AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.5 MB)
Collect
AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Functional diversity dominates positive species mixture effects on ecosystem multifunctionality in subtropical plantations

Institute of Resources and Environment, International Centre for Bamboo and Rattan, Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing, 100102, China
Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, 100091, China
Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta, T6G 2E3, Canada
Show Author Information

Abstract

Mixed-species plantations generally exhibit higher ecosystem multifunctionality than monospecific plantations. However, it is unclear how tree species functional composition influences species mixture effects on ecosystem multifunctionality. We selected 171 monospecific and mixed-species plantations from nine regions across subtropical China, and quantified 13 key ecosystem functional properties to investigate how species mixture effects on ecosystem multifunctionality are modulated by functional diversity and identity. We found that ecosystem multifunctionality was significantly higher (p ​ < ​0.05) in mixed tree plantations than in monospecific plantations except the mixed-conifer species plantations. Across all regions, ecosystem multifunctionality was significantly higher (p ​ < ​0.05) in mixed conifer-broadleaf plantations than in monospecific plantations of the corresponding species, but not different between mixed and monospecific coniferous plantations. The magnitude of species mixture effects on ecosystem multifunctionality varied greatly with tree species compositions. Taking Cunninghamia lanceolata Lamb. as an example, the effects varied from a range of 2.0%–9.6% when mixed with a conifer species to 36%–87% when mixed with a broadleaf species. The functional diversity was the dominate driver shaping ecosystem multifunctionality, while functional identity, as expressed by community-weighted mean of specific leaf area, also had a positive effect on ecosystem multifunctionality through the increased below-ground nitrogen and phosphorus stocks regulated by specific leaf area of the mixing tree species. Our study highlights the important role of functional diversity in shaping ecosystem multifunctionality across region-wide environmental conditions. Mixed conifer-broadleaf tree plantations with distinct functional traits benefit the enhancement of ecosystem multifunctionality, and the magnitude of species mixture effects is modulated by the functional identity of tree species composition; those relationships deserve a special consideration in multifunctional management context of subtropical plantations.

References

 

Anderegg, L. D., Berner, L. T., Badgley, G., Sethi, M. L., Law, B. E., HilleRisLambers, J, 2018. Within-species patterns challenge our understanding of the leaf economics spectrum. Ecol. Lett. 21, 734-744. https://doi.org/10.1111/ele.12945.

 

Baeten, L., Bruelheide, H., van der Plas, F., Kambach, S., Ratcliffe, S., Jucker, T., Allan, E., Ampoorter, E., Barbaro, L., Bastias, C.C., Bauhus, J., 2019. Identifying the tree species compositions that maximize ecosystem functioning in European forests. J. Appl. Ecol. 56, 733-744. https://doi.org/10.1111/1365-2664.13308.

 

Barry, K. E., Mommer, L., van Ruijven, J., Wirth, C., Wright, A. J., Bai, Y., Connolly, J., De Deyn, G. B., de Kroon, H., Isbell, F., Milcu, A., Roscher, C., Scherer-Lorenzen, M., Schmid, B., Weigelt, A., 2019. The Future of Complementarity: Disentangling Causes from Consequences. Trends Ecol. Evol. 34, 167-180. https://doi.org/10.1016/j.tree.2018.10.013.

 

Byrnes, J. E. K., Gamfeldt, L., Isbell, F., Lefcheck, J. S., Griffin, J. N., Hector, A., Cardinale, B. J., Hooper, D. U., Dee, L. E., Emmett Duffy, J., Freckleton, R., 2014. Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions. Methods Ecol. Evol. 5, 11-124. https://doi.org/10.1111/2041-210x.12143.

 

Cong, W. F., van Ruijven, J., Mommer, L., De Deyn, G. B., Berendse, F., Hoffland, E., 2014. Plant species richness promotes soil carbon and nitrogen stocks in grasslands without legumes. J. Ecol. 102, 1163-1170. https://doi.org/10.1111/1365-2745.12280.

 

Cornwell, W. K., Cornelissen, J. H., Amatangelo, K., Dorrepaal, E., Eviner, V. T., Godoy, O., Hobbie, S. E., Hoorens, B., Kurokawa, H., Perez-Harguindeguy, N., Quested, H. M., Santiago, L. S., Wardle, D. A., Wright, I. J., Aerts, R., Allison, S. D., van Bodegom, P., Brovkin, V., Chatain, A., Callaghan, T. V., Diaz, S., Garnier, E., Gurvich, D. E., Kazakou, E., Klein, J. A., Read, J., Reich, P. B., Soudzilovskaia, N. A., Vaieretti, M. V., Westoby, M., 2008. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett. 11, 1065-1071. https://doi.org/10.1111/j.1461-0248.2008.01219.x.

 

de Vries, F.T., Manning, P., Tallowin, J.R., Mortimer, S.R., Pilgrim, E.S., Harrison, K.A., Hobbs, P.J., Quirk, H., Shipley, B., Cornelissen, J.H., Kattge, J., Bardgett, R.D., 2012. Abiotic drivers and plant traits explain landscape-scale patterns in soil microbial communities. Ecol. Lett. 15, 1230-1239. https://doi.org/10.1111/j.1461-0248.2012.01844.x.

 

DeForest, J. L., 2009. The influence of time, storage temperature, and substrate age on potential soil enzyme activity in acidic forest soils using MUB-linked substrates and L-DOPA. Soil Biol. Biochem. 41, 1180-1186. https://doi.org/10.1016/j.soilbio.2009.02.029.

 

Delgado-Baquerizo, M., Fry, E. L., Eldridge, D. J., de Vries, F. T., Manning, P., Hamonts, K., Bardgett, R. D., 2018. Plant attributes explain the distribution of soil microbial communities in two contrasting regions of the globe. New Phytol. 219, 574-587. https://doi.org/10.1111/nph.15161.

 

Delgado-Baquerizo, M., Reich, P.B., Trivedi, C., Eldridge, D.J., Abades, S., Alfaro, F.D., Bastida, F., Berhe, A.A., Cutler, N.A., Gallardo, A., García-Velázquez, L., Hart, S.C., Hayes, P.E., He, J. Z., Hseu, Z.Y., Hu, H.W., Kirchmair, M., Neuhauser, S., Pérez, C. A., Reed, S.C., Santos, F., Sullivan, B.W., Trivedi, P., Wang, J.T., Weber-Grullon, L., Williams, M.A., Singh, B.K., 2020. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat. Ecol. Evol. 4, 210-220. https://doi.org/10.1038/s41559-019-1084-y.

 

Delgado-Baquerizo, M., Trivedi, P., Trivedi, C., Eldridge, D. J., Reich, P. B., Jeffries, T. C., Singh, B. K., 2017. Microbial richness and composition independently drive soil multifunctionality. Funct. Ecol. 31, 2330-2343. https://doi.org/10.1111/1365-2435.12924.

 

Diaz, S., Kattge, J., Cornelissen, J. H., Wright, I. J., Lavorel, S., Dray, S., Reu, B., Kleyer, M., Wirth, C., Prentice, I. C., Garnier, E., Bonisch, G., Westoby, M., Poorter, H., Reich, P. B., Moles, A. T., Dickie, J., Gillison, A. N., Zanne, A. E., Chave, J., Wright, S. J., Sheremet'ev, S. N., Jactel, H., Baraloto, C., Cerabolini, B., Pierce, S., Shipley, B., Kirkup, D., Casanoves, F., Joswig, J. S., Gunther, A., Falczuk, V., Ruger, N., Mahecha, M. D., Gorne, L. D., 2016. The global spectrum of plant form and function. Nature 529, 167-171. https://doi.org/10.1038/nature16489.

 

Díaz, S., Lavorel, S., de Bello, F., Quétier, F., Grigulis, K., Robson, T. M., 2007. Incorporating plant functional diversity effects in ecosystem service assessments. Proc. Natl. Acad. Sci. U.S.A. 104, 20684-20689. https://doi.org/10.1073/pnas.0704716104.

 

Falster, D. S., Westoby, M., 2003. Leaf size and angle vary widely across species: what consequences for light interception? New Phytol. 158, 509-525. https://doi.org/10.1046/j.1469-8137.2003.00765.x.

 

Finney, D. M., Kaye, J. P., 2017. Functional diversity in cover crop polycultures increases multifunctionality of an agricultural system. J. Appl. Ecol. 54, 509-517. https://doi.org/10.1111/1365-2664.12765.

 

Forrester, D. I., 2014. The spatial and temporal dynamics of species interactions in mixed-species forests: From pattern to process. For. Ecol. Manage. 312, 282-292. https://doi.org/10.1016/j.foreco.2013.10.003.

 

Forrester, D. I., Ammer, C., Annighöfer, P. J., Avdagic, A., Barbeito, I., Bielak, K., Brazaitis, G., Coll, L., del Río, M., Drössler, L., Heym, M., Hurt, V., Löf, M., Matović, B., Meloni, F., den Ouden, J., Pach, M., Pereira, M. G., Ponette, Q., Pretzsch, H., Skrzyszewski, J., Stojanović, D., Svoboda, M., Ruiz-Peinado, R., Vacchiano, G., Verheyen, K., Zlatanov, T., Bravo-Oviedo, A., 2017. Predicting the spatial and temporal dynamics of species interactions in Fagus sylvatica and Pinus sylvestris forests across Europe. For. Ecol. Manage. 405, 112-133. https://doi.org/10.1016/j.foreco.2017.09.029.

 

Forrester, D. I., Pretzsch, H., 2015. Tamm Review: On the strength of evidence when comparing ecosystem functions of mixtures with monocultures. For. Ecol. Manage. 356, 41-53. https://doi.org/10.1016/j.foreco.2015.08.016.

 

Funk J.L., Larson J.E., Ames G.M., Butterfield B.J., Cavender-Bares J., Firn J., Laughlin D.C., Sutton-Grier A.E., Williams L., Wright J., 2017. Revisiting the Holy Grail: using plant functional traits to understand ecological processes. Biol. Rev. 92, 1156-1173. https://doi.org/10.1111/brv.12275.

 

Gamfeldt, L., Snall T., Bagchi, R., Jonsson, M., Gustafsson, L., Kjellander, P., Ruiz-Jaen, M.C., Froberg, M., Stendahl, J., Philipson, C.D., Mikusinski, G., Andersson, E., Westerlund, B., Andren, H., Moberg, F., Moen, J., Bengtsson, J., 2013. Higher levels of multiple ecosystem services are found in forests with more tree species. Nat. Commun. 4, 1-8. https://doi.org/10.1038/ncomms2328.

 

Goberna, M., Verdu, M., 2016. Predicting microbial traits with phylogenies. ISME J. 10, 959-967. https://doi.org/10.1038/ismej.2015.171.

 

Grime, J. P., 1998. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J. Ecol. 86, 902-910. https://doi.org/10.1046/j.1365-2745.1998.00306.x.

 

Gross, N., Le Bagousse-Pinguet, Y., Liancourt, P., Berdugo, M., Gotelli, N. J., Maestre, F. T., 2017a. Functional trait diversity maximizes ecosystem multifunctionality. Nat. Ecol. Evol. 1, 0132. https://doi.org/10.1038/s41559-017-0132.

 

Gross, N., Suding, K. N., Lavorel, S., Roumet, C., 2007b. Complementarity as a mechanism of coexistence between functional groups of grasses. J. Ecol. 95, 1296-1305. https://doi.org/10.1111/j.1365-2745.2007.01303.x.

 

Haas, S. E., Hooten, M. B., Rizzo, D. M., Meentemeyer, R. K., 2011. Forest species diversity reduces disease risk in a generalist plant pathogen invasion. Ecol. Lett. 14, 1108-1116. https://doi.org/10.1111/j.1461-0248.2011.01679.x.

 

Hautier, Y., Isbell, F., Borer, E. T., Seabloom, E. W., Harpole, W. S., Lind, E. M., MacDougall, A. S., Stevens, C. J., Adler, P. B., Alberti, J., Bakker, J. D., Brudvig, L. A., Buckley, Y. M., Cadotte, M., Caldeira, M. C., Chaneton, E. J., Chu, C., Daleo, P., Dickman, C. R., Dwyer, J. M., Eskelinen, A., Fay, P. A., Firn, J., Hagenah, N., Hillebrand, H., Iribarne, O., Kirkman, K. P., Knops, J. M. H., La Pierre, K. J., McCulley, R. L., Morgan, J. W., Partel, M., Pascual, J., Price, J. N., Prober, S. M., Risch, A. C., Sankaran, M., Schuetz, M., Standish, R. J., Virtanen, R., Wardle, G. M., Yahdjian, L., Hector, A. 2018. Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality. Nat. Ecol. Evol. 2, 50-56. https://doi.org/10.1038/s41559-017-0395-0.

 

Hooper, D.U., Chapin Ⅲ, F.S., Ewel, J.J., Hector, A., Inchausti, P., Lavorel, S., Lawton, J.H., Lodge, D.M., Loreau, M., Naeem, S., Schmid, B., Seta¨la¨, H., Symstad, A.J., Vandermeer, J., Wardle, D.A., 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3-35. https://doi.org/10.1890/04-0922.

 

Huang, X., Li, S., Su, J., 2020. Selective logging enhances ecosystem multifunctionality via increase of functional diversity in a Pinus yunnanensis forest in Southwest China. For. Ecosyst. 7, 55. https://doi.org/10.1186/s40663-020-00267-8.

 

Huang, X., Su, J., Li, S., Liu, W., Lang, X, 2019. Functional diversity drives ecosystem multifunctionality in a Pinus yunnanensis natural secondary forest. Sci. Rep. 9, 6979. https://doi.org/10.1038/s41598-019-43475-1.

 

Ishii, H., Asano, S., 2010. The role of crown architecture, leaf phenology and photosynthetic activity in promoting complementary use of light among coexisting species in temperate forests. Ecol. Res. 25, 715-722. https://doi.org/10.1007/s11284-009-0668-4.

 

Jax, K., 2010. Ecosystem Functioning. Cambridge University Press, Cambridge.

 

Jing, X., Sanders, N. J., Shi, Y., Chu, H., Classen, A. T., Zhao, K., Chen, L., Shi, Y., Jiang, Y., He, J. S., 2015. The links between ecosystem multifunctionality and above- and belowground biodiversity are mediated by climate. Nat. Commun. 6, 8159. https://doi.org/10.1038/ncomms9159.

 

Jonsson, M., Bengtsson, J., Gamfeldt, L., Moen, J., Snall, T., 2019. Levels of forest ecosystem services depend on specific mixtures of commercial tree species. Native Plants 5, 141-147. https://doi.org/10.1038/s41477-018-0346-z.

 

Jucker, T., Bouriaud, O., Avacaritei, D., Danila, I., Duduman, G., Valladares, F., Coomes, D. A., 2014. Competition for light and water play contrasting roles in driving diversity-productivity relationships in Iberian forests. J. Ecol. 102, 1202-1213. https://doi.org/10.1111/1365-2745.12276.

 

Jucker, T., Bouriaud, O., Coomes, D. A., 2015. Crown plasticity enables trees to optimize canopy packing in mixed-species forests. Funct. Ecol. 29, 1078-1086. https://doi.org/10.1111/1365-2435.12428.

 

Kazakou, E., Vile, D., Shipley, B., Gallet, C., Garnier, E., 2006. Co-variations in litter decomposition, leaf traits and plant growth in species from a Mediterranean old-field succession. Funct. Ecol. 20, 21-30. https://doi.org/10.1111/j.1365-2435.2006.01080.x.

 

Keesing, F., Holt, R. D., Ostfeld, R. S., 2006. Effects of species diversity on disease risk. Ecol. Lett. 9, 485-498. https://doi.org/10.1111/j.1461-0248.2006.00885.x.

 

Kirwan, L., Connolly, J., Finn, J., Brophy, C., Lüscher, A., Nyfeler, D., Sebastia, M. -T., 2009. Diversity- interaction modeling: Estimating contributions of species identities and interactions to ecosystem function. Ecology 90, 2032-2038. https://doi.org/10.1890/08-1684.1.

 

Kunstler, G., Falster, D., Coomes, D.A., Hui, F., Kooyman, R.M., Laughlin, D.C., Poorter, L., Vanderwel, M., Vieilledent, G., Wright, S.J., Aiba, M., Baraloto, C., Caspersen, J., Cornelissen, J.H.C., Gourlet-Fleury, S., Hanewinkel, M., Herault, B., Kattge, J., Kurokawa, H., Onoda, Y., Penuelas, J., Poorter, H., Uriarte, M., Richardson, S., Ruiz-Benito, P., Sun, I.F., Stahl, G., Swenson, N.G., Thompson, J., Westerlund, B., Wirth, C., Zavala, M.A., Zeng, H., Zimmerman, J.K., Zimmermann, N.E., Westoby, M., 2016. Plant functional traits have globally consistent effects on competition. Nature 529, 204-207. https://doi.org/10.1038/nature16476.

 

Kunstler, G., Lavergne, S., Courbaud, B., Thuiller, W., Vieilledent, G., Zimmermann, N.E., Kattge, J., Coomes, D.A., 2012. Competitive interactions between forest trees are driven by species' trait hierarchy, not phylogenetic or functional similarity: implications for forest community assembly. Ecol. Lett. 15, 831-840. https://doi.org/10.1111/j.1461-0248.2012.01803.x.

 

Laliberte, E., Legendre, P., 2010. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299-305. https://doi.org/10.1890/08-2244.1.

 

Lange, M., Eisenhauer, N., Sierra, C.A., Bessler, H., Engels, C., Griffiths, R.I., Mellado Vazquez, P.G., Malik, A.A., Roy, J., Scheu, S., Steinbeiss, S., Thomson, B.C., Trumbore, S.E., Gleixner, G., 2015. Plant diversity increases soil microbial activity and soil carbon storage. Nat. Commun. 6, 6707. https://doi.org/10.1111/1365-2745.12280.

 

Lefcheck, J. S., Byrnes, J. E., Isbell, F., Gamfeldt, L., Griffin, J. N., Eisenhauer, N., Hensel, M. J., Hector, A., Cardinale, B. J., Duffy, J. E., 2015. Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats. Nat. Commun. 6, 6936. https://doi.org/10.1038/ncomms7936.

 

Leff, J.W., Bardgett, R.D., Wilkinson, A., Jackson, B.G., Pritchard, W.J., De Long, J.R., Oakley, S., Mason, K.E., Ostle, N.J., Johnson, D., Baggs, E.M., Fierer, N., 2018. Predicting the structure of soil communities from plant community taxonomy, phylogeny, and traits. ISME J. 12, 1794-1805. https://doi.org/10.1038/s41396-018-0089-x.

 

Lin, G., Zeng, D. H., 2018. Functional identity rather than functional diversity or species richness controls litter mixture decomposition in a subtropical forest. Plant Soil 428, 179-193. https://doi.org/10.1007/s11104-018-3669-7.

 

Liu, G., Wang, L., Jiang, L., Pan, X., Huang, Z., Dong, M., Cornelissen, J. H., 2018. Specific leaf area predicts dryland litter decomposition via two mechanisms. J. Ecol. 106, 218-229. https://doi.org/10.1111/1365-2745.12868.

 

Liu, S., Wu, S., Wang, H., 2014. Managing planted forests for multiple uses under a changing environment in China. NZ J. Forestry Sci. 44, 1-10. https://doi.org/10.1186/1179-5395-44-S1-S3.

 

Looney, C. E., Previant, W. J., Nagel, L. M., 2021. Variations in tree growth provide limited evidence of species mixture effects in Interior West USA mixed-conifer forests. J. Ecol. 109, 952-965. https://doi.org/10.1111/1365-2745.13523.

 

Lu, H., Condes, S., del Rio, M., Goudiaby, V., den Ouden, J., Mohren, G.M.J., Schelhaas, M. -J., de Waal, R., Sterck, F.J., 2018. Species and soil effects on overyielding of tree species mixtures in the Netherlands. For. Ecol. Manage. 409, 105-118. https://doi.org/10.1016/j.foreco.2017.11.010.

 

Lu, H., Mohren, G. M. J., den Ouden, J., Goudiaby, V., Sterck, F. J., 2016. Overyielding of temperate mixed forests occurs in evergreen-deciduous but not in deciduous-deciduous species mixtures over time in the Netherlands. For. Ecol. Manage. 376, 321-332. https://doi.org/10.1016/j.foreco.2016.06.032.

 

Luo, Y., Wang, X., Lu, F., 2015. Comprehensive Database of Biomass Regressions for China's Tree Species. China Forestry Publishing House, Beijing.

 

Maestre, F. T., Castillo-Monroy, A. P., Bowker, M. A., Ochoa-Hueso, R., 2012. Species richness effects on ecosystem multifunctionality depend on evenness, composition and spatial pattern. J. Ecol. 100, 317-330. https://doi.org/10.1111/j.1365-2745.2011.01918.x.

 

Mensah, S., Salako, K. V., Assogbadjo, A., Kakai, R. G., Sinsin, B., Seifert, T., 2020. Functional trait diversity is a stronger predictor of multifunctionality than dominance: Evidence from an Afromontane forest in South Africa. Ecol. Indic. 115, 106415. https://doi.org/10.1016/j.ecolind.2020.106415.

 

Mokany, K., Ash, J., Roxburgh, S., 2008. Functional identity is more important than diversity in influencing ecosystem processes in a temperate native grassland. Ecol. Lett. 96, 884-893. https://doi.org/10.1111/j.1365-2745.2008.01395.x.

 

Mouillot, D., Villeger, S., Scherer-Lorenzen, M., Mason, N. W., 2011. Functional structure of biological communities predicts ecosystem multifunctionality. PLoS One. 6, e17476. https://doi.org/10.1371/journal.pone.0017476.

 

Nannipieri, P., Ascher, J., Ceccherini, M., Landi, L., Pietramellara, G., Renella, G., 2010. Microbial diversity and soil functions. Eur. J. Soil Sci. 54, 655-670.https://doi.org/10.1046/j.1351-0754.2003.0556.x.

 

Niinemets U., Valladares, F., 2006. Tolerance to shade, drought, and waterlogging of temperate northern hemisphere trees and shrubs. Ecol. Monogr. 76, 521-547. https://doi.org/10.1890/0012-9615(2006)076[0521:TTSDAW]2.0.CO;2.

 

Niklaus, P. A., Baruffol, M., He, J. S., Ma, K., Schmid, B., 2017. Can niche plasticity promote biodiversity-productivity relationships through increased complementarity? Ecology 98, 1104-1116. https://doi.org/10.1002/ecy.1748.

 

Ordonez, J. C., Van Bodegom, P. M., Witte, J. P. M., Wright, I. J., Reich, P. B., Aerts, R., 2009. A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Global Ecol. Biogeogr. 18, 137-149. https://doi.org/10.1111/j.1466-8238.2008.00441.x.

 

Pei, Z., Eichenberg, D., Bruelheide, H., Krober, W., Kuhn, P., Li, Y., von Oheimb, G., Purschke, O., Scholten, T., Buscot, F., Gutknecht, J.L.M., 2016. Soil and tree species traits both shape soil microbial communities during early growth of Chinese sub- tropical forests. Soil Biol. Biochem. 96, 180-190. https://doi.org/10.1016/j.soilbio.2016.02.004.

 

Perez-Valera, E., Goberna, M., Verdu, M., 2015. Phylogenetic structure of soil bacterial communities predicts ecosystem functioning. FEMS Microbiol. Ecol. 91, 1-9. https://doi.org/10.1093/femsec/fiv031.

 
Pretzsch, H., Forrester, D. I., Bauhus, J. (Eds. ), 2017. Mixed-species Forests: Ecology and Management. Springer, Berlin.
 

Saiya-Cork, K. R., Sinsabaugh, R. L., Zak, D. R., 2002. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biol. Biochem. 34, 1309-1315. https://doi.org/10.1016/S0038-0717(02)00074-3.

 

Sapijanskas, J., Paquette, A., Potvin, C., Kunert, N., Loreau, M., 2014. Tropical tree diversity enhances light capture through crown plasticity and spatial and temporal niche differences. Ecology 95, 2479-2492. https://doi.org/10.1890/13-1366.1.

 

Schuldt, A., Assmann, T., Brezzi, M., Buscot, F., Eichenberg, D., Gutknecht, J., Hardtle, W., He, J. S., Klein, A. M., Kuhn, P., Liu, X., Ma, K., Niklaus, P. A., Pietsch, K. A., Purahong, W., Scherer-Lorenzen, M., Schmid, B., Scholten, T., Staab, M., Tang, Z., Trogisch, S., von Oheimb, G., Wirth, C., Wubet, T., Zhu, C. D., Bruelheide, H., 2018. Biodiversity across trophic levels drives multifunctionality in highly diverse forests. Nat. Commun. 9, 2989. https://doi.org/10.1038/s41467-018-05421-z.

 

Schuler, L. J., Bugmann, H., Snell, R. S., 2017. From monocultures to mixed-species forests: is tree diversity key for providing ecosystem services at the landscape scale? Landsc. Ecol. 32, 1499-1516. https://doi.org/10.1007/s10980-016-0422-6.

 

Soliveres, S., van der Plas, F., Manning, P., Prati, D., Gossner, M. M., Renner, S. C., Alt, F., Arndt, H., Baumgartner, V., Binkenstein, J., Birkhofer, K., Blaser, S., Bluthgen, N., Boch, S., Bohm, S., Borschig, C., Buscot, F., Diekotter, T., Heinze, J., Holzel, N., Jung, K., Klaus, V. H., Kleinebecker, T., Klemmer, S., Krauss, J., Lange, M., Morris, E. K., Muller, J., Oelmann, Y., Overmann, J., Pasalic, E., Rillig, M. C., Schaefer, H. M., Schloter, M., Schmitt, B., Schoning, I., Schrumpf, M., Sikorski, J., Socher, S. A., Solly, E. F., Sonnemann, I., Sorkau, E., Steckel, J., Steffan-Dewenter, I., Stempfhuber, B., Tschapka, M., Turke, M., Venter, P. C., Weiner, C. N., Weisser, W. W., Werner, M., Westphal, C., Wilcke, W., Wolters, V., Wubet, T., Wurst, S., Fischer, M., Allan, E., 2016. Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature 536, 456-459. https://doi.org/10.1038/nature19092.

 

Steinauer, K., Tilman, D., Wragg, P. D., Cesarz, S., Cowles, J. M., Pritsch, K., Reich, P. B., Weisser, W. W., Eisenhauer, N., 2015. Plant diversity effects on soil microbial functions and enzymes are stronger than warming in a grassland experiment. Ecology 96, 99- 112. https://doi.org/10.1890/14-0088.1.

 

Tilman, D., Lehman, C. L., Thomson, K. T., Tilman, D., Lehman, C. L., Thomson, K. T., 1997. Plant diversity and ecosystem productivity: Theoretical considerations. Proc. Natl. Acad. Sci. USA. 1997, 857-1861. https://doi.org/10.1073/pnas.94.5.1857.

 

Tobner, C. M., Paquette, A., Gravel, D., Reich, P. B., Williams, L. J., Messier, C., 2016. Functional identity is the main driver of diversity effects in young tree communities. Ecol. Lett. 19, 638-647. https://doi.org/10.1111/ele.12600.

 

Turnbull, L. A., Isbell, F., Purves, D. W., Loreau, M., Hector, A., 2016. Understanding the value of plant diversity for ecosystem functioning through niche theory. Proc. Roy. Soc. B: Biol. Sci. 283, 20160536. https://doi.org/10.1098/rspb.2016.0536.

 

Valencia, E., Gross, N., Quero, J. L., Carmona, C. P., Ochoa, V., Gozalo, B., Delgado-Baquerizo, M., Dumack, K., Hamonts, K., Singh, B. K., Bonkowski, M., Maestre, F. T., 2018. Cascading effects from plants to soil microorganisms explain how plant species richness and simulated climate change affect soil multifunctionality. Global Change Biol. 24, 5642-5654. https://doi.org/10.1111/ gcb.14440.

 

Valencia, E., Maestre, F. T., Le Bagousse-Pinguet, Y., Quero, J. L., Tamme, R., Borger, L., Garcia-Gomez, M., Gross, N., 2015. Functional diversity enhances the resistance of ecosystem multifunctionality to aridity in Mediterranean drylands. New Phytol. 206, 660-671. https://doi.org/10.1111/nph.13268.

 

van der Plas, F., Ratcliffe, S., Ruiz-Benito, P., Scherer-Lorenzen, M., Verheyen, K., Wirth, C., Zavala, M. A., Ampoorter, E., Baeten, L., Barbaro, L., Bastias, C. C., Bauhus, J., Benavides, R., Benneter, A., Bonal, D., Bouriaud, O., Bruelheide, H., Bussotti, F., Carnol, M., Castagneyrol, B., Charbonnier, Y., Cornelissen, J. H. C., Dahlgren, J., Checko, E., Coppi, A., Dawud, S. M., Deconchat, M., De Smedt, P., De Wandeler, H., Domisch, T., Finer, L., Fotelli, M., Gessler, A., Granier, A., Grossiord, C., Guyot, V., Haase, J., Hattenschwiler, S., Jactel, H., Jaroszewicz, B., Joly, F. X., Jucker, T., Kambach, S., Kaendler, G., Kattge, J., Koricheva, J., Kunstler, G., Lehtonen, A., Liebergesell, M., Manning, P., Milligan, H., Muller, S., Muys, B., Nguyen, D., Nock, C., Ohse, B., Paquette, A., Penuelas, J., Pollastrini, M., Radoglou, K., Raulund-Rasmussen, K., Roger, F., Seidl, R., Selvi, F., Stenlid, J., Valladares, F., van Keer, J., Vesterdal, L., Fischer, M., Gamfeldt, L., Allan, E., 2018. Continental mapping of forest ecosystem functions reveals a high but unrealised potential for forest multifunctionality. Ecol. Lett. 21, 31-42. https://doi.org/10.1111/ele.12868.

 

Vargas-Larreta, B., Lopez-Martinez, J. O., González, E. J., Corral-Rivas, J. J., Hernandez, F. J., 2021. Assessing above-ground biomass-functional diversity relationships in temperate forests in northern Mexico. For. Ecosystems 8, 8. https://doi.org/10.1186/s40663-021-00282-3.

 

Violle, C., Navas, M. L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., Garnier, E., 2007. Let the concept of trait be functional Oikos. 116, 882-892. https://doi.org/10.1111/j.0030-1299.2007.15559.x.

 

Wagg, C., Bender, S. F., Widmer, F., Van Der Heijden, M. G., 2014. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl. Acad. Sci. USA. 111, 5266-5270. https://doi.org/10.1073/pnas.1320054111.

 

Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J.H., Diemer, M., Flexas, J., Garnier, E., Groom, P.K., Gulias, J., Hikosaka, K., Lamont, B.B., Lee, T., Lee, W., Lusk, C., Midgley, J.L., Navas, M-L., Niinemets, U., Oleksyn, J., Osada, N., Poorter, H., Poot, P., Prior, L., Pyankov, V.I., Roumet, C., Thomas, S.C., Tjoelker, M.G., Veneklass, E.J., Villar, R., 2004. The worldwide leaf economics spectrum. Nature 428, 821-827. https://doi.org/10.1038/nature02403.

 

Zavaleta, E. S., Pasari, J. R., Hulvey, K. B., Tilman, G. D., 2010. Sustaining multiple ecosystem functions in grassland communities requires higher biodiversity. Proc. Natl. Acad. Sci. U.S.A. 107, 1443-1446. https://doi.org/10.1073/pnas.0906829107.

 

Zukswert, J. M., Prescott, C. E., 2017. Relationships among leaf functional traits, litter traits, and mass loss during early phases of leaf litter decomposition in 12 woody plant species. Oecologia 185, 305-316. https://doi.org/10.1007/s00442-017-3951-z.

Forest Ecosystems
Article number: 100039
Cite this article:
Li X, Wang H, Luan J, et al. Functional diversity dominates positive species mixture effects on ecosystem multifunctionality in subtropical plantations. Forest Ecosystems, 2022, 9(3): 100039. https://doi.org/10.1016/j.fecs.2022.100039

1063

Views

24

Downloads

13

Crossref

12

Web of Science

14

Scopus

0

CSCD

Altmetrics

Received: 19 February 2022
Revised: 09 April 2022
Accepted: 09 April 2022
Published: 22 April 2022
© 2022 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return