AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.2 MB)
Collect
AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Fungal diversity and community composition responses to the reintroduction of fire in a non-managed Mediterranean shrubland ecosystem

Juncal Espinosaa,b( )Tatek DejenecMercedes GuijarrodXim CerdáeJavier Madrigald,f,1Pablo Martín-Pintob,1
Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
Sustainable Forest Management Research Institute, University of Valladolid, Palencia, Spain
Ethiopian Forestry Development, Addis Ababa, Ethiopia
Instituto de Ciencias Forestales (ICIFOR-INIA), CSIC, Madrid, Spain
Estación Biológica de Doñana, CSIC, Sevilla, Spain
University Polytechnic of Madrid, ETSI Montes, Forestal y Medio Natural, Madrid, Spain

1 Both authors contributed equally to manuscript as senior researchers and coordinators.

Show Author Information

Abstract

Background

More than a decade of fire suppression has changed the structure of fire-adapted shrubland ecosystems in Spain's National Parks, which are now at extreme risk of uncontrolled wildfires. Prescribed burning can mitigate the risk of wildfires by reducing the fuel load but prescribed burning may also alter the soil properties and reduce microbial and fungal activity, causing changes in the availability of nutrients deep in the soil layer. Although fungal communities are a vital part of post-fire restoration, some fire effects remain unclear. To examine the short-term effects of prescribed burning on soil fungal communities in Doñana Biological Reserve (SW Spain), we collected soil samples pre-burn and 1 day, 6 and 12 months post-burn from burned plots to perform physicochemical and metabarcode DNA analyses.

Results

Prescribed burning had no significant effect on the total fungal operational taxonomic unit richness and abundance. However, changes in soil pH, nitrogen and potassium content post-burn affected fungal community composition. Small non-significant changes in pH and phosphorous affected the composition of ectomycorrhizal fungi.

Conclusions

The ectomycorrhizal fungal community appears to be resilient to the effects of low-to moderate-intensity fires and saprotrophic taxa may benefit from this kind of fire. This finding revealed that prescribed burning is a potentially valuable management tool for reducing fire hazards in shrublands that has little effect on the total richness and abundance of fungal communities.

References

 

Adame, J.A., Lope, L., Hidalgo, P.J., Sorribas, M., Gutiérrez-Álvarez, I., Del Águila, A., Saiz-Lopez, A., Yela, M., 2018. Study of the exceptional meteorological conditions, trace gases and particulate matter measured during the 2017 forest fire in Doñana Natural Park, Spain. Sci. Total Environ. 645, 710–720.

 

Airey-Lauvaux, C., Pierce, A.D., Skinner, C.N., Taylor, A.H., 2022. Changes in fire behavior caused by fire exclusion and fuel build-up vary with topography in California montane forests, USA. J. Environ. Manag. 304, 114255.

 

Alem, D., Dejene, T., Oria-de-Rueda, J.A., Geml, J., Castaño, C., Smith, J.E., Martín-Pinto, P., 2020. Soil fungal communities and succession following wildfire in Ethiopian dry Afromontane forests, a highly diverse underexplored ecosystem. For. Ecol. Manag. 474, 118328.

 

Alem, D., Dejene, T., Geml, J., Oria-de-Rueda, J.A., Martín-Pinto, P., 2022. Metabarcoding analysis of the soil fungal community to aid the conservation of underexplored church forests in Ethiopia. Sci. Rep. 12, 4817.

 

Bean, L., Kostow, N., Tempest, A., 2009. The effects of prescribed burning on macrofungal species richness in upland, white oak forest. Tillers 6, 27–32.

 

Bianchi, S.R., Miyazawa, M., Oliveira, E.L.D., Pavan, M.A., 2008. Relationship between the mass of organic matter and carbon in soil. Braz. Arch. Biol. Technol. 51 (2), 263–269.

 

Borgogni, F., Lavecchia, A., Mastrolonardo, G., Certini, G., Ceccherini, M.T., Pietramellara, G., 2019. Immediate-and short-term wildfire impact on soil microbial diversity and activity in a Mediterranean forest soil. Soil Sci. 184 (2), 35–42.

 

Bradshaw, S.D., Dixon, K.W., Hopper, S.D., Lambers, H., Turner, S.R., 2011. Little evidence for fire-adapted plant traits in Mediterranean climate regions. Trends Plant Sci. 16 (2), 69–76.

 

Brown, S.P., Veach, A.M., Horton, J.L., Ford, E., Jumpponen, A., Baird, R., 2019. Context dependent fungal and bacterial soil community shifts in response to recent wildfires in the Southern Appalachian Mountains. For. Ecol. Manag. 451, 117520.

 

Buscardo, E., Rodríguez-Echeverría, S., Barrico, L., García, M.Á., Freitas, H., Martín, M.P., De Angelis, P., Muller, L.A., 2012. Is the potential for the formation of common mycorrhizal networks influenced by fire frequency? Soil Biol. Biochem. 46, 136–144.

 

Cairney, J.W., Bastias, B.A., 2007. Influences of fire on forest soil fungal communities. Can. J. For. Res. 37 (2), 207–215.

 

Castaño, C., Alday, J.G., Lindahl, B.D., de Aragón, J.M., de-Miguel, S., Colinas, C., Parlade, J., Pera, J., Bonet, J.A., 2018. Lack of thinning effects over inter-annual changes in soil fungal community and diversity in a Mediterranean pine forest. For. Ecol. Manag. 424, 420–427.

 

Castaño, C., Dejene, T., Mediavilla, O., Geml, J., Oria-de-Rueda, J.A., Martín-Pinto, P., 2019. Changes in fungal diversity and composition along a chronosequence of Eucalyptus grandis plantations in Ethiopia. Fungal Ecol. 39, 328–335.

 

Castaño, C., Hernandez-Rodriguez, M., Geml, J., Eberhart, J., Olaizola, J., Oria-de-Rueda, J.A., Martin-Pinto, P., 2020. Resistance of the soil fungal communities to medium-intensity fire prevention treatments in a Mediterranean scrubland. For. Ecol. Manag. 472, 118217.

 

Chaudhary, A., Burivalova, Z., Koh, L.P., Hellweg, S., 2016. Impact of forest management on species richness: global meta-analysis and economic trade-offs. Sci. Rep. 6, 23954.

 

Cowan, A.D., Smith, J.E., Fitzgerald, S.A., 2016. Recovering lost ground: effects of soil burn intensity on nutrients and ectomycorrhiza communities of ponderosa pine seedlings. For. Ecol. Manag. 378, 160–172.

 

Danzeisen, J.L., Kim, H.B., Isaacson, R.E., Tu, Z.J., Johnson, T.J., 2011. Modulations of the chicken cecal microbiome and metagenome in response to anticoccidial and growth promoter treatment. PLoS One 6 (11), e27949.

 

Day, N.J., Dunfield, K.E., Johnstone, J.F., Mack, M.C., Turetsky, M.R., Walker, X.J., White, A.L., Baltzer, J.L., 2019. Wildfire severity reduces richness and alters composition of soil fungal communities in boreal forests of western Canada. Global Change Biol. 25 (7), 2310–2324.

 

De la Varga, H., Águeda, B., Martínez-Peña, F., Parladé, J., Pera, J., 2012. Quantification of extraradical soil mycelium and ectomycorrhizas of Boletus edulis in a Scots pine forest with variable sporocarp productivity. Mycorrhiza 22 (1), 59–68.

 

Dooley, S.R., Treseder, K.K., 2012. The effect of fire on microbial biomass: a meta-analysis of field studies. Biogeochemistry 109 (1), 49–61.

 

Dove, N.C., Hart, S.C., 2017. Fire reduces fungal species richness and in situ mycorrhizal colonization: a meta-analysis. Fire Ecol. 13 (2), 37–65.

 

Dupuy, J.L., Fargeon, H., Martin-StPaul, N., Pimont, F., Ruffault, J., Guijarro, M., Hernando, C., Madrigal, J., Fernandes, P., 2020. Climate change impact on future wildfire danger and activity in southern Europe: a review. Ann. For. Sci. 77, 35.

 

Durán-Manual, F., Espinosa, J., Pérez-Pereda, E., Mediavilla, O., Geada-López, G., Dejene, T., Sanz-Benito, I., Martin-Pinto, P., Martínez-Becerra, L.W., 2022. Prescribed burning in Pinus cubensis-dominated tropical natural forests: a myco-friendly fire-prevention tool. For. Syst. 31, e012.

 

Edgar, R.C., 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461.

 

Espinosa, J., Martin-Benito, D., Rodríguez de Rivera, Ó., Hernando, C., Guijarro, M., Madrigal, J., 2021. Tree growth response to low-intensity prescribed burning in Pinus nigra stands: effects of burn season and fire severity. Appl. Sci. 11 (16), 7462.

 

Fernández, C., Vega, J.A., Fonturbel, T., Jiménez, E., Pérez, J.R., 2008. Immediate effects of prescribed burning, chopping and clearing on runoff, infiltration and erosion in a shrubland area in Galicia (NW Spain). Land Degrad. Dev. 19 (5), 502–515.

 

Fontúrbel, M.T., Fernández, C., Vega, J.A., 2016. Prescribed burning versus mechanical treatments as shrubland management options in NW Spain: mid-term soil microbial response. Appl. Soil Ecol. 107, 334–346.

 

Fontúrbel, T., Carrera, N., Vega, J.A., Fernández, C., 2021. The effect of repeated prescribed burning on soil properties: a review. Forests 12 (6), 767.

 

Franco-Manchón, I., Salo, K., Oria-de-Rueda, J.A., Bonet, J.A., Martín-Pinto, P., 2019. Are wildfires a threat to fungi in European Pinus forests? A case study of boreal and Mediterranean forests. Forests 10 (4), 309.

 

Froelich, R.C.,, Sackett, S.S., 1978. Prescribed burning reduces severity of annosus root rot in the south. For. Sci. 24 (1), 93–100.

 

Gassibe, P.V., Fabero, R.F., Hernández-Rodríguez, M., Oria-de-Rueda, J.A., Martín-Pinto, P., 2011. Fungal community succession following wildfire in a Mediterranean vegetation type dominated by Pinus pinaster in Northwest Spain. For. Ecol. Manag. 262 (4), 655–662.

 

Giuditta, E., Marzaioli, R., Esposito, A., Ascoli, D., Stinca, A., Mazzoleni, S., Rutigliano, F.A., 2019. Soil microbial diversity, biomass, and activity in two pine plantations of Southern Italy treated with prescribed burning. Forests 11 (1), 19.

 

Gould, J.S., Sullivan, A.L., 2020. Two methods for calculating wildland fire rate of forward spread. Int. J. Wildland Fire 29 (3), 272–281.

 

Guinto, D.F., Xu, Z.H., House, A.P.N., Saffigna, P.G., 2001. Soil chemical properties and forest floor nutrients under repeated prescribed-burning in eucalypt forests of south-east Queensland, Australia. N. Z. J. For. Sci. 31 (2), 170–187.

 

Hammer, Ø., Harper, D.A.T., Ryan, P.D., 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4 (1), 4.

 

Hart, B.T., Smith, J.E., Luoma, D.L., Hatten, J.A., 2018. Recovery of ectomycorrhizal fungus communities fifteen years after fuels reduction treatments in ponderosa pine forests of the Blue Mountains, Oregon. For. Ecol. Manag. 422, 11–22.

 

Hart, S.C., DeLuca, T.H., Newman, G.S., MacKenzie, M.D., Boyle, S.I., 2005. Post-fire vegetative dynamics as drivers of microbial community structure and function in forest soils. For. Ecol. Manag. 220 (1–3), 166–184.

 

He, J., Tedersoo, L., Hu, A., Han, C., He, D., Wei, H., Jiao, M., Anslan, S., Nie, Y., Jia, Y., Zhang, G., Yu, G., Liu, S., Shen, W., 2017. Greater diversity of soil fungal communities and distinguishable seasonal variation in temperate deciduous forests compared with subtropical evergreen forests of eastern China. FEMS Microbiol. Ecol. 93 (7), fix069. https://doi.org/10.1093/femsec/fix069.

 
Hernández, Y., Muñoz, J.C., 2005. Líquenes psammófilos de Las Naves de la Reserva Biológica de Doñana (Huelva). Mediterránea. Serie de Estudios Biológicos, Época II n. 18.
 

Hernández-Rodríguez, M., Oria-de-Rueda, J.A., Martín-Pinto, P., 2013. Post-fire fungal succession in a Mediterranean ecosystem dominated by Cistus ladanifer L. For. Ecol. Manag. 289, 48–57.

 

Hobbie, E.A., Macko, S.A., Shugart, H.H., 1999. Insights into nitrogen and carbon dynamics of ectomycorrhizal and saprotrophic fungi from isotopic evidence. Oecologia 118 (3), 353–360.

 
Hood, I.A., Sandberg, C.J., 1989. Changes in soil populations of Armillaria species following felling and burning of indigenous forest in the Bay of Plenty, New Zealand. In: Proceedings of the 7th International Conference on Root and Butt Rots. International Union of Forestry Research Organizations, Vernon and Victoria, BC, Canada, pp. 288–296, 9–16 August 1988.
 

Husson, O., 2013. Redox potential (Eh) and pH as drivers of soil/plant/microorganism systems: a transdisciplinary overview pointing to integrative opportunities for agronomy. Plant Soil 362 (1), 389–417.

 

Ihrmark, K., Bödeker, I., Cruz-Martinez, K., Friberg, H., Kubartova, A., Schenck, J., Brandstrom-Durling, M., Clemmensen, K.E., Lindahl, B.D., 2012. New primers to amplify the fungal ITS2 region–evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol. Ecol. 82 (3), 666–677.

 

Izzo, A., Canright, M., Bruns, T.D., 2006. The effects of heat treatments on ectomycorrhizal resistant propagules and their ability to colonize bioassay seedlings. Mycol. Res. 110 (2), 196–202.

 

Jiménez-Morillo, N.T., Almendros, G., José, M., Jordán, A., Zavala, L.M., Granged, A.J., González-Pérez, J.A., 2020. Effect of a wildfire and of post-fire restoration actions in the organic matter structure in soil fractions. Sci. Total Environ. 728, 138715.

 

Keane, R.E., 2012. Describing wildland surface fuel loading for fire management: a review of approaches, methods and systems. Int. J. Wildland Fire 22 (1), 51–62.

 

Keeley, J.E., 2002. Fire management of California shrubland landscapes. Environ. Manag. 29 (3), 395–408.

 

Kennedy, N.M., Robertson, S.J., Green, D.S., Scholefield, S.R., Arocena, J.M., Tackaberry, L.E., Massicotte, H.B., Egger, K.N., 2015. Site properties have a stronger influence than fire severity on ectomycorrhizal fungi and associated N-cycling bacteria in regenerating post-beetle-killed lodgepole pine forests. Folia Microbiol. 60 (5), 399–410.

 

Kipfer, T., Egli, S., Ghazoul, J., Moser, B., Wohlgemuth, T., 2010. Susceptibility of ectomycorrhizal fungi to soil heating. Fungal Biol. 114 (5–6), 467–472.

 

Kohout, P., Charvátová, M., Štursová, M., Mašínová, T., Tomšovský, M., Baldrian, P., 2018. Clearcutting alters decomposition processes and initiates complex restructuring of fungal communities in soil and tree roots. ISME J. 12 (3), 692–703.

 

Kõljalg, U., Nilsson, R.H., Abarenkov, K., Tedersoo, L., Taylor, A.F.S., Bahram, M., Bates, S.T., Bruns, T.D., Bengtsson-Palme, J., Callaghan, T.M., Douglas, B., Drenkhan, T., Eberhardt, U., Duenas, M., Grebenc, T., Griffith, G.W., Hartmann, M., Kirk, P.M., Kohout, P., Larsson, E., Lindahl, B.D., Luecking, R., Martin, M.P., Matheny, P.B., Nguyen, N.H., Niskanen, T., Oja, J., Peay, K.G., Peintner, U., Peterson, M., Poldmaa, K., Saag, L., Saar, I., Schuessler, A., Scott, J.A., Senes, C., Smith, M.E., Suija, A., Taylor, D.L., Telleria, M.T., Weiss, M., Larsson, K.H., 2013. Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol. 22, 5271–5277. https://doi.org/10.1111/mec.12481.

 

Kutorga, E., Adamonytė, G., Iršėnaitė, R., Juzėnas, S., Kasparavičius, J., Markovskaja, S., Motiejunaite, J., Treigienė, A., 2012. Wildfire and post-fire management effects on early fungal succession in Pinus mugo plantations, located in Curonian Spit (Lithuania). Geoderma 191, 70–79.

 

Lauber, C.L., Strickland, M.S., Bradford, M.A., Fierer, N., 2008. The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol. Biochem. 40 (9), 2407–2415.

 

Lionello, P., Scarascia, L., 2018. The relation between climate change in the Mediterranean region and global warming. Reg. Environ. Change 18 (5), 1481–1493.

 

Liu, M., Sui, X., Hu, Y., Feng, F., 2019. Microbial community structure and the relationship with soil carbon and nitrogen in an original Korean pine forest of Changbai Mountain, China. BMC Microbiol. 19, 1–14.

 

Lygis, V., Vasiliauskate, I., Stenlid, J., Vasaitis, R., 2010. Impact of forest fire on occurrence of Heterobasidion annosum s.s. root rot and other wood-inhabiting fungi in roots of Pinus mugo. Forestry 83, 83–92.

 

Marino, E., Guijarro, M., Hernando, C., Madrigal, J., Díez, C., 2011. Fire hazard after prescribed burning in a gorse shrubland: implications for fuel management. J. Environ. Manag. 92 (3), 1003–1011.

 

Martín-López, B., García-Llorente, M., Gómez-Baggethun, E., Montes, C., 2010. Evaluación de los servicios de los ecosistemas del sistema socio-ecológico de Doñana. Forum de Sostenibilidad 4, 91–111.

 

Martín-Pinto, P., Vaquerizo, H., Peñalver, F., Olaizola, J., Oria-de-Rueda, J.A., 2006. Early effects of a wildfire on the diversity and production of fungal communities in Mediterranean vegetation types dominated by Cistus ladanifer and Pinus pinaster in Spain. For. Ecol. Manag. 225 (1–3), 296–305.

 

Martín-Pinto, P., Sanz-Benito, I., Santos, M., Oria-de-Rueda, J.A., Geml, J., 2021. Anthropological impacts determine the soil fungal distribution of Mediterranean oak stands. Ecol. Indicat. 132, 108343.

 

Martín-Pinto, P., Oria-de-Rueda, J.A., Dejene, T., Mediavilla, O., Hernández-Rodríguez, M., Reque, J.A., Sanz-Benito, I., Santos, M., Geml, J., 2022. Influence of stand age and site conditions on ectomycorrhizal fungal dynamics in Cistus ladanifer-dominated scrubland ecosystems. For. Ecol. Manag. 519, 120340.

 

Molina, J.R., Zamora, R., Silva, F.R., 2019. The role of flagship species in the economic valuation of wildfire impacts: an application to two Mediterranean protected areas. Sci. Total Environ. 675, 520–530.

 

Müller, J., Engel, H., Blaschke, M., 2007. Assemblages of wood-inhabiting fungi related to silvicultural management intensity in beech forests in southern Germany. Eur. J. For. Res. 126 (4), 513–527.

 

Muñoz, J.C., García, F., 2005. Multiscale control of vegetation patterns: the case of Doñana (SW Spain). Landsc. Ecol. 20, 51–61.

 

Nicolás, C., Martin-Bertelsen, T., Floudas, D., Bentzer, J., Smits, M., Johansson, T., Troein, C., Persson, P., Tunlid, A., 2019. The soil organic matter decomposition mechanisms in ectomycorrhizal fungi are tuned for liberating soil organic nitrogen. ISME J. 13, 977–988.

 
Oksanen, J., Blanchet, F., Michael, F., Roeland, K., Pierre, L., Dan, M., Peter, R., Minchin, R., O'Hara, G., Simpson, P., Henry, S., Eduard, S., Helene, W., 2017. Vegan: community ecology package. R package version 2.4-2. https://CRAN.R-project.org/package=vegan. (Accessed 10 June 2022).
 

Oliver, A.K.,, Jumpponen, A., 2015. Soil fungal communities respond compositionally to recurring frequent prescribed burning in a managed southeastern US forest ecosystem. For. Ecol. Manag. 345, 1–9.

 

Parks, S.A., Miller, C., Abatzoglou, J.T., Holden, S.R., Rogers, B.M., Treseder, K.K., Randerson, J.T., 2016. Fire severity influences the response of soil microbes to a boreal forest fire. Environ. Res. Lett. 11, 035004.

 

Parravicini, V., Micheli, F., Montefalcone, M., Villa, E., Morri, C., Bianchi, C.N., 2010. Rapid assessment of epibenthic communities: a comparison between two visual sampling techniques. J. Exp. Mar. Biol. Ecol. 395 (1–2), 21–29.

 

Peay, K.G., Garbelotto, M., Bruns, T.D., 2009. Spore heat resistance plays an important role in disturbance-mediated assemblage shift of ectomycorrhizal fungi colonizing Pinus muricata seedlings. J. Ecol. 97 (3), 537–547.

 

Pietras, M., Rudawska, M., Leski, T., Karliński, L., 2013. Diversity of ectomycorrhizal fungus assemblages on nursery grown European beech seedlings. Ann. For. Sci. 70 (2), 115–121.

 
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., 2016. R core Team. Nlme: linear and nonlinear mixed effects models. R package version 3.1–128. https://cran.r-project.org/web/packages/nlme/index.html. (Accessed 10 June 2022).
 

Põlme, S., Abarenkov, K., Henrik Nilsson, R., Lindahl, B.D., Clemmensen, K.E., Kauserud, H., Nguyen, N., Kjøller, R., Bates, S.T., Baldrian, P., Frøslev, T.G., Adojaan, K., Vizzini, A., Suija, A., Pfister, D., Baral, H.O., Järv, H., Madrid, H., Nordén, J., Liu, J.K., Pawlowska, J., Poldmaa, K., Partel, K., Runnel, K., Hansen, K., Larsson, K.H., Hyde, K.D., Sandoval-Denis, M., Smith, M.E., Toome-Heller, M., Wijayawardene, N.N., Menolli, N., Reynolds, N.K., Drenkhan, R., Maharachchikumbura, S.S.N., Gibertoni, T.B., Laessoe, T., Davis, W., Tokarev, Y., Corrales, A., Soares, A.M., Agan, A., Machado, A.R., Arguelles-Moyao, A., Detheridge, A., de Meiras-Ottoni, A., Verbeken, A., Dutta, A.K., Cui, B.K., Pradeep, C.K., Marin, C., Stanton, D., Gohar, D., Wanasinghe, D.N., Otsing, E., Aslani, F., Griffith, G.W., Lumbsch, T.H., Grossart, H.P., Masigol, H., Timling, I., Hiiesalu, I., Oja, J., Kupagme, J.Y., Geml, J., Alvarez-Manjarrez, J., Ilves, K., Loit, K., Adamson, K., Nara, K., Kungas, K., Rojas-Jimenez, K., Bitenieks, K., Irinyi, L., Nagy, L.G., Soonvald, L., Zhou, L.W., Wagner, L., Aime, M.C., Opik, M., Mujica, M.I., Metsoja, M., Ryberg, M., Vasar, M., Murata, M., Nelsen, M.P., Cleary, M., Samarakoon, M.C., Doilom, M., Bahram, M., Hagh-Doust, N., Dulya, O., Johnston, P., Kohout, P., Chen, Q., Tian, Q., Nandi, R., Amiri, R., Perera, R.H., Chikowski, R.D., Mendes-Alvarenga, R.L., Garibay-Orijel, R., Gielen, R., Phookamsak, R.T., Jayawardena, R.S., Rahimlou, S., Karunarathna, S.C., Tibpromma, S., Brown, S.P., Sepp, S.K., Mundra, S., Luo, Z.H., Bose, T., Vahter, T., Netherway, T., Yang, T., May, T., Varga, T., Li, W., Coimbra, V.R.M., de Oliveira, V.R.T., de Lima, V.X., Mikryukov, V.S., Lu, Y.Z., Matsuda, Y., Miyamoto, Y., Koljalg, U., Tedersoo, L., 2020. FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Divers. 105, 1–16. https://doi.org/10.1007/s13225-020-00466–2.

 

Pulido-Chavez, M.F., Alvarado, E.C., DeLuca, T.H., Edmonds, R.L., Glassman, S.I., 2021. High-severity wildfire reduces richness and alters composition of ectomycorrhizal fungi in low-severity adapted ponderosa pine forests. For. Ecol. Manag. 485, 118923.

 
R Core Team, 2020. A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
 

Rashid, A., Ahmed, T., Ayub, N., Khan, A.G., 1997. Effect of forest fire on number, viability and post-fire re-establishment of arbuscular mycorrhizae. Mycorrhiza 7, 217–220.

 

Reaves, J.L.,, Mayfield, J.E., 1990. The effects of Trichoderma spp. isolated from burned and non-burned forest soils on the growth and development of Armillaria ostoyae in culture. Northwest Sci. 64 (1), 39–44.

 

Reazin, C., Morris, S., Smith, J.E., Cowan, A.D., Jumpponen, A., 2016. Fires of differing intensities rapidly select distinct soil fungal communities in a Northwest US ponderosa pine forest ecosystem. For. Ecol. Manag. 377, 118–127.

 

Reverchon, F., María del Ortega-Larrocea, P., Pérez-Moreno, J., 2010. Saprophytic fungal communities change in diversity and species composition across a volcanic soil chronosequence at Sierra del Chichinautzin, Mexico. Ann. Microbiol. 60 (2), 217–226.

 

Rollan, À., Real, J., 2011. Effect of wildfires and post-fire forest treatments on rabbit abundance. Eur. J. Wildl. Res. 57 (2), 201–209.

 

Rodrigues, M., Zúñiga-Antón, M., Alcasena, F., Gelabert, P., Vega-García, C., 2022. Integrating geospatial wildfire models to delineate landscape management zones and inform decision-making in Mediterranean areas. Saf. Sci. 147, 105616.

 
Rothermel, R.C., 1972. A mathematical model for predicting fire spread in wildland fuels. In: Intermountain Forest and Range Experiment Station Research Paper INT-115, vol. 115. US Department of Agriculture, Ogden, UT.
 

Ruiz-Almenara, C., Gándara, E., Gómez-Hernández, M., 2019. Comparison of diversity and composition of macrofungal species between intensive mushroom harvesting and non-harvesting areas in Oaxaca. Mexico. PeerJ 7, e8325.

 

Salerni, E., LaganÀ, A., Perini, C., Loppi, S., Dominicis, V.D., 2002. Effects of temperature and rainfall on fruiting of macrofungi in oak forests of the mediterranean area. Isr. J. Plant Sci. 50, 189–198.

 

Santos-Silva, C., Louro, R., 2016. Assessment of the diversity of epigeous Basidiomycota under different soil-management systems in a montado ecosystem: a case study conducted in Alentejo. Agrofor. Syst. 90 (1), 117–126.

 

Shi, L.L., Mortimer, P.E., Slik, J.W.F., Zou, X.-M., Xu, J.-C., Feng, W.-T., Qiao, L., 2013. Variation in forest soil fungal diversity along a latitudinal gradient. Fungal Divers. 64, 305–315.

 

Siljestrom, P., Clemente, L., 1987. Caracterización de una toposecuencia en las Naves (dunas estabilizadas) del Parque Nacional de Doñana. An. Edafol. Agrobiol. 46, 853–861.

 

Smith, G.R., Edy, L.C., Peay, K.G., 2021. Contrasting fungal responses to wildfire across different ecosystem types. Mol. Ecol. 30 (3), 844–854.

 

Smith, N.R., Kishchuk, B.E., Mohn, W.W., 2008. Effects of wildfire and harvest disturbances on forest soil bacterial communities. Appl. Environ. Microbiol. 74 (1), 216–224.

 

Song, J., Chen, L., Chen, F., Ye, J., 2019. Edaphic and host plant factors are linked to the composition of arbuscular mycorrhizal fungal communities in the root zone of endangered Ulmus chenmoui Cheng in China. Ecol. Evol. 9 (15), 8900–8910.

 

Sun, H., Santalahti, M., Pumpanen, J., Köster, K., Berninger, F., Raffaello, T., Jumpponen, A., Asiegbu, F.O., Heinonsalo, J., 2015. Fungal community shifts in structure and function across a boreal forest fire chronosequence. Appl. Environ. Microbiol. 81 (22), 7869–7880.

 

Taudière, A., Richard, F., Carcaillet, C., 2017. Review on fire effects on ectomycorrhizal symbiosis, an unachieved work for a scalding topic. For. Ecol. Manag. 391, 446–457.

 

Tedersoo, L., Anslan, S., Bahram, M., Drenkhan, R., Pritsch, K., Buegger, F., Padari, A., Hagh-Doust, N., Mikryukov, V., Gohar, D., Amiri, R., Hiiesalu, I., Lutter, R., Rosenvald, R., Rahn, E., Adamson, K., Drenkhan, T., Tullus, H., Jurimaa, K., Sibul, I., Otsing, E., Polme, S., Metslaid, M., Loit, K., Agan, A., Puusepp, R., Varik, I., Koljalg, U., Abarenkov, K., 2020. Regional-scale in-depth analysis of soil fungal diversity reveals strong pH and plant species effects in Northern Europe. Front. Microbiol. 11, 1953.

 

Tomao, A., Bonet, J.A., Castaño, C., de-Miguel, S., 2020. How does forest management affect fungal diversity and community composition? Current knowledge and future perspectives for the conservation of forest fungi. For. Ecol. Manag. 457, 117678.

 

Van Der Heijden, M.G., Bardgett, R.D., Van Straalen, N.M., 2008. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 11 (3), 296–310.

 

van der Linde, S., Suz, L.M., Orme, C.D.L., Cox, F., Andreae, H., Asi, E., Atkinson, B., Benham, S., Carroll, C., Cools, N., De Vos, B., Dietrich, H.P., Eichhorn, J., Gehrmann, J., Grebenc, T., Gweon, H.S., Hansen, K., Jacob, F., Kristofel, F., Lech, P., Manninger, M., Martin, J., Meesenburg, H., Merila, P., Nicolas, M., Pavlenda, P., Rautio, P., Schaub, M., Schrock, H.W., Seidling, W., Sramek, V., Thimonier, A., Thomsen, I.M., Titeux, H., Vanguelova, E., Verstraeten, A., Vesterdal, L., Waldner, P., Wijk, S., Zhang, Y.X., Zlindra, D., Bidartondo, M.I., 2018. Environment and host as large-scale controls of ectomycorrhizal fungi. Nature 558 (7709), 243–248.

 

Vázquez-Veloso, A., Dejene, T., Oria-de-Rueda, J.A., Guijarro, M., Hernando, C., Espinosa, J., Madrigal, J., Martín-Pinto, P., 2022. Prescribed burning in spring or autumn did not affect the soil fungal community in Mediterranean Pinus nigra natural forests. For. Ecol. Manag. 512, 120161.

 

Vega, J.A., Arellano-Pérez, S., Álvarez-González, J.G., Fernández, C., Jiménez, E., Fernández-Alonso, J.M., Vega-Nieva, D.J., Briones-Herrera, C., Alonso-Rego, C., Fonturbel, T., Ruiz-González, A.D., 2022. Modelling aboveground biomass and fuel load components at stand level in shrub communities in NW Spain. For. Ecol. Manag. 505, 119926.

 

Voříšková, J., Baldrian, P., 2013. Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME J. 7 (3), 477–486.

 

Wan, S., Hui, D., Luo, Y., 2001. Fire effects on nitrogen pools and dynamics in terrestrial ecosystems: a meta-analysis. Ecol. Appl. 11 (5), 1349–1365.

 

Wang, Q.-K., Wang, S.-L., 2008. Soil microbial properties and nutrients in pure and mixed Chinese fir plantations. J. For. Res. 19, 131–135.

 

Wang, Q., Zhong, M., Wang, S., 2012. A meta-analysis on the response of microbial biomass, dissolved organic matter, respiration, and N mineralization in mineral soil to fire in forest ecosystems. For. Ecol. Manag. 271, 91–97.

 

Wang, Y., Zheng, J., Liu, X., Yan, Q., Hu, Y., 2020. Short-term impact of fire-deposited charcoal on soil microbial community abundance and composition in a subtropical plantation in China. Geoderma 359, 113992.

 

White, T.J., Bruns, T., Lee, S.J.W.T., Taylor, J., 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: A Guide to Method. Appl. 18 (1), 315–322.

 

Whitman, T., Whitman, E., Woolet, J., Flannigan, M.D., Thompson, D.K., Parisien, M.A., 2019. Soil bacterial and fungal response to wildfires in the Canadian boreal forest across a burn severity gradient. Soil Biol. Biochem. 138, 107571.

 

Whitney, R.D., Irwin, R.N., 2005. Comparison of Armillaria root disease on burned and unburned, harvested sites in Ontario. For. Chron. 81 (1), 56–60.

 

Yamanaka, T., 2003. The effect of pH on the growth of saprotrophic and ectomycorrhizal ammonia fungi in vitro. Mycologia 95, 584–589.

 

Zamora-Martínez, M.C., Nieto de Pascual-Pola, C., 1995. Natural production of wild edible mushrooms in the southwestern rural territory of Mexico City, Mexico. For. Ecol. Manag. 72 (1), 13–20.

 

Zhao, A., Liu, L., Xu, T., Shi, L., Xie, W., Zhang, W., Fu, S., Feng, H., Chen, B.-D., 2018. Influences of canopy nitrogen and water addition on AM fungal biodiversity and community composition in a mixed deciduous forest of China. Front. Plant Sci. 9, 1842.

Forest Ecosystems
Article number: 100110
Cite this article:
Espinosa J, Dejene T, Guijarro M, et al. Fungal diversity and community composition responses to the reintroduction of fire in a non-managed Mediterranean shrubland ecosystem. Forest Ecosystems, 2023, 10(2): 100110. https://doi.org/10.1016/j.fecs.2023.100110

439

Views

7

Downloads

5

Crossref

5

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 31 January 2023
Revised: 27 March 2023
Accepted: 01 April 2023
Published: 03 April 2023
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return