AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2 MB)
Collect
AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Leaf phenology rather than mycorrhizal type regulates soil nematode abundance, but collectively affects nematode diversity in seven common subtropical tree species

Jianqing Wanga,bJiaoyan Maoa,bYunyan Tana,bShu Kee LamcQiling Guoa,bXiuzhen Shia,b( )
Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Institute of Geography, Fujian Normal University, Fuzhou, 350117, China
Fujian Provincial Key Laboratory for Subtropical Resources and Environment, School of Geographical Sciences, Fujian Normal University, Fuzhou, 350117, China
Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia
Show Author Information

Abstract

The underlying mechanisms of the relationships between tree species and the soil micro-food web in forest ecosystems remain uncertain, primarily ascribed to an insufficient understanding on how tree functional traits drive soil nematode communities, including in subtropical forests. We investigated the impacts of seven subtropical tree species (evergreen: Pinus massoniana, Mytilaria laosensis, Ilex chinensis, Michelia macclurei; and deciduous: Liquidambar formosana, Quercus acutissima, and Betula luminifera) on the soil nematode communities. We found that the abundance of soil nematodes was not affected by mycorrhizal types, but it was around 83% higher under the deciduous trees than the evergreen trees, indicating the importance of leaf phenology to the abundance of soil nematodes. Nonetheless, both the evergreen and the arbuscular mycorrhizal trees increased soil nematode diversity, resulting from changes in root traits and soil properties. Furthermore, root traits (root C, root N, and root C: N ratio), and soil properties (total C, total N, moisture content, and bulk density) were the best predictors of the community composition of soil nematodes, indicating a key role of resource quality and soil microhabitat in regulating soil nematodes. In contrast, the ectomycorrhizal trees had lower plant parasite and Wasilewska indices, and evenness, whereas the evergreen trees slightly improved the evenness of soil nematodes. This study suggests that tree species affect the soil food web through changes in soil conditions and plant functional traits in subtropical forests.

References

 

Bahram, M., Koljalg, U., Kohout, P., Mirshahvaladi, S., Tedersoo, L., 2013. Ectomycorrhizal fungi of exotic pine plantations in relation to native host trees in Iran: evidence of host range expansion by local symbionts to distantly related host taxa. Mycorrhiza 23, 11-19.

 

Bahram, M., Netherway, T., Hildebrand, F., Pritsch, K., Drenkhan, R., Loit, K., Anslan, S., Bork, P., Tedersoo, L., 2020. Plant nutrient-acquisition strategies drive topsoil microbiome structure and function. New Phytol. 227, 1189-1199.

 

Bennett, J.A., Klironomos, J., 2019. Mechanisms of plant–soil feedback: interactions among biotic and abiotic drivers. New Phytol. 222, 91-96.

 

Brant, J.B., Myrold, D.D., Sulzman, E.W., 2006. Root controls on soil microbial community structure in forest soils. Oecologia 148, 650-659.

 

Brundrett, M.C., Tedersoo, L., 2018. Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol. 220, 1108-1115.

 

Cesarz, S., Ruess, L., Jacob, M., Jacob, A., Schaefer, M., Scheu, S., 2013. Tree species diversity versus tree species identity: driving forces in structuring forest food webs as indicated by soil nematodes. Soil Biol. Biochem. 62, 36-45.

 

Cornelissen, J., Lavorel, S., Garnier, E., Diaz, S., Buchmann, N., Gurvich, D., Reich, P., Ter Steege, H., Morgan, H., Van Der Heijden, M., 2003. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot. 51, 335-380.

 

Cortois, R., Veen, G.F., Duyts, H., Abbas, M., Strecker, T., Kostenko, O., Eisenhauer, N., Scheu, S., Gleixner, G., De Deyn, G.B., van der Putten, W.H., 2017. Possible mechanisms underlying abundance and diversity responses of nematode communities to plant diversity. Ecosphere 8 (5), e01719.

 

Diaz, S., Kattge, J., Cornelissen, J.H., Wright, I.J., Lavorel, S., Dray, S., Reu, B., Kleyer, M., Wirth, C., Colin Prentice, I., 2016. The global spectrum of plant form and function. Nature 529, 167-171.

 

Dietrich, P., Cesarz, S., Liu, T., Roscher, C., Eisenhauer, N., 2021. Effects of plant species diversity on nematode community composition and diversity in a long-term biodiversity experiment. Oecologia 197 (2), 297-311.

 

Endlweber, K., Ruess, L., Scheu, S., 2009. Collembola switch diet in presence of plant roots thereby functioning as herbivores. Soil Biol. Biochem. 41, 1151-1154.

 

Faucon, M.P., Houben, D., Lambers, H., 2017. Plant functional traits: soil and ecosystem services. Trends Plant Sci. 22, 385-394.

 

Gao, D., Wan, S., Fu, S., Zhao, J., 2021. Effects of understory or overstory removal on the abundances of soil nematode genera in a eucalyptus plantation. Front. Plant Sci. 12, 640299.

 

Gujre, N., Soni, A., Rangan, L., Tsang, D.C.W., Mitra, S., 2021. Sustainable improvement of soil health utilizing biochar and arbuscular mycorrhizal fungi: a review. Environ. Pollut. 268, 115549.

 

Hedenec, P., Zheng, H., Siqueira, D.P., Lin, Q., Peng, Y., Schmidt, I.K., Froslev, T.G., Kjoller, R., Rousk, J., Vesterdal, L., 2023. Tree species traits and mycorrhizal association shape soil microbial communities via litter quality and species mediated soil properties. For. Ecol. Manag. 527, 120608.

 

Hedlund, K., Santa Regina, I., Van der Putten, W., Leps, J., Diaz, T., Korthals, G., Lavorel, S., Brown, V., Gormsen, D., Mortimer, S., 2003. Plant species diversity, plant biomass and responses of the soil community on abandoned land across Europe: idiosyncracy or above-belowground time lags. Oikos 103, 45-58.

 

Hodson, A.K., Ferris, H., Hollander, A.D., Jackson, L.E., 2014. Nematode food webs associated with native perennial plant species and soil nutrient pools in California riparian oak woodlands. Geoderma 228, 182-191.

 

Hua, J., Lin, X., Bai, J., Shao, Y., Yin, R., Qian, J., 2010. Effects of arbuscular mycorrhizal fungi and earthworm on nematode communities and arsenic uptake by maize in arsenic-contaminated soils. Pedosphere 20, 163-173.

 

Jiao, S., Yang, Y., Xu, Y., Zhang, J., Lu, Y., 2020. Balance between community assembly processes mediates species coexistence in agricultural soil microbiomes across eastern China. ISME J. 14, 202-216.

 

Keith, A.M., Brooker, R.W., Osler, G.H.R., Chapman, S.J., Burslem, D.F.R.P., van der Wal, R., 2009. Strong impacts of belowground tree inputs on soil nematode trophic composition. Soil Biol. Biochem. 41, 1060-1065.

 

Li, Z., Bluhm, S.L., Scheu, S., Pollierer, M.M., 2022. Amino acid isotopes in functional assemblages of Collembola reveal the influence of vertical resource heterogeneity and root energy supply on trophic interactions in soil food webs. Soil Biol. Biochem. 174, 108815.

 

Liu, Q., Yin, R., Tan, B., You, C., Zhang, L., Zhang, J., Xu, Z., Schadler, M., Scheu, S., 2021. Nitrogen addition and plant functional type independently modify soil mesofauna effects on litter decomposition. Soil Biol. Biochem. 160, 108340.

 

Liu, Y., Xiang, H., Huang, Z., Xiang, X., Yu, Y., Wang, M., Li, Z., 2022. Analysis of leaf-architecture characteristics and ecological adaptability of tree species in the upper reaches of the Chishui river. Ecol. Indicat. 135, 108563.

 

Montane, F., Romanya, J., Rovira, P., Casals, P., 2010. Aboveground litter quality changes may drive soil organic carbon increase after shrub encroachment into mountain grasslands. Plant Soil 337, 151-165.

 

Monokrousos, N., Charalampidis, G., Boutsis, G., Sousanidou, V., Papatheodorou, E.M., Argyropoulou, M.D., 2014. Plant-induced differentiation of soil variables and nematode community structure in a Mediterranean serpentine ecosystem. Soil Res. 52, 593-603.

 

Mueller, K.E., Eisenhauer, N., Reich, P.B., Hobbie, S.E., Chadwick, O.A., Chorover, J., Dobies, T., Hale, C.M., Jagodzinski, A.M., Kalucka, I., 2016. Light, earthworms, and soil resources as predictors of diversity of 10 soil invertebrate groups across monocultures of 14 tree species. Soil Biol. Biochem. 92, 184-198.

 

Naveed, M., Herath, L., Moldrup, P., Arthur, E., Nicolaisen, M., Norgaard, T., Ferré, T.P., de Jonge, L.W., 2016. Spatial variability of microbial richness and diversity and relationships with soil organic carbon, texture and structure across an agricultural field. Appl. Soil Ecol. 103, 44-55.

 

Otfinowski, R., Coffey, V., 2020. Can root traits predict communities of soil nematodes in restored northern prairies? Plant Soil 453 (1), 459-471.

 

Paterson, E., Gebbing, T., Abel, C., Sim, A., Telfer, G., 2007. Rhizodeposition shapes rhizosphere microbial community structure in organic soil. New Phytol. 173, 600-610.

 

Prescott, C.E., Grayston, S.J., 2013. Tree species influence on microbial communities in litter and soil: current knowledge and research needs. For. Ecol. Manag. 309, 19-27.

 

Quist, C.W., Gort, G., Mooijman, P., Brus, D.J., van den Elsen, S., Kostenko, O., Vervoort, M., Bakker, J., van der Putten, W.H., Helder, J., 2019. Spatial distribution of soil nematodes relates to soil organic matter and life strategy. Soil Biol. Biochem. 136, 107542.

 

Rahman, M.M., Tsukamoto, J., 2013. Leaf traits, litter decomposability and forest floor dynamics in an evergreen- and a deciduous-broadleaved forest in warm temperate Japan. Forestry 86, 441-451.

 

Revillini, D., Gehring, C.A., Johnson, N.C., 2016. The role of locally adapted mycorrhizas and rhizobacteria in plant–soil feedback systems. Funct. Ecol. 30, 1086-1098.

 

Semchenko, M., Leff, J.W., Lozano, Y.M., Saar, S., Davison, J., Wilkinson, A., Jackson, B.G., Pritchard, W.J., De Long, J.R., Oakley, S., 2018. Fungal diversity regulates plant-soil feedbacks in temperate grassland. Sci. Adv. 4, eaau4578.

 

Sokol, N.W., Slessarev, E., Marschmann, G.L., Nicolas, A., Blazewicz, S.J., Brodie, E.L., Firestone, M.K., Foley, M.M., Hestrin, R., Hungate, B.A., 2022. Life and death in the soil microbiome: how ecological processes influence biogeochemistry. Nat. Rev. Microbiol. 20, 415-430.

 

Singavarapu, B., Beugnon, R., Bruelheide, H., Cesarz, S., Du, J., Eisenhauer, N., Guo, L.D., Nawaz, A., Wang, Y., Xue, K., 2021. Tree mycorrhizal type and tree diversity shape the forest soil microbiota. Environ. Microbil. 24, 4236-4255.

 

Tedersoo, L., Bahram, M., Zobel, M., 2020. How mycorrhizal associations drive plant population and community biology. Science 367, eaba1223.

 

Vallejos-Torres, G., Espinoza, E., Marín-Díaz, J., Solis, R., Arevalo, L.A., 2020. The role of arbuscular mycorrhizal fungi against root-knot nematode infections in coffee plants. J. Soil Sci. Plant Nutr. 21, 364-373.

 

Van Den Hoogen, J., Geisen, S., Routh, D., Ferris, H., Traunspurger, W., Wardle, D.A., De Goede, R.G., Adams, B.J., Ahmad, W., Andriuzzi, W.S., 2019. Soil nematode abundance and functional group composition at a global scale. Nature 572, 194-198.

 

Wang, J., Shi, X., Lucas-Borja, M.E., Lam, S.K., Wang, Z., Huang, Z., 2022a. Plants, soil properties and microbes directly and positively drive ecosystem multifunctionality in a plantation chronosequence. Land Degrad. Dev. 36, 3049-3057.

 

Wang, J., Zheng, Y., Shi, X., Lam, S.K., Lucas-Borja, M.E., Huang, Z., 2022b. Nature restoration shifts the abundance and structure of soil nematode communities in subtropical forests. Plant Soil 471, 315-327.

 

Wang, J., Shi, X., Lucas-Borja, M.E., Guo, Q., Mao, J., Tan, Y., Zhang, G., 2023. Soil nematode abundances drive agroecosystem multifunctionality under short-term elevated CO2 and O3. Global Change Biol. 29, 1618-1627.

 

Wardle, D.A., 2006. The influence of biotic interactions on soil biodiversity. Ecol. Lett. 9, 870-886.

 

Wasilewska, L., 1994. The effect of age of meadows on succession and diversity in soil nematode communities. Pedobiologia 38, 1-11.

 

Yan, D., Yan, D., Song, X., Yu, Z., Peng, D., Ting, X., Weng, B., 2018. Community structure of soil nematodes under different drought conditions. Geoderma 325, 110-116.

 

Zhang, X., Guan, P., Wang, Y., Li, Q., Zhang, S., Zhang, Z., Bezemer, T.M., Liang, W., 2015. Community composition, diversity and metabolic footprints of soil nematodes in differently-aged temperate forests. Soil Biol. Biochem. 80, 118-126.

 

Žifčáková, L., Větrovský, T., Howe, A., Baldrian, P., 2016. Microbial activity in forest soil reflects the changes in ecosystem properties between summer and winter. Environ. Microbiol. 18, 288-301.

Forest Ecosystems
Article number: 100103
Cite this article:
Wang J, Mao J, Tan Y, et al. Leaf phenology rather than mycorrhizal type regulates soil nematode abundance, but collectively affects nematode diversity in seven common subtropical tree species. Forest Ecosystems, 2023, 10(2): 100103. https://doi.org/10.1016/j.fecs.2023.100103

454

Views

12

Downloads

6

Crossref

4

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 17 November 2022
Revised: 03 March 2023
Accepted: 03 March 2023
Published: 10 March 2023
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return