AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.5 MB)
Collect
AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Prediction of tree crown width in natural mixed forests using deep learning algorithm

Yangping Qina,bBiyun WuaXiangdong Leia( )Linyan Fenga
Key Laboratory of Forest Management and Growth Modelling, National Forestry and Grassland Administration, Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Beijing, 100091, China
Southwest Survey and Planning Institute, National Forestry and Grassland Administration, Kunming, 650031, China
Show Author Information

Abstract

Crown width (CW) is one of the most important tree metrics, but obtaining CW data is laborious and time-consuming, particularly in natural forests. The Deep Learning (DL) algorithm has been proposed as an alternative to traditional regression, but its performance in predicting CW in natural mixed forests is unclear. The aims of this study were to develop DL models for predicting tree CW of natural spruce-fir-broadleaf mixed forests in north-eastern China, to analyse the contribution of tree size, tree species, site quality, stand structure, and competition to tree CW prediction, and to compare DL models with nonlinear mixed effects (NLME) models for their reliability. An amount of total 10, 086 individual trees in 192 subplots were employed in this study. The results indicated that all deep neural network (DNN) models were free of overfitting and statistically stable within 10-fold cross-validation, and the best DNN model could explain 69% of the CW variation with no significant heteroskedasticity. In addition to diameter at breast height, stand structure, tree species, and competition showed significant effects on CW. The NLME model (R2 ​= ​0.63) outperformed the DNN model (R2 ​= ​0.54) in predicting CW when the six input variables were consistent, but the results were the opposite when the DNN model (R2 ​= ​0.69) included all 22 input variables. These results demonstrated the great potential of DL in tree CW prediction.

References

 
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.F., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mane, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viegas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X., 2016. TensorFlow: Large-scale machine learning on heterogeneous distributed systems. arXiv: 160304467 [cs]
 

Aertsen, W., Kint, V., van Orshoven, J., Özkan, K., Muys, B., 2010. Comparison and ranking of different modelling techniques for prediction of site index in Mediterranean mountain forests. Ecol. Model. 221, 1119-1130. https://doi.org/10.1016/j.ecolmodel.2010.01.007

 

Ali, A., 2019. Forest stand structure and functioning: Current knowledge and future challenges. Ecol. Indicat. 98, 665-677. https://doi.org/10.1016/j.ecolind.2018.11.017

 

Ashraf, M.I., Meng, F. -R., Bourque, C.P. -A., MacLean, D.A., 2015. A novel modelling approach for predicting forest growth and yield under climate change. PLoS One 10, e0132066. https://doi.org/10.1371/journal.pone.0132066

 

Ashraf, M.I., Zhao, Z., Bourque, C.P.-A., MacLean, D.A., Meng, F.R., 2013. Integrating biophysical controls in forest growth and yield predictions with artificial intelligence technology. Can. J. For. Res. 43, 1162-1171. https://doi.org/10.1139/cjfr-2013-0090

 

Barbeito, I., Collet, C., Ningre, F., 2014. Crown responses to neighbor density and species identity in a young mixed deciduous stand. Trees Struct. Funct. 28, 1751-1765. https://doi.org/10.1007/s00468-014-1082-2

 

Bayat, M., Bettinger, P., Hassani, M., Heidari, S., 2021. Ten-year estimation of oriental beech (Fagus orientalis Lipsky) volume increment in natural forests: a comparison of an artificial neural networks model, multiple linear regression and actual increment. Forestry 94, 598-609. https://doi.org/10.1093/forestry/cpab001

 

Bayat, M., Bettinger, P., Heidari, S., Khalyani, A.H., Jourgholami, M., Hamidi, S.K., 2020. Estimation of tree heights in an uneven-aged, mixed forest in northern Iran using artificial intelligence and empirical models. Forests 11, 324. https://doi.org/10.3390/f11030324

 

Bayat, M., Ghorbanpour, M., Zare, R., Jaafari, A., Pham, B.T., 2019. Application of artificial neural networks for predicting tree survival and mortality in the Hyrcanian forest of Iran. Comput. Electron. Agric. 164, 104929. https://doi.org/10.1016/j.compag.2019.104929

 

Bechtold, W.A., 2004. Largest-crown-width prediction models for 53 species in the western United States. West. J. Appl. Finance. 19, 245-251. https://doi.org/10.1093/wjaf/19.4.245

 

Bergstra, J., Bengio, Y., 2012. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13, 281-305.

 

Bragg, D.C., 2001. A local basal area adjustment for crown width prediction. N. J. Appl. For. 18, 22-28. https://doi.org/10.1093/njaf/18.1.22

 
Bravo-Oviedo, A., Pretzsch, H., del Rio, M., 2018. Dynamics, Silviculture and Management of Mixed Forests. Springer International Publishing, Cham
 

Buchacher, R., Ledermann, T., 2020. Interregional crown width models for individual trees growing in pure and mixed stands in Austria. Forests 11, 114. https://doi.org/10.3390/f11010114

 

Chen, Q., Duan, G., Liu, Q., Ye, Q., Sharma, R.P., Chen, Y., Liu, H., Fu, L., 2021. Estimating crown width in degraded forest: a two-level nonlinear mixed-effects crown width model for Dacrydium pierrei and Podocarpus imbricatus in tropical China. For. Ecol. Manag. 497, 119486. https://doi.org/10.1016/j.foreco.2021.119486

 
Chollet, F., 2017. Deep Learning with Python. Manning Publications, Shelter Island, NY, USA
 

Condés, S., Sterba, H., 2005. Derivation of compatible crown width equations for some important tree species of Spain. For. Ecol. Manag. 217, 203-218. https://doi.org/10.1016/j.foreco.2005.06.002

 

Dahouda, M.K., Joe, I., 2021. A Deep-learned embedding technique for categorical features encoding. IEEE Access 9, 114381-114391. https://doi.org/10.1109/ACCESS.2021.3104357

 

Davies, O., Pommerening, A., 2008. The contribution of structural indices to the modelling of Sitka spruce (Picea sitchensis) and birch (Betula spp. ) crowns. For. Ecol. Manag. 256, 68-77. https://doi.org/10.1016/j.foreco.2008.03.052

 

del Río, M., Pretzsch, H., Alberdi, I., Bielak, K., Bravo, F., Brunner, A., Condes, S., Ducey, M.J., Fonseca, T., von Lupke, N., Pach, M., Peric, S., Perot, T., Souidi, Z., Spathelf, P., Sterba, H., Tijardovic, M., Tome, M., Vallet, P., Bravo-Oviedo, A., 2016. Characterization of the structure, dynamics, and productivity of mixed-species stands: review and perspectives. Eur. J. For. Res. 135, 23-49. https://doi.org/10.1007/s10342-015-0927-6

 

Diamantopoulou, M.J., 2005. Artificial neural networks as an alternative tool in pine bark volume estimation. Comput. Electron. Agric. 48, 235-244. https://doi.org/10.1016/j.compag.2005.04.002

 

Diamantopoulou, M.J., Özçelik, R., Crecente-Campo, F., Eler, Ü., 2015. Estimation of Weibull function parameters for modelling tree diameter distribution using least squares and artificial neural networks methods. Biosyst. Eng. 133, 33-45. https://doi.org/10.1016/j.biosystemseng.2015.02.013

 

Domingues, G.F., Soares, V.P., Leite, H.G., Ferraz, A.S., Ribeiro, C.A.A.S., Lorenzon, A.S., Marcatti, G.E., Teixeira, T.R., de Castro, N.L.M., Mota, P.H.S., de Souza, G.S.A., de Menezes, S.J.M.D., dos Santos, A.R., do Amaral, C.H., 2020. Artificial neural networks on integrated multispectral and SAR data for high-performance prediction of eucalyptus biomass. Comput. Electron. Agric. 168, 105089. https://doi.org/10.1016/j.compag.2019.105089

 

Ercanli, I., 2020a. Artificial intelligence with deep learning algorithms to model relationships between total tree height and diameter at breast height. For. Syst. 29, e013. https://doi.org/10.5424/fs/2020292-16393

 

Ercanli, I., 2020b. Innovative deep learning artificial intelligence applications for predicting relationships between individual tree height and diameter at breast height. For. Ecosyst. 7, 12. https://doi.org/10.1186/s40663-020-00226-3

 

Foli, E.G., Alder, D., Miller, H.G., Swaine, M.D., 2003. Modelling growing space requirements for some tropical forest tree species. For. Ecol. Manag. 173, 79-88. https://doi.org/10.1016/S0378-1127(01)00815-5

 

Forrester, D.I., 2019. Linking forest growth with stand structure: Tree size inequality, tree growth or resource partitioning and the asymmetry of competition. For. Ecol. Manag. 447, 139-157. https://doi.org/10.1016/j.foreco.2019.05.053

 

Freitas, E.C.S., Paiva, H.N., Neves, J.C.L., Marcatti, G.E., Leite, H.E., 2020. Modeling of eucalyptus productivity with artificial neural networks. Ind. Crop. Prod. 146, 112149. https://doi.org/10.1016/j.indcrop.2020.112149

 

Fu, L., Sharma, R.P., Hao, K., Tang, S., 2017a. A generalized interregional nonlinear mixed-effects crown width model for Prince Rupprecht larch in northern China. For. Ecol. Manag. 389, 364-373. https://doi.org/10.1016/j.foreco.2016.12.034

 

Fu, L., Sharma, R.P., Wang, G., Tang, S., 2017b. Modelling a system of nonlinear additive crown width models applying seemingly unrelated regression for Prince Rupprecht larch in northern China. For. Ecol. Manag. 386, 71-80. https://doi.org/10.1016/j.foreco.2016.11.038

 

Fu, L., Sun, H., Sharma, R.P., Lei, Y.C., Zhang, H.R., Tang, S.Z., 2013. Nonlinear mixed-effects crown width models for individual trees of Chinese fir (Cunninghamia lanceolata) in south-central China. For. Ecol. Manag. 302, 210-220. https://doi.org/10.1016/j.foreco.2013.03.036

 

Gonzalez-Benecke, C.A., Gezan, S.A., Samuelson, L.J., Cropper, W.P., Leduc, D.J., Martin, T.A., 2014. Estimating Pinus palustris tree diameter and stem volume from tree height, crown area and stand-level parameters. J. For. Res. 25, 43-52.

 

Hamidi, S.K., Weiskittel, A., Bayat, M., Fallah, A., 2021a. Development of individual tree growth and yield model across multiple contrasting species using non-parametric and parametric methods in the Hyrcanian forests of northern Iran. Eur. J. For. Res. 140, 421-434. https://doi.org/10.1007/s10342-020-01340-1

 

Hamidi, S.K., Zenner, E.K., Bayat, M., Fallah, A., 2021b. Analysis of plot-level volume increment models developed from machine learning methods applied to an uneven-aged mixed forest. Ann. For. Sci. 78, 4. https://doi.org/10.1007/s13595-020-01011-6

 

Hao, X., Sun, Y., Wang, X.J., Wang, J., Fu, Y., 2015. Linear mixed-effects models to describe individual tree crown width for China-fir in Fujian province, Southeast China. PLoS One 10, e0122257. https://doi.org/10.1371/journal.pone.0122257

 

Hardiman, B.S., Bohrer, G., Gough, C.M., Vogel, C.S., Curtis, P.S., 2011. The role of canopy structural complexity in wood net primary production of a maturing northern deciduous forest. Ecology 92, 1818-1827. https://doi.org/10.1890/10-2192.1

 
Hastie, T., Friedman, J., Tibshirani, R., 2001. The Elements of Statistical Learning. Springer New York, New York, NY
 

Hinton, G.E., Salakhutdinov, R.R., 2006. Reducing the dimensionality of data with neural networks. Science 313, 504-507. https://doi.org/10.1126/science.1127647

 

Huy, B., Truong, N.Q., Khiem, N.Q., Poudel, K.P., Temesgen, H., 2022. Deep learning models for improved reliability of tree aboveground biomass prediction in the tropical evergreen broadleaf forests. For. Ecol. Manag. 508, 120031. https://doi.org/10.1016/j.foreco.2022.120031

 
Jaderberg, M., Dalibard, V., Osindero, S., Czarnecki, W.M., Donahue, J., Razavi, A., Vinyals, O., Green, T., Dunning, I., Simonyan, K., Fernando, C., Kavukcuoglu, K., 2017. Population based training of neural networks. arXiv: 171109846 [cs]
 

Jucker, T., Bouriaud, O., Coomes, D.A., 2015. Crown plasticity enables trees to optimize canopy packing in mixed-species forests. Funct. Ecol. 29, 1078-1086. https://doi.org/10.1111/1365-2435.12428

 

Karaboga, D., Kaya, E., 2019. Adaptive network based fuzzy inference system (ANFIS) training approaches: a comprehensive survey. Artif. Intell. Rev. 52, 2263-2293. https://doi.org/10.1007/s10462-017-9610-2

 

Kint, V., Van Meirvenne, M., Nachtergale, L., Geudens, G., 2003. Spatial methods for quantifying forest stand structure development: a comparison between nearest-neighbor indices and variogram analysis. For. Sci. 49, 36-49.

 

Krajicek, E., Brinkman, A., Gingrich, F., 1961. Crown competition - A measure of density. For. Sci. 7, 35-42. https://doi.org/10.1093/forestscience/7.1.35

 

Kuuluvainen, T., Penttinen, A., Leinonen, K., Nygren, M., 1996. Statistical opportunities for comparing stand structural heterogeneity in managed and primeval forests: an example from boreal spruce forest in southern Finland. Silv. Fenn. 30, 315-325.

 

LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. Nature 521, 436-444. https://doi.org/10.1038/nature14539

 

Lei, Y., Fu, L., Affleck, D.L.R., Nelson, A.S., Shen, C.C., Wang, M.X., Zheng, J.B., Ye, Q.L., Yang, G.W., 2018. Additivity of nonlinear tree crown width models: Aggregated and disaggregated model structures using nonlinear simultaneous equations. For. Ecol. Manag. 427, 372-382. https://doi.org/10.1016/j.foreco.2018.06.013

 

Lexeroed, N.L., Eid, T., 2006. An evaluation of different diameter diversity indices based on criteria related to forest management planning. For. Ecol. Manag. 222, 17-28. https://doi.org/10.1016/j.foreco.2005.10.046

 

Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., Talwalkar, A., 2018. Hyperband: A novel bandit-based approach to hyperparameter optimization. J. Mach. Learn. Res. 18, 6765-6816

 

Liu, C., Li, W., Wu, H., Lu, P., Sang, K., Sun, W.W., Chen, W., Hong, Y., Li, R.X., 2013. Susceptibility evaluation and mapping of China's landslides based on multi-source data. Nat. Hazards 69, 1477-1495. https://doi.org/10.1007/s11069-013-0759-y

 

Liu, H., Shen, X., Cao, L., Yun, T., Zhang, Z.N., Fu, X.Y., Chen, X.X., Liu, F.Z., 2021. Deep learning in forest structural parameter estimation using airborne LiDAR data. IEEE J. Sel. Top. Appl. Earth Obs. Rem. Sens. 14, 1603-1618. https://doi.org/10.1109/JSTARS.2020.3046053

 

Liu, Z., Peng, C., Work, T., Candau, J.N., DesRochers, A., Kneeshaw, D., 2018. Application of machine-learning methods in forest ecology: recent progress and future challenges. Environ. Rev. 26, 339-350. https://doi.org/10.1139/er-2018-0034

 

Monserud, R.A., Sterba, H., 1996. A basal area increment model for individual trees growing in even- and uneven-aged forest stands in Austria. For. Ecol. Manag. 80, 57-80. https://doi.org/10.1016/0378-1127(95)03638-5

 
Moolayil, J., 2019. Learn Keras for Deep Neural Networks: A Fast-Track Approach to Modern Deep Learning with Python. Apress, Berkeley, CA
 

Mosaffaei, Z., Jahani, A., 2021. Modeling of ash (Fraxinus excelsior) bark thickness in urban forests using artificial neural network (ANN) and regression models. Model. Earth Syst. Environ. 7, 1443-1452. https://doi.org/10.1007/s40808-020-00869-9

 

Nunes, M.H., Görgens, E.B., 2016. Artificial intelligence procedures for tree taper estimation within a complex vegetation mosaic in Brazil. PLoS One 11, e0154738. https://doi.org/10.1371/journal.pone.0154738

 

Ogana, F.N., Ercanli, I., 2022. Modelling height-diameter relationships in complex tropical rain forest ecosystems using deep learning algorithm. J. For. Res. 33, 883-898. https://doi.org/10.1007/s11676-021-01373-1

 
O'Malley, T., Bursztein, E., Long, J., Chollet, F., Jin, H., Invernizzi, L., 2019. KerasTuner. https://github.com/keras-team/keras-tuner (Accessed 30 March 2023).
 

Özçelik, R., Diamantopoulou, M.J., Crecente-Campo, F., Eler, U., 2013. Estimating Crimean juniper tree height using nonlinear regression and artificial neural network models. For. Ecol. Manag. 306, 52-60. https://doi.org/10.1016/j.foreco.2013.06.009

 

Ozcelik, R., Diamantopoulou, M.J., Eker, M., Gurlevik, N., 2017. Artificial neural network models: An alternative approach for reliable aboveground pine tree biomass prediction. For. Sci. 63, 291-302. https://doi.org/10.5849/FS-16-006

 

Papale, D., Valentini, R., 2003. A new assessment of European forests carbon exchanges by eddy fluxes and artificial neural network spatialization: A new assessment of European forests carbon. Glob. Change Biol. 9, 525-535. https://doi.org/10.1046/j.1365-2486.2003.00609.x

 
Pielou, E.C., 1969. An Introduction to Mathematical Ecology, second ed. WileyInterscience, New York.
 

Pretzsch, H., Biber, P., Uhl, E., Dahlhausen, J., Rotzer, T., Caldentey, J., Koike, T., van Con, T., Chavanne, A., Seifert, T., du Toit, B., Farnden, C., Pauleit, S., 2015a. Crown size and growing space requirement of common tree species in urban centres, parks, and forests. Urban For. Urban Green. 14, 466-479. https://doi.org/10.1016/j.ufug.2015.04.006

 

Pretzsch, H., Forrester, D.I., Rötzer, T., 2015b. Representation of species mixing in forest growth models. A review and perspective. Ecol. Model. 313, 276-292. https://doi.org/10.1016/j.ecolmodel.2015.06.044

 

Qin, Y., He, X., Lei, X., Feng, L., Zhou, Z.Y., Lu, J., 2022. Tree size inequality and competition effects on nonlinear mixed effects crown width model for natural spruce-fir-broadleaf mixed forest in northeast China. For. Ecol. Manag. 518, 120291. https://doi.org/10.1016/j.foreco.2022.120291

 

Raptis, D., Kazana, V., Kazaklis, A., Stamatiou, C., 2018. A crown width-diameter model for natural even-aged black pine forest management. Forests 9, 610. https://doi.org/10.3390/f9100610

 

Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., Prabhat, 2019. Deep learning and process understanding for data-driven Earth system science. Nature 566, 195-204. https://doi.org/10.1038/s41586-019-0912-1

 

Reis, L.P., de Souza, A.L., dos Reis, P.C.M., Mazzei, L., Soares, C.P.B., Torres, C.M.M.E., da Silva, L.F., Ruschel, A.R., Rego, L.J.S., Leite, H.G., 2018. Estimation of mortality and survival of individual trees after harvesting wood using artificial neural networks in the amazon rain forest. Ecol. Eng. 112, 140-147. https://doi.org/10.1016/j.ecoleng.2017.12.014

 

Riofrío, J., del Río, M., Pretzsch, H., Bravo, F., 2017. Changes in structural heterogeneity and stand productivity by mixing Scots pine and Maritime pine. For. Ecol. Manag. 405, 219-228. https://doi.org/10.1016/j.foreco.2017.09.036

 

Ruiz-Benito, P., Gómez-Aparicio, L., Paquette, A., Messier, C., Kattge, J., Zavala, M.A., 2014. Diversity increases carbon storage and tree productivity in Spanish forests: Diversity effects on forest carbon storage and productivity. Glob. Ecol. Biogeogr. 23, 311-322. https://doi.org/10.1111/geb.12126

 

Saud, P., Lynch, T.B., Anup, K.C., Guldin, J.M., 2016. Using quadratic mean diameter and relative spacing index to enhance height-diameter and crown ratio models fitted to longitudinal data. Forestry 89, 215-229. https://doi.org/10.1093/forestry/cpw004

 

Shannon, C.E., 1948. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379-423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

 

Sharma, R.P., Bílek, L., Vacek, Z., Vacek, S., 2017. Modelling crown width-diameter relationship for Scots pine in the central Europe. Trees-Struct. Funct. 31, 1875-1889. https://doi.org/10.1007/s00468-017-1593-8

 

Sharma, R.P., Vacek, Z., Vacek, S., 2016. Individual tree crown width models for Norway spruce and European beech in Czech Republic. For. Ecol. Manag. 366, 208-220. https://doi.org/10.1016/j.foreco.2016.01.040

 

Skudnik, M., Jevšenak, J., 2022. Artificial neural networks as an alternative method to nonlinear mixed-effects models for tree height predictions. For. Ecol. Manag. 507, 120017. https://doi.org/10.1016/j.foreco.2022.120017

 

Snoek, J., Larochelle, H., Adams, R.P., 2012. Practical bayesian optimization of machine learning algorithms. Adv. Neural Inf. Process. Syst. 2, 2951-2959.

 

Song, C. 2007. Estimating tree crown size with spatial information of high resolution optical remotely sensed imagery. Int. J. Rem. Sens. 28, 3305-3322. https://doi.org/10.1080/01431160600993413

 

Sönmez, T., 2009. Diameter at breast height-crown diameter prediction models for Picea orientalis. Afr. J. Agric. Res. 4, 215-219.

 

Sothe, C., De Almeida, C.M., Schimalski, M.B., Liesenberg, V., La Rosa, L.E.C., Castro, J.D.B., Feitosa, R.Q., 2020. A comparison of machine and deep-learning algorithms applied to multisource data for a subtropical forest area classification. Int. J. Rem. Sens. 41, 1943-1969. https://doi.org/10.1080/01431161.2019.1681600

 

Thom, D., Keeton, W.S., 2019. Stand structure drives disparities in carbon storage in northern hardwood-conifer forests. For. Ecol. Manag. 442, 10-20. https://doi.org/10.1016/j.foreco.2019.03.053

 

Thorpe, H.C., Astrup, R., Trowbridge, A., Coates, K.D., 2010. Competition and tree crowns: A neighborhood analysis of three boreal tree species. For. Ecol. Manag. 259, 1586-1596. https://doi.org/10.1016/j.foreco.2010.01.035

 

VanderSchaaf, C.L., 2014. Mixed-effects height-diameter models for ten conifers in the inland Northwest, USA. South. For. 76, 1-9. https://doi.org/10.2989/20702620.2013.870396

 

Vieira, G.C., de Mendonca, A.R., da Silva, G.F., Zanetti, S.S., da Silva, M.M., dos Santos, A.R., 2018. Prognoses of diameter and height of trees of eucalyptus using artificial intelligence. Sci. Total Environ. 619-620, 1473-1481. https://doi.org/10.1016/j.scitotenv.2017.11.138

 

Wang, W., Ge, F., Hou, Z., Meng, J., 2021. Predicting crown width and length using nonlinear mixed-effects models: a test of competition measures using Chinese fir (Cunninghamia lanceolata (Lamb. ) Hook. ). Ann. For. Sci. 78, 1-17.

 
Weiskittel, A.R., 2011. Forest growth and yield modeling. Wiley, Hoboken, NJ
 

Yang, Y., Huang, S., 2017. Allometric modelling of crown width for white spruce by fixed- and mixed-effects models. For Chron 93, 138-147. https://doi.org/10.5558/tfc2017-020

 

Yang, Y., Huang, S., 2018. Effects of competition and climate variables on modelling height to live crown for three boreal tree species in Alberta, Canada. Eur. J. For Res. 137, 153-167. https://doi.org/10.1007/s10342-017-1095-7

 

Ye, L., Gao, L., Marcos-Martinez, R., Mallants, D., Bryan, B.A., 2019. Projecting Australia's forest cover dynamics and exploring influential factors using deep learning. Environ. Model. Software. 119, 407-417. https://doi.org/10.1016/j.envsoft.2019.07.013

 

Zarnoch, S.J., Bechtold, W.A., Stolte, K.W., 2004. Using crown condition variables as indicators of forest health. Can. J. For. Res. 34, 1057-1070. https://doi.org/10.1139/x03-277

 
Zeiler, M.D., 2012. ADADELTA: An Adaptive Learning Rate Method. arXiv: 12125701 [cs]
 

Zhang, Q. -B., 2000. Modeling tree-ring growth responses to climatic variables using artificial neural networks. For. Sci. 46, 229-239.

 

Zhou, M., Lei, X., Lu, J., Gao, W.Q., Zhang, H.R., 2022. Comparisons of competitor selection approaches for spatially explicit competition indices of natural spruce-fir-broadleaf mixed forests. Eur. J. For Res. 141, 177-211. https://doi.org/10.1007/s10342-021-01430-8

 

Zhu, A.-X., Miao, Y., Wang, R., Zhu, T.X., Deng, Y.C., Liu, J.Z., Yang, L., Qin, C.Z., Hong, H.Y., 2018. A comparative study of an expert knowledge-based model and two data-driven models for landslide susceptibility mapping. Catena 166, 317-327. https://doi.org/10.1016/j.catena.2018.04.003

Forest Ecosystems
Article number: 100109
Cite this article:
Qin Y, Wu B, Lei X, et al. Prediction of tree crown width in natural mixed forests using deep learning algorithm. Forest Ecosystems, 2023, 10(3): 100109. https://doi.org/10.1016/j.fecs.2023.100109

418

Views

9

Downloads

7

Crossref

8

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 12 February 2023
Revised: 29 March 2023
Accepted: 30 March 2023
Published: 06 April 2023
© 2023 The Authors.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Return