AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.8 MB)
Collect
AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Sensitivity analysis of Biome-BGCMuSo for gross and net primary productivity of typical forests in China

Hongge Rena,bLi ZhangaMin Yana( )Xin TiancXingbo Zhengd,e
Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, China
University of Chinese Academy of Sciences, Beijing, 100049, China
Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Beijing, 100091, China
Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
Research Station of Changbai Mountain Forest Ecosystems, Chinese Academy of Sciences, Antu, 133613, Jilin, China
Show Author Information

Abstract

Background

Process-based models are widely used to simulate forest productivity, but complex parameterization and calibration challenge the application and development of these models. Sensitivity analysis of numerous parameters is an essential step in model calibration and carbon flux simulation. However, parameters are not dependent on each other, and the results of sensitivity analysis usually vary due to different forest types and regions. Hence, global and representative sensitivity analysis would provide reliable information for simple calibration.

Methods

To determine the contributions of input parameters to gross primary productivity (GPP) and net primary productivity (NPP), regression analysis and extended Fourier amplitude sensitivity testing (EFAST) were conducted for Biome-BGCMuSo to calculate the sensitivity index of the parameters at four observation sites under climate gradient from ChinaFLUX.

Results

Generally, GPP and NPP were highly sensitive to C:Nleaf (C:N of leaves), Wint (canopy water interception coefficient), k (canopy light extinction coefficient), FLNR (fraction of leaf N in Rubisco), MRpern (coefficient of linear relationship between tissue N and maintenance respiration), VPDf (vapor pressure deficit complete conductance reduction), and SLA1 (canopy average specific leaf area in phenological phase 1) at all observation sites. Various sensitive parameters occurred at four observation sites within different climate zones. GPP and NPP were particularly sensitive to FLNR, SLA1 and Wint, and C:Nleaf in temperate, alpine and subtropical zones, respectively.

Conclusions

The results indicated that sensitivity parameters of China's forest ecosystems change with climate gradient. We found that parameter calibration should be performed according to plant functional type (PFT), and more attention needs to be paid to the differences in climate and environment. These findings contribute to determining the target parameters in field experiments and model calibration.

References

 

Baccini, A., Walker, W., Carvalho, L., Farina, M., Sulla-Menashe, D., Houghton, R.A., 2017. Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science 358, 230-234. https://doi.org/10.1126/science.aam5962

 

Bai, E., Li, W., Li, S., Sun, J., Peng, B., Dai, W., Jiang, P., Han, S., 2014. Pulse increase of soil N2O emission in response to N addition in a temperate forest on Mt Changbai, Northeast China. PLoS One 9, 1-9. https://doi.org/10.1371/journal.pone.0102765

 

Brienen, R.J.W., Caldwell, L., Duchesne, L., Voelker, S., Barichivich, J., Baliva, M., Ceccantini, G., Di Filippo, A., Helama, S., Locosselli, G.M., Lopez, L., Piovesan, G., Schongart, J., Villalba, R., Gloor, E., 2020. Forest carbon sink neutralized by pervasive growth-lifespan trade-offs. Nat. Commun. 11, 4241. https://doi.org/10.1038/s41467-020-17966-z

 

Chu, C., Lutz, J.A., Kral, K., Vrska, T., Yin, X., Myers, J.A., Abiem, I., Alonso, A., Bourg, N., Burslem, D.F.R.P., Cao, M., Chapman, H., Condit, R., Fang, S., Fischer, G.A., Gao, L., Hao, Z., Hau, B.C.H., He, Q., Hector, A., Hubbell, S.P., Jiang, M., Jin, G., Kenfack, D., Lai, J., Li, B., Li, X., Li, Y., Lian, J., Lin, L., Liu, Y., Liu, Y., Luo, Y., Ma, K., McShea, W., Memiaghe, H., Mi, X., Ni, M., O'Brien, M.J., de Oliveira, A.A., Orwig, D.A., Parker, G.G., Qiao, X., Ren, H., Reynolds, G., Sang, W., Shen, G., Su, Z., Sui, X., Sun, I-F., Tian, S., Wang, B., Wang, X., Wang, X., Wang, Y., Weiblen, G.D., Wen, S., Xi, N., Xiang, W., Xu, H., Xu, K., Ye, W., Zhang, B., Zhang, J., Zhang, X., Zhang, Y., Zhu, K., Zimmerman, J., Storch, D., Baltzer, J.L., Anderson-Teixeira, K.J., Mittelbach, G.G., He, F., 2018. Direct and indirect effects of climate on richness drive the latitudinal diversity gradient in forest trees. Ecol. Lett. 22, 245-255. https://doi.org/10.1111/ele.13175

 

Cook-Patton, S.C., Leavitt, S.M., Gibbs, D., Harris, N.L., Lister, K., Anderson-Teixeira, K.J., Briggs, R.D., Chazdon, R.L., Crowther, T.W., Ellis, P.W., Griscom, H.P., Herrmann, V., Holl, K.D., Houghton, R.A., Larrosa, C., Lomax, G., Lucas, R., Madsen, P., Malhi, Y., Paquette, A., Parker, J.D., Paul, K., Routh, D., Roxburgh, S., Saatchi, S., van den Hoogen, J., Walker, W.S., Wheeler, C.E., Wood, S.A., Xu, L., Griscom, B.W., 2020. Mapping carbon accumulation potential from global natural forest regrowth. Nature 585, 545-550. https://doi.org/10.1038/s41586-020-2686-x

 

Cox, P.M., Betts, R.A., Jones, C.D., Spall, S.A., Totterdell, I.J., 2000. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408, 184-187. https://doi.org/10.1038/35041539

 
DagonK.SandersonB.M.FisherR.A.LawrenceD.M.A machine learning approach to emulation and biophysical parameter estimation with the Community Land Model, version 5Adv. Stat. Clim. Meteorol. Oceanogr.2020622324410.5194/ascmo-6-223-2020

Dagon, K., Sanderson, B.M., Fisher, R.A., Lawrence, D.M., 2020. A machine learning approach to emulation and biophysical parameter estimation with the Community Land Model, version 5. Adv. Stat. Clim. Meteorol. Oceanogr. 6, 223-244. https://doi.org/10.5194/ascmo-6-223-2020

 

Dai, X.Q., Wang, H.M., Xu, M.J., Yang, F.T., Wen, X.F., Chen, Z., Zhang, L.M., Sun, X.M., Yu, G.R., 2020. An observation dataset of carbon and water fluxes of artificial coniferous forests in Qianyanzhou (2003-2010). Sci. Data Bank 6. https://doi.org/10.11922/csdata.2020.0036.zh (in Chinese)

 

Dominguez, M.T., Aponte, C., Perez-Ramos, I.M., Garcia, L.V., Villar, R., Maranon, T., 2012. Relationships between leaf morphological traits, nutrient concentrations and isotopic signatures for Mediterranean woody plant species and communities. Plant Soil 357, 407-424. https://doi.org/10.1007/s11104-012-1214-7

 
FAO, 2020. Global forest resources assessment 2020. FAO
 
FarquharG.D.vonCaemmerer,BerryJ.A.A biochemical model of photosynthetic CO2 assimilation in leaves of C3 speciesPlanta1980149789010.1007/BF00386231

Farquhar, G.D., von Caemmerer, S., Berry, J.A., 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78-90. https://doi.org/10.1007/BF00386231

 

Fu, Y.L., Yu, G.R., Sun, X.M., Li, Y.N., Wen, X.F., Zhang, L.M., Li, Z.Q., Zhao, L., Hao, Y.B., 2006. Depression of net ecosystem CO2 exchange in semi-arid Leymus chinensis steppe and alpine shrub. Agric. For. Meteorol. 137, 234-244. https://doi.org/10.1016/j.agrformet.2006.02.009

 

Gong, H., Cui, Q., Gao, J., 2020. Latitudinal, soil and climate effects on key leaf traits in northeastern China. Glob. Ecol. Conserv. 22, e00904. https://doi.org/10.1016/j.gecco.2020.e00904

 

Harris, N.L., Gibbs, D.A., Baccini, A., Birdsey, R.A., de Bruin, S., Farina, M., Fatoyinbo, L., Hansen, M.C., Herold, M., Houghton, R.A., Potapov, P.V., Suarez, D.R., Roman-Cuesta, R.M., Saatchi, S.S., Slay, C.M., Turubanova, S.A., Tyukavina, A., 2021. Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Change 11, 234-240. https://doi.org/10.1038/s41558-020-00976-6

 

He, W., Ma, Z.Y., Pei, J., Teng, M.J., Zeng, L.X., Yan, Z.G., Huang, Z.L., Zhou, Z.X., Wang, P.C., Luo, X., Xiao, W.F., 2019. Effects of predominant tree species mixing on lignin and cellulose degradation during leaf litter decomposition in the Three Gorges Reservoir, China. Forests 10, 360. https://doi.org/10.3390/f10040360

 

Heinrich, V.H.A., Dalagnol, R., Cassol, H.L.G., Rosan, T.M., de Almeida, C.T., Silva Junior, C.H.L., Campanharo, W.A., House, J.I., Sitch, S., Hales, T.C., Adami, M., Anderson, L.O., Aragao, L.E.O.C., 2021. Large carbon sink potential of secondary forests in the Brazilian Amazon to mitigate climate change. Nat. Comm. 12, 1785. https://doi.org/10.1038/s41467-021-22050-1

 

Hidy, D., Barcza, Z., Haszpra, L., Churkina, G., Pinter, K., Nagy, Z., 2012. Development of the Biome-BGC model for simulation of managed herbaceous ecosystems. Ecol. Model. 226, 99-119. https://doi.org/10.1016/j.ecolmodel.2011.11.008

 
Hidy, D., Barcza, Z., Hollos, R., Thornton, P.E., Running, S.W., Fodor, N., 2021. User’s Guide for Biome-BGCMuSo 6.1. http://nimbus.elte.hu/bbgc/files/Manual_BBGC_MuSo_v6.1.pdf (accessed 15 Oct 2021)
 

Hidy, D., Barcza, Z., Marjanovic, H., Sever, M.Z.O., Dobor, L., Gelybo, G., Fodor, N., Pinter, K., Churkina, G., Running, S., Thornton, P., Bellocchi, G., Haszpra, L., Horvath, F., Suyker, A., Nagy, Z., 2016. Terrestrial ecosystem process model Biome-BGCMuSo v4.0: summary of improvements and new modeling possibilities. Geosci. Model Dev. 9, 4405-4437. https://doi.org/10.5194/gmd-9-4405-2016

 

Hosman, C.A., Hansen, B.B., Holland, P.W., 2010. The sensitivity of linear regression coefficients’ confidence limits to the omission of a confounder. Ann. Appl. Stat. 4, 849-870. https://doi.org/10.1214/09-AOAS315

 
Knapp, A.K., Carroll, C.J.W., Fahey, T.J., 2014. Patterns and controls of terrestrial primary production in a changing world. in: Monson, R.K. (ed.), Ecology and the environment. Springer, New York, NY, pp. 205-246
 

Li, H., Zhang, F., Li, Y., Wang, J., Zhang, L., Zhao, L., Cao, G., Zhao, X., Du, M., 2016. Seasonal and inter-annual variations in CO2 fluxes over 10 years in an alpine shrubland on the Qinghai-Tibetan Plateau, China. Agric. For. Meteorol. 228-229, 95-103. https://doi.org/10.1016/j.agrformet.2016.06.020

 

Li, H., Zhu, J., Zhang, F., He, H., Yang, Y., Li, Y., Cao, G., Zhou, H., 2019. Growth stage-dependant variability in water vapor and CO2 exchanges over a humid alpine shrubland on the northeastern Qinghai-Tibetan Plateau. Agric. For. Meteorol. 268, 55-62. https://doi.org/10.1016/j.agrformet.2019.01.013

 
LiS.ZhangL.MaR.YanM.TiaX.Improved ET assimilation through incorporating SMAP soil moisture observations using a coupled process model: a study of U.S. arid and semiarid regionsJ. Hydrol.202059012540210.1016/j.jhydrol.2020.125402

Li, S., Zhang, L., Ma, R., Yan, M., Tia, X., 2020. Improved ET assimilation through incorporating SMAP soil moisture observations using a coupled process model: a study of U.S. arid and semiarid regions. J. Hydrol. 590, 125402. https://doi.org/10.1016/j.jhydrol.2020.125402

 

Li, Y.L., Yan, J.H., Meng, Z., Huang, J.Q., Zhang, L.M., Chen, Z., Liu, S.Z., Chu, G.W., Zhang, Q.M., Zhang, D.Q., 2021. An observation dataset of carbon and water fluxes in a mixed coniferous broad-leaved forest at Dinghushan, Southern China (2003 - 2010). Sci. Data Bank 6. https://doi.org/10.11922/csdata.2020.0046.zh (in Chinese)

 
LiuH.ChenW.SudjiantoA.Relative entropy based method for probabilistic sensitivity analysis in engineering designJ. Mech. Des.200512832633610.1115/1.2159025

Liu, H., Chen, W., Sudjianto, A., 2005. Relative entropy based method for probabilistic sensitivity analysis in engineering design. J. Mech. Des. 128, 326-336. https://doi.org/10.1115/1.2159025

 

Ma, H., Ma, C., Li, X., Yuan, W., Liu, Z., Zhou, G., 2020. Sensitivity and uncertainty analyses of flux-based ecosystem model towards improvement of forest GPP simulation. Sustainability 12, 2584. https://doi.org/10.3390/su12072584

 

Miyauchi, T., Machimura, T., Saito, M., 2019. Estimating carbon fixation of plant organs for afforestation monitoring using a process-based ecosystem model and ecophysiological parameter optimization. Ecol. Evol. 9, 8025-8041. https://doi.org/10.1002/ece3.5328

 
NeumannM.GodboldD.L.HiranoY.FinérL.Improving models of fine root carbon stocks and fluxes in European forestsJ. Ecol.202010849651410.1111/1365-2745.13328

Neumann, M., Godbold, D.L., Hirano, Y., Finer, L., 2020. Improving models of fine root carbon stocks and fluxes in European forests. J. Ecol. 108, 496-514. https://doi.org/10.1111/1365-2745.13328

 
NguyenA.T.ReiterS.A performance comparison of sensitivity analysis methods for building energy modelsBuild. Simul.2015865166410.1007/s12273-015-0245-4

Nguyen, A.T., Reiter, S., 2015. A performance comparison of sensitivity analysis methods for building energy models. Build. Simul. 8, 651-664. https://doi.org/10.1007/s12273-015-0245-4

 

Pan, S., Tian, H., Dangal, S., Ouyang, Z., Tao, B., Ren, W., Lu, C., Running, S., 2014. Modeling and monitoring terrestrial primary production in a changing global environment: toward a multiscale synthesis of observation and simulation. Adv. Meteorol. 2014, 965936. https://doi.org/10.1155/2014/965936

 

Pianosi, F., Beven, K., Freer, J., Hall, J.W., Rougier, J., Stephenson, D.B., Wagener, T., 2016. Sensitivity analysis of environmental models: a systematic review with practical workflow. Environ. Model. Softw. 79, 214-232. https://doi.org/10.1016/j.envsoft.2016.02.008

 

Raj, R., Hamm, N.A.S., van der Tol, C., Stein, A., 2014. Variance-based sensitivity analysis of BIOME-BGC for gross and net primary production. Ecol. Model. 292, 26-36. https://doi.org/10.1016/j.ecolmodel.2014.08.012

 

Richard, A.A., Christopher, F.P., 2020. Sensitivity analysis of an OLS multiple regression inference with respect to possible linear endogeneity in the explanatory variables, for both modest and for extremely large samples. Econometrics 8, 11. https://doi.org/10.3390/econometrics8010011

 

Ryan, M.G., 1991. Effects of climate change on plant respiration. Ecol. Appl. 1, 157-167. https://doi.org/10.2307/1941808

 

Saltelli, A., 2002. Sensitivity analysis for importance assessment. Risk. Anal. 22, 579-590. https://doi.org/10.1111/0272-4332.00040

 

Seidl, R., Thom, D., Kautz, M., Martin-Benito, D., Peltoniemi, M., Vacchiano, G., Wild, J., Ascoli, D., Petr, M., Honkaniemi, J., Lexer, M.J., Trotsiuk, V., Mairota, P., Svoboda, M., Fabrika, M., Nagel, T.A., Reyer, C.P.O., 2017. Forest disturbances under climate change. Nat. Clim. Change 7:395-402. https://doi.org/10.1038/nclimate3303

 

Shields, C., Tague, C., 2015. Ecohydrology in semiarid urban ecosystems: modeling the relationship between connected impervious area and ecosystem productivity. Water Resour. Res. 51, 302-319. https://doi.org/10.1002/2014WR016108

 

Stitt, M., Schulze, D., 1994. Does Rubisco control the rate of photosynthesis and plant growth? An exercise in molecular ecophysiology. Plant Cell Environ. 17, 465-487. https://doi.org/10.1111/j.1365-3040.1994.tb00144.x

 

Sun, Q., Li, B., Zhang, T., Yuan, Y., Gao, X., Ge, J., Li, F., Zhang, Z., 2017. An improved Biome-BGC model for estimating net primary productivity of alpine meadow on the Qinghai-Tibet Plateau. Ecol. Model. 350, 55-68. https://doi.org/10.1016/j.ecolmodel.2017.01.025

 

Tatarinov, F.A., Cienciala, E., 2006. Application of BIOME-BGC model to managed forests. For. Ecol. Manag. 237, 267-279. https://doi.org/10.1016/j.foreco.2006.09.085

 

Thornton, P.E., Law, B.E., Gholz, H.L., Clark, K.L., Falge, E., Ellsworth, D.S., Goldstein, A.H., Monson, R.K., Hollinger, D., Falk, M., Chen, J., Sparks, J.P., 2002. Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests. Agric. For. Meteorol. 113, 185-222. https://doi.org/10.1016/S0168-1923(02)00108-9

 

Thornton, P.E., Rosenbloom, N.A., 2005. Ecosystem model spin-up: estimating steady state conditions in a coupled terrestrial carbon and nitrogen cycle model. Ecol. Model. 189, 25-48. https://doi.org/10.1016/j.ecolmodel.2005.04.008

 

Toriyama, J., Hashimoto, S., Osone, Y., Yamashita, N., Tsurita, T., Shimizu, T., Saitoh, T.M., Sawano, S., Lehtonen, A., Ishizuka, S., 2021. Estimating spatial variation in the effects of climate change on the net primary production of Japanese cedar plantations based on modeled carbon dynamics. PLoS One 16, e0247165. https://doi.org/10.1371/journal.pone.0247165

 

Turner, D.P., Ritts, W.D., Cohen, W.B., Maeirsperger, T.K., Gower, S.T., Kirschbaum, A.A., Running, S.W., Zhao, M., Wofsy, S.C., Dunn, A.L., Law, B.E., Campbell, J.L., Oechel, W.C., Kwon, H.J., Meyers, T.P., Small, E.E., Kurc, S.A., Gamon, J.A., 2005. Site-level evaluation of satellite-based global terrestrial gross primary production and net primary production monitoring. Glob. Change Biol. 11, 666-684. https://doi.org/10.1111/j.1365-2486.2005.00936.x

 

Vazquez-Cruz, M.A., Guzman-Cruz, R., Lopez-Cruz, I.L., Cornejo-Perez, O., Torres-Pacheco, I., Guevara-Gonzalez, R.G., 2014. Global sensitivity analysis by means of EFAST and Sobol’ methods and calibration of reduced state-variable TOMGRO model using genetic algorithms. Comput. Electron. Agric. 100, 1-12. https://doi.org/10.1016/j.compag.2013.10.006

 
Wang, D., Ricciuto, D., Post, W., Berry, M.W., 2011. Terrestrial ecosystem carbon modeling. in: Padua D (ed.), Encyclopedia of parallel computing. Springer US, Boston, MA, pp. 2034-2039
 

Wang, J., Feng, L., Palmer, P.I., Liu, Y., Fang, S., Bosch, H., O’Dell, C.W., Tang, X., Yang, D., Liu, L., Xia, C., 2020. Large Chinese land carbon sink estimated from atmospheric carbon dioxide data. Nature 586, 720-723. https://doi.org/10.1038/s41586-020-2849-9

 

White, M.A., Thornton, P.E., Running, S.W., Nemani, R.R., 2000. Parameterization and sensitivity analysis of the BIOME-BGC terrestrial ecosystem model: net primary production controls. Earth Interact. 4, 1-85. https://doi.org/10.1175/1087-3562(2000)004<0003:PASAOT>2.0.CO;2

 

Woodrow, I.E., Berry, J.A., 1988. Enzymatic regulation of photosynthetic CO2, Fixation in C3 Plants. Ann. Rev. Plant Mol. Biol. 39, 533-594. https://doi.org/10.1146/annurev.pp.39.060188.002533

 

Wright, I.J., Dong, N., Maire, V., Prentice, I.C., Westoby, M., Diaz, S., Gallagher, R.V., Jacobs, B.F., Kooyman, R., Law, E.A., Leishman, M.R., Niinemets, U., Reich, P.B., Sack, L., Villar, R., Wang, H., Wilf, P., 2017. Global climatic drivers of leaf size. Science 357, 917-921. https://doi.org/10.1126/science.aal4760

 
WuJ.B.GuanD.X.WangA.Z.YuanF.H.DiaoH.Y.YuG.R.ChenZ.ZhangL.M.A dataset of carbon and water flux observation in a broad-leaved red pine forest in Changbai Mountain (2003–2010)Sci. Data Bank2020610.11922/csdata.2020.0041.zh

Wu, J.B., Guan, D.X., Wang, A.Z., Yuan, F.H., Diao, H.Y., Yu, G.R., Chen, Z., Zhang, L.M., 2020. A dataset of carbon and water flux observation in a broad-leaved red pine forest in Changbai Mountain (2003-2010). Sci. Data Bank 6. https://doi.org/10.11922/csdata.2020.0041.zh (in Chinese)

 
YanM.TianX.LiZ.ChenE.LiC.FanW.A long-term simulation of forest carbon fluxes over the Qilian MountainsInt. J. Appl. Earth Obs. Geoinformation20165251552610.1016/j.jag.2016.07.009

Yan, M., Tian, X., Li, Z., Chen, E., Li, C., Fan, W., 2016. A long-term simulation of forest carbon fluxes over the Qilian Mountains. Int. J. Appl. Earth Obs. Geoinformation 52, 515-526. https://doi.org/10.1016/j.jag.2016.07.009

 

Yu, G., Zhang, L., Sun, X., 2014. Progresses and prospects of Chinese terrestrial ecosystem flux observation and research network (ChinaFLUX). Prog. Geogr. 33, 903-917. https://doi.org/10.11820/dlkxjz.2014.07.005 (in Chinese)

 
YuG.R.RenW.ChenZ.ZhangL.WangQ.WenX.HeN.ZhangL.FangH.ZhuX.GaoY.SunX.Construction and progress of Chinese terrestrial ecosystem carbon, nitrogen and water fluxes coordinated observationJ. Geogr. Sci.20162680382610.1007/s11442-016-1300-5

Yu, G.R., Ren, W., Chen, Z., Zhang, L., Wang, Q., Wen, X., He, N., Zhang, L., Fang, H., Zhu, X., Gao, Y., Sun, X., 2016. Construction and progress of Chinese terrestrial ecosystem carbon, nitrogen and water fluxes coordinated observation. J. Geogr. Sci. 26, 803-826. https://doi.org/10.1007/s11442-016-1300-5

 

Yu, G.R., Wen, X.F., Sun, X.M., Tanner, B.D., Lee, X., Chen, J.Y., 2006. Overview of ChinaFLUX and evaluation of its eddy covariance measurement. Agric. For. Meteorol. 137, 125-137. https://doi.org/10.1016/j.agrformet.2006.02.011

 

Yu, G.R., Zhang, L.M., Sun, X.M., Fu, Y.L., Wen, X.F., Wang, Q.F., Li, S.G., Ren, C.Y., Song, X., Liu, Y.F., Han, S.J., Yan, J.H., 2008. Environmental controls over carbon exchange of three forest ecosystems in eastern China. Glob. Change Biol. 14, 2555-2571. https://doi.org/10.1111/j.1365-2486.2008.01663.x

 

Zaehle, S., Sitch, S., Smith, B., Hatterman, F., 2005. Effects of parameter uncertainties on the modeling of terrestrial biosphere dynamics. Glob. Biogeochem. Cycles 19. https://doi.org/10.1029/2004GB002395

 
ZagayevskiyY.DeutschC.V.A Methodology for sensitivity analysis based on regression: applications to handle uncertainty in natural resources characterizationNat. Resour. Res.20152423927410.1007/s11053-014-9241-0

Zagayevskiy, Y., Deutsch, C.V., 2015. A Methodology for sensitivity analysis based on regression: applications to handle uncertainty in natural resources characterization. Nat. Resour. Res. 24, 239-274. https://doi.org/10.1007/s11053-014-9241-0

 

Zhang, F.W., Li, H.Q., Zhao, L., Zhang, L.M., Chen, Z., Zhu, J.B., Xu, S.X., Yang, Y.S., Zhao, X.Q., Yu, G.R., Li, Y.N., 2020. An observation dataset of carbon, water and heat fluxes over an alpine shrubland in Haibei (2003-2010). Sci. Data Bank 6. https://doi.org/10.11922/csdata.2020.0034.zh

 
ZhouJ.XiaJ.WeiN.LiuY.BianC.BaiY.LuoY.A traceability analysis system for model evaluation on land carbon dynamics: design and applicationsEcol. Process.2021101210.1186/s13717-021-00281-w

Zhou, J., Xia, J., Wei, N., Liu, Y., Bian, C., Bai, Y., Luo, Y., 2021. A traceability analysis system for model evaluation on land carbon dynamics: design and applications. Ecol. Process. 10, 12. https://doi.org/10.1186/s13717-021-00281-w

Forest Ecosystems
Article number: 100011
Cite this article:
Ren H, Zhang L, Yan M, et al. Sensitivity analysis of Biome-BGCMuSo for gross and net primary productivity of typical forests in China. Forest Ecosystems, 2022, 9(1): 100011. https://doi.org/10.1016/j.fecs.2022.100011

804

Views

26

Downloads

12

Crossref

12

Web of Science

12

Scopus

0

CSCD

Altmetrics

Published: 25 February 2022
© 2022 Beijing Forestry University.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by/4.0/).

Return