AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (4.6 MB)
Collect
AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Altitudinal variations of hydraulic traits in Faxon fir (Abies fargesii var. faxoniana): Mechanistic controls and environmental adaptability

Shao-an Pana,bGuangyou HaocXuhua Lid,eQiuhong Fengd,eXingliang LiudOsbert J. Suna,b,*( )
School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
Institute of Forestry and Climate Change Research, Beijing Forestry University, Beijing, 100083, China
Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
Sichuan Provincial Key Laboratory of Ecological Restoration and Conservation for Forest and Wetland, Sichuan Academy of Forestry Sciences, Chengdu, 610081, China
Sichuan Wolong Forest Ecosystem Research Station, Wenchuan, 623006, China

* Corresponding author. School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China.

Show Author Information

Abstract

Global climate change has been seen to result in marked impacts on forest ecosystems such as accelerated tree mortality worldwide due to incidental hydraulic failure caused by intensified and more frequent occurrence of extreme drought and heat-waves. However, it is well understood how the tree hydrological strategies would adjust to environmental variability brough about by climate changes. Here we investigated the hydraulic adjustment as a mechanism of acclimation to different climate conditions along an altitudinal gradient in Faxon fir (Abies fargesii var. faxoniana) ― a tree species that plays a key role in conservation of wildlife and maintenance of ecosystem services in subalpine forests. The hydraulic traits and selective morphological and physiological variables were measured seasonally along an altitudinal gradient from 2,800 to 3,600 ​m a.s.l. We found that the native percentage loss of conductivity (PLC) increased with altitude across the seasonal measurements. Both the native sapwood-specific hydraulic conductivity (Ks) and native leaf-specific hydraulic conductivity (Kl) significantly decreased with altitude for measurements in July and October, coinciding with the timing for peak growth and pre-dormancy, respectively. The morphological traits varied toward more conservative tree hydrological strategies with increases in altitude, exhibiting trade-offs with hydraulic traits. The total non-structural carbohydrates in both needle (NSCNeedle) and branch (NSCBranch) as well as photosynthetic capacity of current-year leaves played variable roles in maintaining the integrity of the hydraulic functioning and shaping the hydraulic adjustment under prevailing environmental conditions. Our findings indicate that Faxon fir possesses some degree of hydraulic adaptability to water limitation imposed by climate fluctuations in subalpine region through morphological and physiological modifications.

References

 

Addington, R.N., Mitchell, R.J., Oren, R., Donovan, L.A., 2004. Stomatal sensitivity to vapor pressure deficit and its relationship to hydraulic conductance in Pinus palustris. Tree Physiol. 24, 561-569. https://doi.org/10.1093/treephys/24.5.561.

 

Alexander, J., Diez, J., Levine, J., 2015. Novel competitors shape species' responses to climate change. Nature 525(7570), 515-518. https://doi.org/10.1038/nature14952.

 

Arend, M., Link, R.M., Patthey, R., Hocha, G., Schuldt, B., Kahmen, A., 2021. Rapid hydraulic collapse as cause of drought-induced mortality in conifers. Proc. Natl. Acad. Sci. U.S.A. 118(16), e2025251118. https://doi.org/10.1073/pnas.2025251118.

 

Becker, P., Tyree, M.T., Tsuda, M., 1999. Hydraulic conductances of angiosperms versus conifers: similar transport sufficiency at the whole-plant level. Tree Physiol. 19, 445-452. https://doi.org/10.1093/treephys/19.7.445.

 

Beloiu, M., Poursanidis, D., Tsakirakis, A., Chrysoulakis, N., Hoffmann, S., Lymberakis, P., Barnias, A., Kienle, D., Beierkuhnlein, C., 2022. No treeline shift despite climate change over the last 70 years. For. Ecosyst. 9, 100002. https://doi.org/10.1016/j.fecs.2022.100002.

 

Berdugo, M., Delgado-Baquerizo, M., Soliveres, S., Hernandez-Clemente, R., Zhao, Y.C., Gaitan, J.J., Gross, N., Saiz, H., Maire, V., Lehmann, A., Rillig, M.C., Sole, R.V., Maestre, F.T., 2020. Global ecosystem thresholds driven by aridity. Science 367(6479), 787-790. https://doi.org/10.1126/science.aay5958.

 

Brodribb, T.J., Holbrook, N.M., 2007. Forced depression of leaf hydraulic conductance in situ: effects on the leaf gas exchange of forest trees. Funct. Ecol. 21(4), 705-712. https://doi.org/10.1111/j.1365-2435.2007.01271.x.

 

Camarero, J.J., Guada, G., Sanchez-Salguero, R., Cervantes, E., 2016. Winter drought impairs xylem phenology, anatomy and growth in Mediterranean Scots pine forests. Tree Physiol. 36(12), 1536-1549. https://doi.org/10.1093/treephys/tpw077.

 

Cardoso, A.A., Batz, T.A., McAdam, S.A.M., 2020a. Xylem embolism resistance determines leaf mortality during drought in Persea americana. Plant Physiol. 182(1), 547-554. https://doi.org/10.1104/pp.19.00585.

 

Cardoso, A.A., Visel, D., Kane, C.N., Batz, T.A., Sanchez, C.G., Kaack, L., Lamarque, L.J., Wagner, Y., King, A., Torres-Ruiz, J.M., Corso, D., Burlett, R., Badel, E., Cochard, H., Delzon, S., Jansen, S., McAdam, S.A.M., 2020b. Drought-induced lacuna formation in the stem causes hydraulic conductance to decline before xylem embolism in Selaginella. New Phytol. 227(6), 1804-1817. https://doi.org/10.1111/nph.16649.

 

Charrier, G., Charra-Vaskou, K., Kasuga, J., Cochard, H., Mayr, S., Ameglio, T., 2014. Freeze-thaw stress: effects of temperature on hydraulic conductivity and ultrasonic activity in ten woody angiosperms. Plant Physiol. 164(2), 992-998. https://doi.org/10.1104/pp.113.228403.

 

Charrier, G., Martin-StPaul, N., Damesin, C., Delpierre, N., Hanninen, H., Torres-Ruiz, J.M., Davi, H., 2021. Interaction of drought and frost in tree ecophysiology: rethinking the timing of risks. Ann. For. Sci. 78(2), 40. https://doi.org/10.1007/s13595-021-01082-z.

 

Chen, I.C., Hill, J.K., Ohlemuller, R., Roy, D.B., Thomas, C.D., 2011. Rapid range shifts of species associated with high levels of climate warming. Science 333(6045), 1024-1026. DOI: 10.1126/science.1206432.

 

Chen, L.L., Jiang, C., Wang, X.P., Feng, Q.H., Liu, X.L., Tang, Z.X., Sun, O.J., 2021a. Nutrient trade-offs mediated by ectomycorrhizal strategies in plants: Evidence from an Abies species in subalpine forests. Ecol. Evol. 11, 5281-5294. https://doi.org/10.1002/ece3.7417.

 

Chen, L.L., Wang, M., Jiang, C., Wang, X.P., Feng, Q.H., Liu, X.L., Sun, O.J., 2021b. Choices of ectomycorrhizal foraging strategy as an important mechanism of environmental adaptation in Faxon fir (Abies fargesii var. faxoniana). For. Ecol Manag. 495, 119372. https://doi.org/10.1016/j.foreco.2021.119372.

 

Cheng, W., Wu, N., Luo, P., 2005. Survial analysis of Abies faxoniana populations near timberline on the upper Minjiang River. Acta Phytoecol. Sin. 29(3), 349-353 (in Chinese with English abstract). https://doil.org/10.17521/cjpe.2005.0045.

 

Choat, B., Jansen, S., Brodribb, T.J., Cochard, H., Delzon, S., Bhaskar, R., Bucci, S.J., Feild, T.S., Gleason, S.M., Hacke, U.G., Jacobsen, A.L., Lens, F., Maherali, H., Martinez-Vilalta, J., Mayr, S., Mencuccini, M., Mitchell, P.J., Nardini, A., Pittermann, J., Pratt, R.B., Sperry, J.S., Westoby, M., Wright, I.J., Zanne, A.E., 2012. Global convergence in the vulnerability of forests to drought. Nature 491(7426), 752-755. https://doi.org/10.1038/nature11688.

 

Cirelli, D., Jagels, R., Tyree, M.T., 2008. Toward an improved model of maple sap exudation: the location and role of osmotic barriers in sugar maple, butternut and white birch. Tree Physiol. 28(8), 1145-1155. https://doi.org/10.1093/treephys/28.8.1145.

 

Dai, Y.X., Wang, L., Wan, X.C., 2020. Frost fatigue and its spring recovery of xylem conduits in ring-porous, diffuse-porous, and coniferous species in situ. Plant Physiol. Biochem. 146, 177-186. https://doi.org/10.1016/j.plaphy.2019.11.014.

 

Davis, S.D., Sperry, J.S., Hacke, U.G., 1999. The relationship between xylem conduit diameter and cavitation caused by freezing. Am. J. Bot. 86(10), 1367-1372. https://doi.org/10.2307/2656919.

 

Devi, N.M., Kukarskih, V.V., Galimova, A.A., Mazepa, V.S., Grigoriev, A.A., 2020. Climate change evidence in tree growth and stand productivity at the upper treeline ecotone in the Polar Ural Mountains. For. Ecosyst. 7, 7. https://doi.org/10.1186/s40663-020-0216-9.

 

Elsen, P.R., Tingley, M.W., 2015. Global mountain topography and the fate of montane species under climate change. Nat. Clim. Change 5(8), 772-776. https://doi.org/10.1038/nclimate2656.

 

Florin, R., 1963. The distribution of conifer and taxad genera in time and space. Acta Horti Bergiani 20, 121-312.

 

Guo, X.W., Liu, S.R., Wang, H., Chen, Z.C., Zhang, J.L., Chen, L., Nie, X.Q., Zheng, L., Jia, H.Y., Niu, B.L., 2022. Divergent allocations of nonstructural carbohydrates shape growth response to rainfall reduction in two subtropical plantations. For. Ecosyst. 9, 100021. https://doi.org/10.1016/j.fecs.2022.100021.

 

Hacke, U.G., Sperry, J.S., 2001. Functional and ecological xylem anatomy. Perspect. Plant Ecol. Evol. Systemat. 4(2), 97-115. https://doi.org/10.1078/1433-8319-00017.

 

Hartmann, H., Trumbore, S., 2016. Understanding the roles of nonstructural carbohydrates in forest trees - from what we can measure to what we want to know. New Phytol. 211(2), 386-403. https://doi.org/10.1111/nph.13955.

 

He, P.C., Gleason, S.M., Wright, I.J., Weng, E.S., Liu, H., Zhu, S.D., Lu, M.Z., Luo, Q., Li, R.H., Wu, G.L., Yan, E.R., Song, Y.J., Mi, X.C., Hao, G.Y., Reich, P.B., Wang, Y.P., Ellsworth, D.S., Ye, Q., 2019. Growing-season temperature are precipitation are independent drivers of global variation in xylem hydraulic conductivity. Global Change Biol. 26(3), 1833-1841. https://doi.org/10.1111/gcb.14929.

 

Hubbard, R.M., Ryan, M.G., Stiller, V., Sperry, J.S., 2001. Stomatal conductance and photosynthesis vary linearly with plant hydraulic conductance in ponderosa pine. Plant Cell Environ. 24, 113-121. https://doi.org/10.1046/j.1365-3040.2001.00660.x.

 

Jacobsen, A.L., Valdovinos-Ayala, J., Pratt, R.B., 2018. Functional lifespans of xylem vessels: Development, hydraulic function, and post-function of vessels in several species of woody plants. Am. J. Bot. 105(2), 142-150. https://doi.org/10.1002/ajb2.1029.

 

Jankowski, A., Wyka, T.P., Zytkowiak, R., Nihlgard, B., Reich, P.B., Oleksyn, J., 2017. Cold adaptation drives variability in needle structure and anatomy in Pinus sylvestris L. along a 1, 900 km temperate-boreal transect. Funct. Ecol. 31(12), 2212-2223. https://doi.org/10.1111/1365-2435.12946.

 

Jiao, W.Z., Wang, L.X., Smith, W.K., Chang, Q., Wang, H.L., D'Odorico, P., 2021. Observed increasing water constraint on vegetation growth over the last three decades. Nat. Commun. 12(1), 3777. https://doi.org/10.1038/s41467-021-24016-9.

 

Jin, Y., Wang, C.K., Zhou, Z.H., 2019. Conifers but not angiosperms exhibit vulnerability segmentation between leaves and branches in a temperate forest. Tree Physiol. 39(3), 454-462. https://doi.org/10.1093/treephys/tpy111.

 

Jin, Y., Wang, C.K., Zhou, Z.H., Li, Z.M., 2016. Co-ordinated performance of leaf hydraulics and economics in 10 Chinese temperate tree species. Funct. Plant Biol. 43(11), 1082-1090. https://doi.org/10.1071/FP16097.

 

Klein, T., Zeppel, M.J.B., Anderegg, W.R.L., Bloemen, J., De Kauwe, M.G., Hudson, P., Ruehr, N.K., Powell, T.L., von Arx, G., Nardini, A., 2018. Xylem embolism refilling and resilience against drought-induced mortality in woody plants: processes and trade-offs. Ecol. Res. 33(5), 839-855. https://doi.org/10.1007/s11284-018-1588-y.

 

Klinge, M., Dulamsuren, C., Schneider, F., Erasmi, S., Bayarsaikhan, U., Sauer, D., Hauck, M. 2021. Geoecological parameters indicate discrepancies between potential and actual forest area in the forest-steppe of Central Mongolia. For. Ecosyst. 8, 55. https://doi.org/10.1186/s40663-021-00333-9.

 

Kueppers, L.M., Conlisk, E., Castanha, C., Moyes, A.B., Germino, M.J., de Valpine, P., Torn, M.S., Mitton, J.B., 2017. Warming and provenance limit tree recruitment across and beyond the elevation range of subalpine forest. Global Change Biol. 23(6), 2383-2395. https://doi.org/10.1111/gcb.13561.

 

Lenoir, J., Gegout, J.C., Marquet, P.A., de Ruffray, P., Brisse, H., 2008. A significant upward shift in plant species optimum elevation during the 20th century. Science 320(5884), 1768-1771. https://doi.org/10.1126/science.1156831.

 

Levionnois, S., Jansen, S., Wandji, R.T., Beauchene, J., Ziegler, C., Coste, S., Stahl, C., Delzon, S., Authier, L., Heuret, P., 2021. Linking drought-induced xylem embolism resistance to wood anatomical traits in Neotropical trees. New Phytol. 229(3), 1453-1466. https://doi.org/10.1111/nph.16942.

 

Li, Z.S., Keyimu, M., Fan, Z.X., Wang, X.C., 2020. Climate sensitivity of conifer growth doesn't reveal distinct low-high dipole along the elevation gradient in the Wolong National Natural Reserve, SW China. Dendrochronologia 61, 125702. https://doi.org/10.1016/j.dendro.2020.125702.

 

Li, X., Rossi, S., Sigdel, S. R., Dawadi, B., Liang, E., 2021. Warming menaces high-altitude Himalayan birch forests: Evidence from cambial phenology and wood anatomy. Agric. For. Meteorol. 308, 108577. https://doi.org/10.1016/j.agrformet.2021.108577.

 

Lintunen, A., Mayr, S., Salmon, Y., Cochard, H., Holtta, T., 2018. Drivers of apoplastic freezing in gymnosperm and angiosperm branches. Ecol. Evol. 8(1), 333-343. https://doi.org/10.1002/ece3.3665.

 

Mayr, S., Gruber, A., Bauer, H., 2003. Repeated freeze-thaw cycles induce embolism in drought stressed conifers (Norway spruce, stone pine). Planta 217(3), 436-441. https://doi.org/10.1007/s00425-003-0997-4.

 

Mayr, S., Schmid, P., Beikircher, B., Feng, F., Badel, E., 2020. Die hard: timberline conifers survive annual winter embolism. New Phytol. 226(1), 13-20. https://doi.org/10.1111/nph.16304.

 

Mayr, S., Schmid, P., Laur, J., Rosner, S., Charra-Vaskou, K., Damon, B., Hacke, U., 2014. Uptake of water via branches helps timberline conifers refill embolized xylem in late winter. Plant Physiol. 164(4), 1731-1740. https://doi.org/10.1104/pp.114.236646.

 

Mayr, S., Wolfschwenger, M., Bauer, H., 2002. Winter-drought induced embolism in Norway spruce (Picea abies) at the Alpine timberline. Physiol. Plantarum 115, 74-80. https://doi.org/10.1034/j.1399-3054.2002.1150108.x.

 

McCulloh, K.A., Johnson, D.M., Meinzer, F.C., Lachenbruch, B., 2011. An annual pattern of native embolism in upper branches of four tall conifer species. Am. J. Bot. 98(6), 1007-1015. https://doi.org/10.3732/ajb.1000503.

 

Nardini, A., Savi, T., Novak, M., 2014. Droughts, heat waves and plant hydraulics: impacts and legacies. Agrochimica 58, 146-161. https://doil.org/10.1400/226738.

 

Niu, C.Y., Meinzer, F.C., Hao, G.Y., 2017. Divergence in strategies for coping with winter embolism among co-occurring temperate tree species: the role of positive xylem pressure, wood type and tree stature. Funct. Ecol. 31(8), 1550-1560. https://doi.org/10.1111/1365-2435.12868.

 

Partelli-Feltrin, R., Smith, A.M.S., Adams, H.D., Kolden, C.A., Johnson, D.M., 2021. Short- and long-term effects of fire on stem hydraulics in Pinus ponderosa saplings. Plant Cell Environ. 44(3), 696-705. https://doi.org/10.1111/pce.13881.

 

Pauli, H., Gottfried, M., Dullinger, S., Abdaladze, O., Akhalkatsi, M., Alonso, J.L.B., Coldea, G., Dick, J., Erschbamer, B., Calzado, R.F., Ghosn, D., Holten, J.I., Kanka, R., Kazakis, G., Kollar, J., Larsson, P., Moiseev, P., Moiseev, D., Molau, U., Mesa, J.M., Nagy, L., Pelino, G., Puscas, M., Rossi, G., Stanisci, A., Syverhuset, A.O., Theurillat, J.P., Tomaselli, M., Unterluggauer, P., Villar, L., Vittoz, P., Grabherr, G., 2012. Recent plant diversity changes on Europe's mountain summits. Science 336(6079), 353-355. https://doi.org/10.1126/science.1219033.

 

Petit, G., Anfodillo, T., Carraro, V., Grani, F., Carrer, M., 2011. Hydraulic constraints limit height growth in trees at high altitude. New Phytol. 189(1), 241-252. https://doi.org/10.2307/40960889.

 

Pittermann, J., Sperry, J., 2003. Tracheid diameter is the key trait determining the extent of freezing-induced embolism in conifers. Tree Physiol. 23(13), 907-914. https://doi.org/10.1093/treephys/23.13.907.

 

Qu, L.P., De Boeck, H.J., Fan, H.H., Dong, G., Chen, J.Q., Xu, W.B., Ge, Z.Q., Huang, Z.J., Shao, C.L., Hu, Y.L., 2020. Diverging responses of two subtropical tree species (Schima superba and Cunninghamia lanceolata) to heat waves. Forests 11(5), 513. https://doi.org/10.3390/f11050513.

 

Radcliffe, D.C., Hix, D.M., Matthews, S.N., 2021. Predisposing factors' effects on mortality of oak (Quercus) and hickory (Carya) species in mature forests undergoing mesophication in Appalachian Ohio. For. Ecosy. 8, 7. https://doi.org/10.1186/s40663-021-00286-z.

 

Secchi, F., Zwieniecki, M.A., 2012. Analysis of xylem sap from functional (nonembolized) and nonfunctional (embolized) vessels of Populus nigra: chemistry of refilling. Plant Physiol. 160(2), 955-964. https://doi.org/10.1104/pp.112.200824.

 

Seifter, S., Muntwyler, E., Harkne, D.M., 1950. Some effects of continued protein deprivation, with and without methionine supplementation, on intracellular liver components. Proc. Soc. Exp. Biol. Med. 75(1), 46-50. https://doi.org/10.3181/00379727-75-18095.

 

Taneda, H., Funayama-Noguchi, S., Mayr, S., Goto, S., 2019. Elevational adaptation of morphological and anatomical traits by Sakhalin fir (Abies sachalinensis). Trees Struct. Funct. 34(2), 507-520. https://doi.org/10.1007/s00468-019-01932-4.

 

Tomasella, M., Haberle, K.H., Nardini, A., Hesse, B., Machlet, A., Matyssek, R., 2017. Post-drought hydraulic recovery is accompanied by non-structural carbohydrate depletion in the stem wood of Norway spruce saplings. Sci. Rep. 7, 14308. https://doi.org/10.1038/s41598-017-14645-w.

 

Tomasella, M., Petrussa, E., Petruzzellis, F., Nardini, A., Casolo, V., 2019a. The possible role of non-structural carbohydrates in the regulation of tree hydraulics. Int. J. Mol. Sci. 21, 144. https://doi.org/10.3390/ijms21010144.

 

Tomasella, M., Casolo, V., Aichner, N., Petruzzellis, F., Savi, T., Trifilo, P., Nardini, A., 2019b. Non-structural carbohydrate and hydraulic dynamics during drought and recovery in Fraxinus ornus and Ostrya carpinifolia saplings. Plant Physiol. Biochem. (Paris) 145, 1-9. https://doi.org/10.1016/j.plaphy.2019.10.024.

 

Trifilo, P., Kiorapostolou, N., Petruzzellis, F., Vitti, S., Petit, G., Lo Gullo, M.A., Nardini, A., Casolo, V., 2019. Hydraulic recovery from xylem embolism in excised branches of twelve woody species: relationships with parenchyma cells and non-structural carbohydrates. Plant Physiol. Biochem. 139, 513-520. https://doi.org/10.1016/j.plaphy.2019.04.013.

 

Tyree, M., Spery, J., 1989. Vulnerability of xylem to cavitation and embolism. Ann. Rev. Plant Phys. Plant Mol. Biol. 40, 19-36. https://doi.org/10.1146/annurev.pp.40.060189.000315.

 

Tyree, M.T., Dixon, M.A., 1986. Water stress induced cavitation and embolism in some woody plants. Physiol. Plantarum 66, 397-405. https://doi.org/10.1111/j.1399-3054.1986.tb05941.x.

 

Wang, A.Y., Han, S.J., Zhang, J.H., Wang, M., Yin, X.H., Fang, L.D., Yang, D., Hao, G.Y., 2018. The interaction between nonstructural carbohydrate reserves and xylem hydraulics in Korean pine trees across an altitudinal gradient. Tree Physiol. 38(12), 1792-1804. https://doi.org/10.1093/treephys/tpy119.

 

Wang, Z.H., Fang, J.Y., Tang, Z.Y., Lin, X., 2011. Patterns, determinants and models of woody plant diversity in China. Proc. Royal Soc. B. 278(1715), 2122-2132. https://doi.org/10.1098/rspb.2010.1897.

 

Willson, C.J., Jackson, R.B., 2006. Xylem cavitation caused by drought and freezing stress in four co-occurring Juniperus species. Physiol. Plantarum 127(3), 374-382. https://doi.org/10.1111/j.1399-3054.2006.00644.x.

 

Wright, I.J., Dong, N., Maire, V., Prentice, I.C., Westoby, M., Diaz, S., Gallagher, R.V., Jacobs, B.F., Kooyman, R., Law, E.A., et al., 2017. Global climatic drivers of leaf size. Science 357(6354), 917-921. https://doi.org/10.1126/science.aal4760.

 

Xu, K., Wang, X.P., Jiang, C., Sun, O.J., 2020. Assessing the vulnerability of ecosystems to climate change based on climate exposure, vegetation stability and productivity. For. Ecosyst. 7, 23. https://doi.org/10.1186/s40663-020-00239-y.

 

Xu, Y., Gao, X.J., Shen, Y., Xu, C.H., Shi, Y., Giorgi, F., 2009. A daily temperature dataset over China and its application in validating a RCM simulation. Adv. Atmos. Sci. 26(4), 763-772. https://doi.org/10.1007/s00376-009-9029-z.

 

Yuan, W.P., Liu, S.G., Yu, G.R., Bonnefond, J.M., Chen, J.Q., Davis, K., Desai, A.R., Goldstein, A.H., Gianelle, D., Rossi, F., Suyker, A.E., Verma, S.B., 2010. Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data. Remote Sens. Environ. 114(7), 1416-1431. https://doi.org/10.1016/j.rse.2010.01.022.

 

Zhang, B.B., Xu, J.L., Zhou, M., Yan, D.H., Ma, R.J., 2018. Effect of light quality on leaf photosynthetic characteristics and fruit quality of peach (Prunus persica L. Batch). Photosynthetica 56(4), 1113-1122. https://doi.org/10.1007/s11099-018-0820-x.

 

Zhang, W., Jiang, Z.M., Zhao, H., Feng, F., Cai, J., 2019. Frost fatigue response to simulated frost drought using a centrifuge in Acer mono Maxim. Physiol. Plantarum 166(2), 677-687. https://doi.org/10.1111/ppl.12816.

 

Zhang, W.W., Song, J., Wang, M., Liu, Y.Y., Li, N., Zhang, Y.J., Holbrook, N.M., Hao, G.Y., 2017. Divergences in hydraulic architecture form an important basis for niche differentiation between diploid and polyploid Betula species in NE China. Tree Physiol. 37(5), 604-616. https://doi.org/10.1093/treephys/tpx004.

 

Zhao, T., Guo, W., Fu, C., 2008. Calibrating and evaluating reanalysis surface temperature error by topographic correction. J. Clim. 21(6), 1440-1446. https://doi.org/10.1175/2007JCLI1463.1.

Forest Ecosystems
Article number: 100040
Cite this article:
Pan S-a, Hao G, Li X, et al. Altitudinal variations of hydraulic traits in Faxon fir (Abies fargesii var. faxoniana): Mechanistic controls and environmental adaptability. Forest Ecosystems, 2022, 9(3): 100040. https://doi.org/10.1016/j.fecs.2022.100040

769

Views

13

Downloads

3

Crossref

3

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 03 March 2022
Revised: 10 April 2022
Accepted: 10 April 2022
Published: 23 April 2022
© 2022 The Authors.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Return