AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.3 MB)
Collect
AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Leaf nitrogen resorption is more important than litter nitrogen mineralization in mediating the diversity–productivity relationship along a nitrogen-limited temperate forest succession chronosequence

Peng Zhanga,bXiao-Tao LücGuangze Jina,d,e,*( )Zhili Liua,d,eMai-He Lib,f,g
Center for Ecological Research, Northeast Forestry University, Harbin, 150040, China
Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, CH-8903, Birmensdorf, Switzerland
Erguna Forest-Steppe Ecotone Research Station, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
Key Laboratory of Sustainable Forest Ecosystem Management, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
Northeast Asia Biodiversity Research Center, Northeast Forestry University, Harbin, 150040, China
Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, 130024, China
School of Life Science, Hebei University, Baoding, 071000, China

* Corresponding author. Center for Ecological Research, Northeast Forestry University, Harbin, 150040, China.

Show Author Information

Abstract

The resorption of nutrients by plants before litter fall and the mineralization of nutrients from plant litter by soil processes are both important pathways supporting primary productivity. While the positive relationship between plant biodiversity and primary productivity is widely accepted for natural ecosystems, the roles of nutrient resorption and mineralization in mediating that relationship remains largely unknown. Here, we quantified the relative importance of nitrogen (N) resorption and N mineralization in driving plant community N investment and the correlation between species diversity and community productivity along an N-limited successional chronosequence of the mixed broadleaved–Korean pine (Pinus koraiensis) forest in northeastern China. Leaf N resorption efficiency (NRE) at the community level increased significantly along the successional chronosequence, whereas litter N mineralization rate decreased significantly. Leaf NRE was more important than litter N mineralization rate in driving the diversity–productivity relationship. However, higher leaf NRE led to less N mineralization as succession progressed along the chronosequence. Our results highlight the importance of the N resorption pathway rather than the N mineralization pathway for forest N acquisition with community succession, and they provide mechanistic insights into the positive effects of biodiversity on ecosystem functioning. In future forest management practices, we recommend appropriate application of N fertilizer to mitigate the adverse effects of N-poor soil on seedling regeneration during late succession and thus maintain the sustainable development of temperate forest ecosystems.

References

 

Aerts, R., 1996. Nutrient resorption from senescing leaves of perennials: are there general patterns? J. Ecol. 84, 597–608.

 

Aerts, R., 1997. Nitrogen partitioning between resorption and decomposition pathways: a trade-off between nitrogen use efficiency and litter decomposibility? Oikos 80, 603–606.

 
Bartón, K., 2022. MuMIn: Multi-Model Inference. R Package Version 1.46.0.
 

Bragazza, L., Siffi, C., Iacumin, P., Gerdol, R., 2007. Mass loss and nutrient release during litter decay in peatland: the role of microbial adaptability to litter chemistry. Soil Biol. Biochem. 39, 257–267.

 

Bhatnagar, J.M., Peay, K.G., Treseder, K.K., 2018. Litter chemistry influences decomposition through activity of specific microbial functional guilds. Ecol. Monogr. 88, 429–444.

 

Boeken, B., Shachak, M., 2006. Linking community and ecosystem processes: the role of minor species. Ecosystems 9, 119–127.

 
Calcagno, V., 2020. Glmulti: Model Selection and Multimodel Inference Made Easy. R package version 1.0.8.
 

Canadell, J.G., Raupach, M.R., 2008. Managing forests for climate change mitigation. Science 320, 1456–1457.

 

Castaño, C., Hallin, S., Egelkraut, D., Lindahl, B.D., Olofsson, J., Clemmensen, K.E., 2022. Contrasting plant–soil–microbial feedbacks stabilize vegetation types and uncouple topsoil C and N stocks across a subarctic–alpine landscape. New Phytol. https://doi.org/10.1111/nph.18679.

 

Chatterjee, S., Hadi, A.S., 2006. Regression Analysis by Example. John Wiley & Sons, Inc., Hoboken, New Jersey.

 

Deng, M.F., Liu, L.L., Jiang, L., Liu, W.X., Wang, X., Li, S.P., Yang, S., Wang, B., 2018. Ecosystem scale trade-off in nitrogen acquisition pathways. Nat. Ecol. Evol. 2, 1724–1734.

 

Du, E.Z., Terrer, C., Pellegrini, A.F.A., Ahlström, A., van Lissa, C.J., Zhao, X., Xia, N., Wu, X.H., Jackson, R.B., 2020. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. 13, 221–226.

 

Finzi, A.C., Moore, D.J.P., DeLucia, E.H., Lichter, J., Hofmockel, K.S., Jackson, R.B., Kim, H. -S., Matamala, R., McCarthy, H.R., Oren, R., Pippen, J.S., Schlesinger, W.H., 2006. Progressive nitrogen limitation of ecosystem processes under elevated CO2 in a warm-temperate forest. Ecology 87, 15–25.

 

Finzi, A.C., Norby, R.J., Calfapietra, C., Gallet-Budynek, A., Gielen, B., Holmes, W.E., Hoosbeek, M.R., Iversen, C.M., Jackson, R.B., Kubiske, M.E., Ledford, J., Liberloo, M., Oren, R., Polle, A., Pritchard, S., Zak, D.R., Schlesinger, W.H., Ceulemans, R., 2007. Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2. Proc. Natl. Acad. Sci. U.S.A. 104, 14014–14019.

 

Fornara, D.A., Tilman, D., 2009. Ecological mechanisms associated with the positive diversity: productivity relationship in an N-limited grassland. Ecology 90, 408–418.

 

Garcia-Palacios, P., Shaw, E.A., Wall, D.H., Hättenschwiler, S., 2017. Contrasting mass-ratio vs. niche complementarity effects on litter C and N loss during decomposition along a regional climatic gradient. J. Ecol. 105, 968–978.

 

Gartner, T.B., Cardon, Z.G., 2004. Decomposition dynamics in mixed-species leaf litter. Oikos 104, 230–246.

 

Grime, J.P., 1998. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J. Ecol. 86, 902–910.

 

Guiz, J., Ebeling, A., Eisenhauer, N., Hacker, N., Hertzog, L., Oelmann, Y., Roscher, C., Wagg, C., Hillebrand, H., 2018. Interspecific competition alters leaf stoichiometry in grassland species. Oikos 127, 903–914.

 

Hagenbo, A., Piñuela, Y., Castaño, C., de Aragón, J.M., de-Miguel, S., Alday, J.G., Bonet, J.A., 2021. Production and turnover of mycorrhizal soil mycelium relate to variation in drought conditions in Mediterranean Pinus pinaster, Pinus sylvestris and Quercus ilex forests. New Phytol. 230, 1609–1622.

 

He, N.P., Liu, C.C., Piao, S.L., Sack, L., Xu, L., Luo, Y.Q., He, J.S., Han, X.G., Zhou, G.S., Zhou, X.H., Lin, Y., Yu, Q., Liu, S.R., Sun, W., Niu, S.L., Li, S.G., Zhang, J.H., Yu, G.R., 2019. Ecosystem traits linking functional traits to macroecology. Trends Ecol. Evol. 34, 200–210.

 

Hessen, D.O., Ågren, G.I., Anderson, T.R., Elser, J., Ruiter, P.D., 2004. Carbon sequestration in ecosystems: the role of stoichiometry. Ecology 85, 1179–1192.

 

Hooper, D.U., Ewel, J.J., Hector, A., Inchausti, P., Lavorel, S., Lawton, J.H., Lodge, D.M., Loreau, M., Naeem, S., Schmid, B., Setälä, H., Symstad, A.J., Vandermeer, J., Wardle, D.A., 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3–35.

 

Hooper, D.U., Vitousek, P.M., 1997. The effects of plant composition and diversity on ecosystem processes. Science 277, 1302–1305.

 

Hooper, D.U., Vitousek, P.M., 1998. Effects of plant composition and diversity on nutrient cycling. Ecol. Monogr. 68, 121–149.

 

Houlton, B.Z., Wang, Y.P., Vitousek, P.M., Field, C.B., 2008. A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature 454, 327–330.

 

Johnson, D.W., 2006. Progressive N limitation in forests: review and implications for long-term responses to elevated CO2. Ecology 87, 64–75.

 

Killingbeck, K.T., 1996. Nutrients in senesced leaves: keys to the search for potential resorption and resorption proficiency. Ecology 77, 1716–1727.

 

Koerselman, W., Meuleman, A.F.M., 1996. The vegetation N: P ratio: a new tool to detect the nature of nutrient limitation. J. Appl. Ecol. 33, 1441–1450.

 

Kou, L., Jiang, L., Httenschwiler, S., Zhang, M.M., Niu, S.L., Fu, X.L., Dai, X.Q., Yan, H., Li, S.G., Wang, H.M., 2020. Diversity-decomposition relationships in forests worldwide. Elife 9, e55813.

 

Lasky, J.R., Uriarte, M., Boukili, V.K., Erickson, D.L., Kress, W.J., Chazdon, R.L., 2014. The relationship between tree biodiversity and biomass dynamics changes with tropical forest succession. Ecol. Lett. 17, 1158–1167.

 

Lefcheck, J.S., 2016. piecewiseSEM: piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579.

 

Leigh, J., Hodge, A., Fitter, A.H., 2009. Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material. New Phytol. 181, 199–207.

 

Liang, J.J., Crowther, T.W., Picard, N., Wiser, S., Mo, Z., Alberti, G., Schulze, E. -D., McGuire, A.D., Bozzato, F., Pretzsch, H., de-Miguel, S., Paquette, A., Hérault, B., Scherer-Lorenzen, M., Barrett, C.B., Glick, H.B., Hengeveld, G.M., Nabuurs, G. -J., Pfautsch, S., Viana, H., Vibrans, A.C., Ammer, C., Schall, P., Verbyla, D., Tchebakova, N., Fischer, M., Watson, J.V., Han, Y.H.C., Xiandong, L., Schelhaas, M. -J., Huicui, L., Gianelle, D., Parfenova, E.I., Salas, C., Lee, E., Lee, B., Hyun, S.K., Bruelheide, H., Coomes, D.A., Piotto, D., Sunderland, T.C.H., Schmid, B., Gourlet-Fleury, S., Sonké, B., Tavani, R., Jun, Z., Brandl, S., Vayreda, J., Kitahara, F., Searle, E.B., Neldner, V.J., Ngugi, M.R., Baraloto, C., Frizzera, L., Balazy, R., Oleksyn, J., Zawila-Niedzwiecki, T., Bouriaud, O., Bussotti, F., Finér, L., Jaroszewicz, B., Jucker, T., Valladares, F., Jagodzinski, A.M., Peri, P.L., Gonmadje, C., Marthy, W., O'Brien, T., Martin, E.H., Marshall, A.R., Rovero, F., Bitariho, R., Niklaus, P.A., Alvarez-Loayza, P., Chamuya, N., Valencia, R., Mortier, F., Wortel, V., Engone-Obiang, N.L., Ferreira, L.V., Odeke, D.E., Vasquez, R.M., Lewis, S.L., Reich, P.B., 2016. Positive biodiversity-productivity relationship predominant in global forests. Science 354, 6309. https://doi.org/10.1126/science.aaf8957.

 

Liao, C., Long, C.Y., Zhang, Q., Cheng, X.L., 2022. Stronger effect of litter quality than micro-organisms on leaf and root litter C and N loss at different decomposition stages following a subtropical land use change. Funct. Ecol. 36, 896–907.

 

Lohbeck, M., Poorter, L., Martínez-Ramos, M., Bongers, F., 2015. Biomass is the main driver of changes in ecosystem process rates during tropical forest succession. Ecology 96, 1242–1252.

 

Loreau, M., Hector, A., 2001. Partitioning selection and complementarity in biodiversity experiments. Nature 412, 72–76.

 

Lü, X.T., Hu, Y.Y., Wolf, A.A., Han, X.G., 2019. Species richness mediates within-species nutrient resorption: implications for the biodiversity-productivity relationship. J. Ecol. 107, 2346–2352.

 

Lummer, D., Scheu, S., Butenschoen, O., 2012. Connecting litter quality, microbial community and nitrogen transfer mechanisms in decomposing litter mixtures. Oikos 121, 1649–1655.

 

Luo, Y.Q., Su, B., Currie, W.S., Dukes, J.S., Finzi, A., Hartwig, U., Hungate, B., McMurtrie, R.E., Oren, R., Parton, W.J., Pataki, D.E., Shaw, M.R., Zak, D.R., Field, C.B., 2004. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience 54, 731–739.

 

Menge, D.N.L., Batterman, S.A., Hedin, L.O., Liao, W.Y., Pacala, S.W., Taylor, B.N., 2017. Why are nitrogen-fixing trees rare at higher compared to lower latitudes? Ecology 98, 3127–3140.

 

Morin, X., Fahse, L., Scherer-Lorenzen, M., Bugmann, H., 2011. Tree species richness promotes productivity in temperate forests through strong complementarity between species. Ecol. Lett. 14, 1211–1219.

 

Nakagawa, S., Schielzeth, H., 2013. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142.

 

Odum, E.P., 1969. The strategy of ecosystem development. Science 164, 262–270.

 
Oksanen, J.F., Blanchet, G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O'Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Szoecs, E., Wagner, H., 2018. Vegan: community ecology package. R package v. 2.5.2. https://cran.r-project.org (Accessed 15 October 2022).
 

Ouyang, S., Xiang, W.H., Wang, X.P., Zeng, Y.L., Lei, P.F., Deng, X.W., Peng, C.H., 2016. Significant effects of biodiversity on forest biomass during the succession of subtropical forest in south China. For. Ecol. Manag. 372, 291–302.

 

Parrent, J.L., Vilgalys, R., 2007. Biomass and compositional responses of ectomycorrhizal fungal hyphae to elevated CO2 and nitrogen fertilization. New Phytol. 176, 164–174.

 
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., R Core Team, 2021. Nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1–152.
 

Reich, P.B., Oleksyn, J., 2004. Global patterns of plant leaf N and P in relation to temperature and latitude. Proc. Natl. Acad. Sci. U.S.A. 101, 11001–11006.

 

Schimel, J.P., Hättenschwiler, S., 2007. Nitrogen transfer between decomposing leaves of different N status. Soil Biol. Biochem. 39, 1428–1436.

 

Trogisch, S., He, J.S., Hector, A., Scherer-Lorenzen, M., 2016. Impact of species diversity, stand age and environmental factors on leaf litter decomposition in subtropical forests in China. Plant Soil 400, 337–350.

 

Vergutz, L., Manzoni, S., Porporato, A., Novais, R.F., Jackson, R.B., 2012. Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecol. Monogr. 82, 205–220.

 

Wang, M., Murphy, M.T., Moore, T.R., 2014. Nutrient resorption of two evergreen shrubs in response to long-term fertilization in a bog. Oecologia 174, 365–377.

 

Wardle, D.A., Bonner, K.I., Nicholson, K.S., 1997. Biodiversity and plant litter: experimental evidence which does not support the view that enhanced species richness improves ecosystem function. Oikos 79, 247–258.

 

Wieder, W.R., Cleveland, C.C., Smith, W.K., Todd-Brown, K., 2015. Future productivity and carbon storage limited by terrestrial nutrient availability. Nat. Geosci. 8, 441–447.

 

Wright, A.J., Wardle, D.A., Callaway, R., Gaxiola, A., 2017. The overlooked role of facilitation in biodiversity experiments. Trends Ecol. Evol. 32, 383–390.

 

Yuan, Z.Y., Chen, H.Y.H., 2009. Global-scale patterns of nutrient resorption associated with latitude, temperature and precipitation. Global Ecol. Biogeogr. 18, 11–18.

 

Yuan, Z.Y., Chen, H.Y.H., 2015. Negative effects of fertilization on plant nutrient resorption. Ecology 96, 373–380.

 

Zhang, J.H., Zhao, N., Liu, C.C., Yang, H., Li, M.L., Yu, G.R., Wilcox, K., Yu, Q., He, N.P., 2018. C: N: P stoichiometry in China's forests: from organs to ecosystems. Funct. Ecol. 32, 50–60.

 

Zhang, K.R., Cheng, X.L., Dang, H.S., Zhang, Q.F., 2020. Biomass: N: K: Ca: Mg: P ratios in forest stands world-wide: biogeographical variations and environmental controls. Global Ecol. Biogeogr. 29, 2176–2189.

 

Zhang, J.H., Hedin, L.O., Li, M.X., Xu, L., Yan, Y., Dai, G.H., He, N.P., 2022. Leaf N: P ratio does not predict productivity trends across natural terrestrial ecosystems. Ecology 103, e3789.

Forest Ecosystems
Article number: 100102
Cite this article:
Zhang P, Lü X-T, Jin G, et al. Leaf nitrogen resorption is more important than litter nitrogen mineralization in mediating the diversity–productivity relationship along a nitrogen-limited temperate forest succession chronosequence. Forest Ecosystems, 2023, 10(1): 100102. https://doi.org/10.1016/j.fecs.2023.100102

567

Views

20

Downloads

3

Crossref

3

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 28 November 2022
Revised: 20 February 2023
Accepted: 20 February 2023
Published: 22 February 2023
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return