

[182]

Z. Gao, Y. Lai, Y. Tao, L. Xiao, L. Zhang, F. Luo, Constructing well-defined and robust Th-MOF-Supported single-site copper for production and storage of ammonia from electroreduction of nitrate, ACS Cent. Sci. 7 (6) (2021) 1066-1072, https://doi.org/10.1021/acscentsci.1c00370.

[183]

Y.-T. Xu, M.-Y. Xie, H. Zhong, Y. Cao, In situ clustering of single-atom copper precatalysts in a metal-organic framework for efficient electrocatalytic nitrate-to-ammonia reduction, ACS Catal. 12 (14) (2022) 8698-8706, https://doi.org/10.1021/acscatal.2c02033.

[184]

X. Lu, S. Gao, H. Lin, L. Yu, Y. Han, P. Zhu, W. Bao, H. Yao, Y. Chen, J. Shi, Bioinspired copper single-atom catalysts for tumor parallel catalytic therapy, Adv. Mater. 32 (2020) 2002246, https://doi.org/10.1002/adma.202002246.

[185]

J. Yang, H. Qi, A. Li, X. Liu, X. Yang, S. Zhang, Q. Zhao, Q. Jiang, Y. Su, L. Zhang, J.F. Li, Z.Q. Tian, W. Liu, A. Wang, T. Zhang, Potential-driven restructuring of Cu single atoms to nanoparticles for boosting the electrochemical reduction of nitrate to ammonia, J. Am. Chem. Soc. 144 (27) (2022) 12062-12071, https://doi.org/10.1021/jacs.2c02262.

[186]

G.-F. Chen, Y. Yuan, H. Jiang, S.-Y. Ren, L.-X. Ding, L. Ma, T. Wu, J. Lu, H. Wang, Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper–molecular solid catalyst, Nat. Energy 5 (8) (2020) 605-613, https://doi.org/10.1038/s41560-020-0654-1.

[187]

X.F. Cheng, J.H. He, H.Q. Ji, H.Y. Zhang, Q. Cao, W.J. Sun, C.L. Yan, J.M. Lu, Coordination symmetry breaking of single-atom catalysts for robust and efficient nitrate electroreduction to ammonia, Adv. Mater. 34 (36) (2022) 2205767, https://doi.org/10.1002/adma.202205767.

[188]

Y. Xue, Q. Yu, Q. Ma, Y. Chen, C. Zhang, W. Teng, J. Fan, W.X. Zhang, Electrocatalytic hydrogenation boosts reduction of nitrate to ammonia over single-atom Cu with Cu(Ⅰ)-N3C1 sites, Environ. Sci. Technol. 56 (20) (2022) 14797-14807, https://doi.org/10.1021/acs.est.2c04456.

[189]

T. Zhu, Q. Chen, P. Liao, W. Duan, S. Liang, Z. Yan, C. Feng, Single-atom Cu catalysts for enhanced electrocatalytic nitrate reduction with significant alleviation of nitrite production, Small 16 (49) (2020) 2004526, https://doi.org/10.1002/smll.202004526.

[190]

L. Han, Z. Ren, P. Ou, H. Cheng, N. Rui, L. Lin, X. Liu, L. Zhuo, J. Song, J. Sun, J. Luo, H.L. Xin, Modulating single-atom palladium sites with copper for enhanced ambient ammonia electrosynthesis, Angew. Chem., Int. Ed. Engl. 60 (1) (2021) 345-350, https://doi.org/10.1002/anie.202010159.

[191]

Y. Wang, H. Yin, F. Dong, X. Zhao, Y. Qu, L. Wang, Y. Peng, D. Wang, W. Fang, J. Li, N-coordinated Cu-Ni dual-single-atom catalyst for highly selective electrocatalytic reduction of nitrate to ammonia, Small 19 (2023) 2207695, https://doi.org/10.1002/smll.202207695.

[192]

H. Cheng, X. Wu, M. Feng, X. Li, G. Lei, Z. Fan, D. Pan, F. Cui, G. He, Atomically dispersed Ni/Cu dual sites for boosting the CO2 reduction reaction, ACS Catal. 11 (20) (2021) 12673-12681, https://doi.org/10.1021/acscatal.1c02319.

[193]

J. Hao, Z. Zhuang, J. Hao, C. Wang, S. Lu, F. Duan, F. Xu, M. Du, H. Zhu, Interatomic electronegativity offset dictates selectivity when catalyzing the CO2 reduction reaction, Adv. Energy Mater. 12 (26) (2022) 2200579, https://doi.org/10.1002/aenm.202200579.

[194]

J. Zhu, M. Xiao, D. Ren, R. Gao, X. Liu, Z. Zhang, D. Luo, W. Xing, D. Su, A. Yu, Z. Chen, Quasi-covalently coupled Ni–Cu atomic pair for synergistic electroreduction of CO2, J. Am. Chem. Soc. 144 (22) (2022) 9661-9671, https://doi.org/10.1021/jacs.2c00937.

[195]

X. Zhao, X. Jia, Y. He, H. Zhang, X. Zhou, H. Zhang, S. Zhang, Y. Dong, X. Hu, A.V. Kuklin, G.V. Baryshnikov, H. Ågren, G. Hu, Two-dimensional BCN matrix inlaid with single-atom-Cu driven electrochemical nitrate reduction reaction to achieve sustainable industrial-grade production of ammonia, Appl. Mater. Today 25 (2021) 101206, https://doi.org/10.1016/j.apmt.2021.101206.

[196]

X. Zhao, X. Li, H. Zhang, X. Chen, J. Xu, J. Yang, H. Zhang, G. Hu, Atomic-dispersed copper simultaneously achieve high-efficiency removal and high-value-added conversion to ammonia of nitrate in sewage, J. Hazard Mater. 424 (Pt A) (2022) 127319, https://doi.org/10.1016/j.jhazmat.2021.127319.

[197]

Z. Zheng, L. Qi, Y. Xue, Y. Li, Highly selective and durable of monodispersed metal atoms in ammonia production, Nano Today 43 (2022) 101431, https://doi.org/10.1016/j.nantod.2022.101431.

[198]

J. Leverett, T. Tran-Phu, J.A. Yuwono, P. Kumar, C. Kim, Q. Zhai, C. Han, J. Qu, J. Cairney, A.N. Simonov, R.K. Hocking, L. Dai, R. Daiyan, R. Amal, Tuning the coordination structure of Cu-N-C single atom catalysts for simultaneous electrochemical reduction of CO2 and NO3 to urea, Adv. Energy Mater. 12 (32) (2022) 2201500, https://doi.org/10.1002/aenm.202201500.

[199]

W. He, J. Zhang, S. Dieckhofer, S. Varhade, A.C. Brix, A. Lielpetere, S. Seisel, J.R.C. Junqueira, W. Schuhmann, Splicing the active phases of copper/cobalt-based catalysts achieves high-rate tandem electroreduction of nitrate to ammonia, Nat. Commun. 13 (1) (2022) 1129, https://doi.org/10.1038/s41467-022-28728-4.

[200]

F. Yao, M. Jia, Q. Yang, F. Chen, Y. Zhong, S. Chen, L. He, Z. Pi, K. Hou, D. Wang, X. Li, Highly selective electrochemical nitrate reduction using copper phosphide self-supported copper foam electrode: performance, mechanism, and application, Water Res. 193 (2021) 116881, https://doi.org/10.1016/j.watres.2021.116881.

[201]

W. Fu, Y. Du, J. Jing, C. Fu, M. Zhou, Highly selective nitrate reduction to ammonia on CoO/Cu foam via constructing interfacial electric field to tune adsorption of reactants, Appl. Catal. B Environ. 324 (2023) 122201, https://doi.org/10.1016/j.apcatb.2022.122201.

[202]

W.J. Sun, H.Q. Ji, L.X. Li, H.Y. Zhang, Z.K. Wang, J.H. He, J.M. Lu, Built-in electric field triggered interfacial accumulation effect for efficient nitrate removal at ultra-low concentration and electroreduction to ammonia, Angew. Chem. Int. Ed. 60 (42) (2021) 22933-22939, https://doi.org/10.1002/anie.202109785.

[203]

H. Yu, S. Qu, P.R. Chen, K.Q. Ou, J.Y. Lin, Z.H. Guo, L. Zheng, J.-K. Li, S. Huang, Y. Teng, L. Zou, J.-L. Song, CO2 bubble-assisted in-situ construction of mesoporous Co-doped Cu2(OH)2CO3 nanosheets as advanced electrodes towards fast and highly efficient electrochemical reduction of nitrate to N2 in wastewater, J. Hazard Mater. 430 (2022) 128351, https://doi.org/10.1016/j.jhazmat.2022.128351.

[204]

Q. Song, S. Zhang, X. Hou, J. Li, L. Yang, X. Liu, M. Li, Efficient electrocatalytic nitrate reduction via boosting oxygen vacancies of TiO(2) nanotube array by highly dispersed trace Cu doping, J. Hazard Mater. 438 (2022) 129455, https://doi.org/10.1016/j.jhazmat.2022.129455.

[205]

H. Li, X. Xu, X. Lin, S. Chen, M. He, F. Peng, F. Gao, Cooperative interaction between Cu and sulfur vacancies in SnS2 nanoflowers for highly efficient nitrate electroreduction to ammonia, J. Mater. Chem. A 11 (4) (2023) 2014-2022, https://doi.org/10.1039/D2TA08095H.

[206]

Z. Liu, F. Shen, L. Shi, Q. Tong, M. Tang, Y. Li, M. Peng, Z. Jiao, Y. Jiang, L. Ao, W. Fu, X. Lv, G. Jiang, L. Hou, Electronic structure optimization and proton-transfer enhancement on titanium oxide-supported copper nanoparticles for enhanced nitrogen recycling from nitrate-contaminated water, Environ. Sci. Technol. 57 (27) (2023) 10117-10126, https://doi.org/10.1021/acs.est.3c03431.

[207]

Y. Liu, M. Chen, X. Zhao, H. Zhang, Y. Zhao, Y. Zhou, Unlocking the potential of sub-nanometer-scale copper via confinement engineering: a remarkable approach for electrochemical nitrate-to-ammonia conversion in wastewater treatment, Chem. Eng. J. 475 (2023) 146176, https://doi.org/10.1016/j.cej.2023.146176.

[208]

B. Zhou, G. Zhan, Y. Yao, W. Zhang, S. Zhao, F. Quan, C. Fang, Y. Shi, Y. Huang, F. Jia, L. Zhang, Renewable energy driven electroreduction nitrate to ammonia and in-situ ammonia recovery via a flow-through coupled device, Water Res. 242 (2023) 120256, https://doi.org/10.1016/j.watres.2023.120256.

Environmental Science and Ecotechnology
Article number: 100383
Cite this article:
Wei J, Li Y, Lin H, et al. Copper-based electro-catalytic nitrate reduction to ammonia from water: Mechanism, preparation, and research directions. Environmental Science and Ecotechnology, 2024, 20: 100383. https://doi.org/10.1016/j.ese.2023.100383

124

Views

20

Crossref

24

Web of Science

27

Scopus

Altmetrics

Received: 17 August 2023
Revised: 21 December 2023
Accepted: 21 December 2023
Published: 28 December 2023
© 2023 The Authors. Chinese Society for Environmental Sciences, Harbin Institute of Technology, Chinese Research Academy of Environmental Sciences.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return