AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.8 MB)
Collect
AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Complexity responses of Rhododendron species to climate change in China reveal their urgent need for protection

Kun-Ji LiaXiao-Fei LiubJin-Hong ZhangaXiong-Li ZhouaLiu YangaShi-Kang Shena ( )
Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, Yunnan, China
Institute of International River and Eco-security, Yunnan University, Kunming, 650504, Yunnan, China
Show Author Information

Abstract

Global climate change has been widely recognized as important factors that threaten biodiversity. Rhododendron species are not only famous woody ornamental plants worldwide but are also indispensable components in alpine and subalpine vegetation in southwest China. However, the geographical distribution ranges response of this broad taxonomic group to future climate change remains not be fully understood. Herein, we studied the impact of climate change on the distribution of Rhododendron species in China by predicting the changes in their suitable habitats, centroid, and species richness under three climate change scenarios (SSP1-2.6, SSP2-4.5 and SSP5-8.5) in the 2090s. The species richness changes of Rhododendrons along altitude were also evaluated. In addition, we calculated the phylogenetic signals of distribution response to climate change. We found that the distribution responses of Rhododendron to climate change have weak phylogenetic signals. In the 2090s, the suitable habitats of about 87% of Rhododendron species will be reduced, 77% of Rhododendron species are manifested as northward migration. The high species richness of Rhododendrons tends to migrate to transboundary areas with high altitudes in China. Some Rhododendron species with no concern previously should be taken seriously for their high risk of habitat loss under climate change. Thus, the urgent protection of Rhododendron species under climate change need to be paid more attention than previous acknowledged. We recommend carrying out the reintroduction of endangered species in future suitable habitat, strengthening the protection of transboundary areas with high species richness, and focusing on species with few concerns previously.

References

 

Allouche, O., Tsoar, A., Kadmon, R., 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x.

 

Beniston, M., 2006. Mountain weather and climate: A general overview and a focus on climatic change in the Alps. Hydrobiologia 562, 3–16. https://doi.org/10.1007/s10750-005-1802-0.

 

Blomberg, S.P., Garland, T., Ives, A.R., 2003. Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution 57, 717–745. https://doi.org/10.1111/j.0014-3820.2003.tb00285.x.

 

Boyce, M.S., Vernier, P.R., Nielsen, S.E., Schmiegelow, F.K., 2002. Evaluating resource selection functions. Ecol. Model. 157, 281–300. https://doi.org/10.1016/S0304-3800(02)00200-4.

 

Di Cola, V., Broennimann, O., Petitpierre, B., Breiner, F.T., d’Amen, M., Randin, C., Engler, R., Pottier, J., Pio, D., Dubuis, A., 2017. ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography 40, 774–787. https://doi.org/10.1111/ecog.02671.

 

Dullinger, S., Gattringer, A., Thuiller, W., Moser, D., Zimmermann, N.E., Guisan, A., Willner, W., Plutzar, C., Leitner, M., Mang, T., Caccianiga, M., Dirnbock, T., Ertl, S., Fischer, A., Lenoir, J., Svenning, J.C., Psomas, A., Schmatz, D.R., Silc, U., Vittoz, P., Hulber, K., 2012. Extinction debt of high-mountain plants under twenty-first-century climate change. Nat. Clim. Change 2, 619–622. https://doi.org/10.1038/NCLIMATE1514.

 

Eklöf, J.S., Alsterberg, C., Havenhand, J.N., Sundbäck, K., Wood, H.L., Gamfeldt, L., 2012. Experimental climate change weakens the insurance effect of biodiversity. Ecol. Lett. 15, 864–872. https://doi.org/10.1111/j.1461-0248.2012.01810.x.

 

Feeley, K.J., Stroud, J.T., Perez, T.M., 2017. Most ‘global’ reviews of species’ responses to climate change are not truly global. Divers. Distrib. 23, 231–234. https://doi.org/10.1111/ddi.12517.

 

Fick, S.E., Hijmans, R.J., 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315. https://doi.org/10.1002/joc.5086.

 

Fu, C.N., Mo, Z.Q., Yang, J.B., Cai, J., Ye, L.J., Zou, J.Y., Qin, H.T., Zheng, W., Hollingsworth, P.M., Li, D.Z., Gao, L.M. 2022. Testing genome skimming for species discrimination in the large and taxonomically difficult genus Rhododendron. Mol. Ecol. Resour. 22, 404–414. https://doi.org/10.1111/1755-0998.13479.

 

Giriraj, A., Irfan-Ullah, M., Ramesh, B.R., Karunakaran, P.V., Jentsch, A., Murthy, M.S.R., 2008. Mapping the potential distribution of Rhododendron arboreum Sm. ssp nilagiricum (Zenker) Tagg (Ericaceae), an endemic plant using ecological niche modelling. Curr. Sci. 94, 1605–1612.

 

Hickling, R., Roy, D.B., Hill, J.K., Thomas, C.D., 2005. A northward shift of range margins in British Odonata. Glob. Change Biol. 11, 502–506. https://doi.org/10.1111/j.1365-2486.2005.00904.x.

 

Hirzel, A.H., Le Lay, G., Helfer, V., Randin, C., Guisan, A., 2006. Evaluating the ability of habitat suitability models to predict species presences. Ecol. Model. 199, 142–152. https://doi.org/10.1016/j.ecolmodel.2006.05.017.

 

Hoegh-Guldberg, O., Hughes, L., McIntyre, S., Lindenmayer, D.B., Parmesan, C., Possingham, H.P., Thomas, C.D., 2008. Assisted colonization and rapid climate change. Science 321, 345–346. https://doi.org/10.1126/science.1157897.

 

Hulber, K., Wessely, J., Gattringer, A., Moser, D., Kuttner, M., Essl, F., Leitner, M., Winkler, M., Ertl, S., Willner, W., Kleinbauer, I., Sauberer, N., Mang, T., Zimmermann, N.E., Dullinger, S., 2016. Uncertainty in predicting range dynamics of endemic alpine plants under climate warming. Glob. Change Biol. 22, 2608–2619. https://doi.org/10.1111/gcb.13232.

 

Kembel, S.W., Cowan, P.D., Helmus, M.R., Cornwell, W.K., Morlon, H., Ackerly, D.D., Blomberg, S.P., Webb, C.O., 2010. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464. https://doi.org/10.1093/bioinformatics/btq166.

 

Lenoir, J., Gégout, J.C., Marquet, P.A., de Ruffray, P., Brisse, H., 2008. A significant upward shift in plant species optimum elevation during the 20th century. Science 320, 1768–1771. https://doi.org/10.1126/science.1156831.

 

Li C., Su J.Y., Liu X.Q., He L.S., Chen S.P., Xiao Z., 2015. Physiological responses of Rhododendron ovatum to drought stress during its seed germination stage. Acta Agri. Univ. Jiangxi. 37, 994–998. https://10.0.54.12/j.jjau.2015151.

 

Li D.D., Li X.H., Zhang Y.H., 2022. Research progress of drought stress on Rhododendron. Guihaia 42, 700–713. (in Chinese).

 

Liang, Q.L., Xu, X.T., Mao, K.S., Wang, M.C., Wang, K., Xi, Z.X., Liu, J.Q., 2018. Shifts in plant distributions in response to climate warming in a biodiversity hotspot, the Hengduan Mountains. J. Biogeogr. 45, 1334–1344. https://doi.org/10.1111/jbi.13229.

 

Linnell, J.D., Trouwborst, A., Boitani, L., Kaczensky, P., Huber, D., Reljic, S., Kusak, J., Majic, A., Skrbinsek, T., Potocnik, H., 2016. Border security fencing and wildlife: the end of the transboundary paradigm in Eurasia? PLoS. Biol. 14, e1002483. https://doi.org/10.1371/journal.pbio.1002483.

 

Liu, J.J., Yong, D.L., Choi, C.Y., Gibson, L., 2020. Transboundary frontiers: an emerging priority for biodiversity conservation. Trends Ecol. Evol. 35, 679–690. https://doi.org/10.1016/j.tree.2020.03.004.

 

Lobo, J.M., Jiménez-Valverde, A., Real, R., 2008. AUC: a misleading measure of the performance of predictive distribution models. Glob. Ecol. Biogeogr. 17, 145–151. https://doi.org/10.1111/j.1466-8238.2007.00358.x.

 

Lu, Y.P., Liu, H.C., Chen, W., Yao, J., Huang, Y.Q., Zhang, Y., He, X.Y., 2021. Conservation planning of the genus Rhododendron in Northeast China based on current and future suitable habitat distributions. Biodivers. Conserv. 30, 673–697. https://doi.org/10.1007/s10531-020-02110-6.

 

Marshall, L., Beckers, V., Vray, S., Rasmont, P., Vereecken, N.J., Dendoncker, N., 2021. High thematic resolution land use change models refine biodiversity scenarios: A case study with Belgian bumblebees. J. Biogeogr. 48, 345–358. https://doi.org/10.1111/jbi.14000.

 

Meinshausen, M., Nicholls, Z.R.J., Lewis, J., Gidden, M.J., Vogel, E., Freund, M., Beyerle, U., Gessner, C., Nauels, A., Bauer, N., Canadell, J.G., Daniel, J.S., John, A., Krummel, P.B., Luderer, G., Meinshausen, N., Montzka, S.A., Rayner, P.J., Reimann, S., Smith, S.J., van den Berg, M., Velders, G.J.M., Vollmer, M.K., Wang, R.H.J., 2020. The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geosci. Model Dev. 13, 3571–3605. https://doi.org/10.5194/gmd-13-3571-2020.

 

Merow, C., Smith, M.J., Silander, J.A., 2013. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36, 1058–1069. https://doi.org/10.1111/j.1600-0587.2013.07872.x.

 

Merow, C., Smith, M.J., Edwards Jr, T.C., Guisan, A., McMahon, S.M., Normand, S., Thuiller, W., Wüest, R.O., Zimmermann, N.E., Elith, J., 2014. What do we gain from simplicity versus complexity in species distribution models? Ecography 37, 1267–1281. https://doi.org/10.1111/ecog.00845.

 
Ministry of Ecology and Environment of China, 2013. Redlist of China's BiodiversityHigher Plants. http://www.mee.gov.cn/gkml/hbb/bgg/201309/t20130912_260061.htm (Accessed June 18, 2023).
 

Morimoto, J., Hirabayashi, K., Mizumoto, E., Katsuno, T., Morimoto, Y., 2011. Validation of treatments for conservation of native Rhododendrons, the symbol of Satoyama, in the dry granite region of Japan. Landsc. Ecol. Eng. 7, 185–193. https://doi.org/10.1007/s11355-011-0162-3.

 

Morin, X., Chuine, I., 2006. Niche breadth, competitive strength and range size of tree species: a trade-off based framework to understand species distribution. Ecol. Lett. 9, 185–195. https://doi.org/10.1111/j.1461-0248.2005.00864.x.

 

Morin, X., Lechowicz, M.J., 2013. Niche breadth and range area in North American trees. Ecography 36, 300–312. https://doi.org/10.1111/j.1600-0587.2012.07340.x.

 

Mouillot, D., Bellwood, D.R., Baraloto, C., Chave, J., Galzin, R., Harmelin-Vivien, M., Kulbicki, M., Lavergne, S., Lavorel, S., Mouquet, N., Paine, C.E.T., Renaud, J., Thuiller, W., 2013. Rare species support vulnerable functions in high-diversity ecosystems. PLoS. Biol. 11, e1001569. https://doi.org/10.1371/journal.pbio.1001569.

 
Nachtergaele, F., van Velthuizen, H., Verelst, L., Batjes, N., Dijkshoorn, K., van Engelen, V., Fischer, G., Jones, A., Montanarela, L., 2010. The harmonized world soil database. In: Proceedings of the 19th World Congress of Soil Science. Soil Solutions for a Changing World, Brisbane, Australia, pp. 34–37, 1–6 August 2010.
 

Osorio-Olvera, L., Lira-Noriega, A., Soberón, J., Peterson, A.T., Falconi, M., Contreras-Díaz, R.G., Martínez-Meyer, E., Barve, V., Barve, N., 2020. ntbox: An r package with graphical user interface for modelling and evaluating multidimensional ecological niches. Methods Ecol. Evol. 11, 1199–1206. https://doi.org/10.1111/2041-210X.13452.

 

Pannek, A., Ewald, J., Diekmann, M., 2013. Resource-based determinants of range sizes of forest vascular plants in Germany. Glob. Ecol. Biogeogr. 22, 1019–1028. https://doi.org/10.1111/geb.12055.

 

Parmesan, C., 2006. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669. https://doi.org/10.1146/annurev.ecolsys.37.091305.110100.

 

Pelletier, T.A., Carstens, B.C., Tank, D.C., Sullivan, J., Espindola, A., 2018. Predicting plant conservation priorities on a global scale. Proc. Natl. Acad. Sci. U.S.A. 115, 13027–13032. https://doi.org/10.1073/pnas.1804098115.

 

Penuelas, J., Boada, M., 2003. A global change-induced biome shift in the Montseny mountains (NE Spain). Glob. Change Biol. 9, 131–140. https://doi.org/10.1046/j.1365-2486.2003.00566.x.

 

Pepin, N., Bradley, R.S., Diaz, H.F., Baraer, M., Caceres, E.B., Forsythe, N., Fowler, H., Greenwood, G., Hashmi, M.Z., Liu, X.D., Miller, J.R., Ning, L., Ohmura, A., Palazzi, E., Rangwala, I., Schoner, W., Severskiy, I., Shahgedanova, M., Wang, M.B., Williamson, S.N., Yang, D.Q., 2015. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Change 5, 424–430. https://doi.org/10.1038/NCLIMATE2563.

 

Pereira, H.M., Leadley, P.W., Proença, V., Alkemade, R., Scharlemann, J.P., Fernandez-Manjarrés, J.F., Araújo, M.B., Balvanera, P., Biggs, R., Cheung, W.W., 2010. Scenarios for global biodiversity in the 21st century. Science 330, 1496–1501. https://doi.org/10.1126/science.1196624.

 

Peterson, A.T., Papeş, M., Soberón, J., 2008. Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol. Model. 213, 63–72. https://doi.org/10.1016/j.ecolmodel.2007.11.008.

 

Phillips, S.J., Anderson, R.P., Schapire, R.E., 2006. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026.

 

Phillips, S.J., Dudík, M., 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31, 161–175. https://doi.org/10.1111/j.0906-7590.2008.5203.x.

 

Pokorny, B., Flajšman, K., Centore, L., Krope, F.S., Šprem, N., 2017. Border fence: a new ecological obstacle for wildlife in Southeast Europe. Eur. J. Wildl. Res. 63, 1–6. https://doi.org/10.1007/s10344-016-1074-1.

 

Pompe, S., Hanspach, J., Badeck, F., Klotz, S., Thuiller, W., Kühn, I., 2008. Climate and land use change impacts on plant distributions in Germany. Biol. Lett. 4, 564–567. https://doi.org/10.1098/rsbl.2008.0231.

 

Préau, C., Trochet, A., Bertrand, R., Isselin-Nondereu, F., 2018. Modeling potential distributions of three European amphibian species comparing ENFA and Maxent. Herpetol. Conserv. Biol. 13, 91–104.

 

Quintero, I., Wiens, J.J., 2013. Rates of projected climate change dramatically exceed past rates of climatic niche evolution among vertebrate species. Ecol. Lett. 16, 1095–1103. https://doi.org/10.1111/ele.12144.

 

Rana, S.K., Rana, H.K., Luo, D., Sun, H., 2021. Estimating climate-induced ‘Nowhere to go’ range shifts of the Himalayan Incarvillea Juss. using multi-model median ensemble species distribution models. Ecol. Indic. 121, 107127. https://doi.org/10.1016/j.ecolind.2020.107127.

 

Rathore, P., Roy, A., Karnatak, H., 2022. Predicting the future of species assemblages under climate and land use land cover changes in Himalaya: A geospatial modelling approach. Clim. Change Ecol. 3, 100048. https://doi.org/10.1016/j.ecochg.2022.100048.

 

Rumpf, S.B., Hulber, K., Klonner, G., Moser, D., Schütz, M., Wessely, J., Willner, W., Zimmermann, N.E., Dullinger, S., 2018. Range dynamics of mountain plants decrease with elevation. Proc. Natl. Acad. Sci. U.S.A. 115, 1848–1853. https://doi.org/10.1073/pnas.1713936115.

 

Sandoval, S., López-González, C., Escobar-Flores, J.G., Martínez-Rincón, R.O., 2020. Effect of spatial resolution, algorithm and variable set on the estimated distribution of a mammal of concern: the squirrel Sciurus aberti. Ecoscience 27, 195–207. https://doi.org/10.1080/11956860.2020.1772609.

 

Shrestha, N., Wang, Z.H., Su, X.Y., Xu, X.T., Lyu, L.S., Liu, Y.P., Dimitrov, D., Kennedy, J.D., Wang, Q.G., Tang, Z.Y., Feng, X.J., 2018. Global patterns of Rhododendron diversity: The role of evolutionary time and diversification rates. Glob. Ecol. Biogeogr. 27, 913–924. https://doi.org/10.1111/geb.12750.

 

Simonson, W.D., Allen, H.D., Coomes, D.A., 2014. Overstorey and topographic effects on understories: Evidence for linkage from cork oak (Quercus suber) forests in Southern Spain. For. Ecol. Manag. 328, 35–44. https://doi.org/10.1016/j.foreco.2014.05.009.

 

Swets, J.A., 1988. Measuring the accuracy of diagnostic systems. Science 240, 1 285-1293. https://doi.org/10.1126/science.3287615.

 

Telwala, Y., Brook, B.W., Manish, K., Pandit, M.K., 2013. Climate-induced elevational range shifts and increase in plant species richness in a Himalayan biodiversity epicentre. PLoS One 8, e57103. https://doi.org/10.1371/journal.pone.0057103.

 

Veera, S.N.S., Panda, R.M., Behera, M.D., Goel, S., Roy, P.S., Barik, S.K., 2019. Prediction of upslope movement of Rhododendron arboreum in Western Himalaya. Trop. Ecol. 60, 518–524. https://doi.org/10.1007/s42965-020-00057-x.

 

Wang, T.M., Feng, L.M., Mou, P., Wu, J.G., Smith, J.L.D., Xiao, W.H., Yang, H.T., Dou, H.L., Zhao, X.D., Cheng, Y.C., Zhou, B., Wu, H.Y., Zhang, L., Tian, Y., Guo, Q.X., Kou, X.J., Han, X.M., Miquelle, D.G., Oliver, C.D., Xu, R.M., Ge, J.P., 2016. Amur tigers and leopards returning to China: direct evidence and a landscape conservation plan. Landsc. Ecol. 31, 491–503. https://doi.org/10.1007/s10980-015-0278-1.

 

Wilson, R.J., Gutiérrez, D., Gutiérrez, J., Martínez, D., Agudo, R., Monserrat, V.J., 2005. Changes to the elevational limits and extent of species ranges associated with climate change. Ecol. Lett. 8, 1138–1146. https://doi.org/10.1111/j.1461-0248.2005.00824.x.

 

Xia, X.M., Yang, M.Q., Li, C.L., Huang, S.X., Jin, W.T., Shen, T.T., Wang, F., Li, X.H., Yoichi, W., Zhang, L.H., Zheng, Y.R., Wang, X.Q., 2022. Spatiotemporal Evolution of the global species diversity of Rhododendron. Mol. Biol. Evol. 39, msab314. https://doi.org/10.1093/molbev/msab314.

 

Yu, F.Y., Skidmore, A.K., Wang, T.J., Huang, J.H., Ma, K.P., Groen, T.A., 2017. Rhododendron diversity patterns and priority conservation areas in China. Divers. Distrib. 23, 1143–1156. https://doi.org/10.1111/ddi.12607.

 

Yu, F.Y., Wang, T.J., Groen, T.A., Skidmore, A.K., Yang, X.F., Ma, K.P., Wu, Z.F., 2019. Climate and land use changes will degrade the distribution of Rhododendrons in China. Sci. Total Environ. 659, 515–528. https://doi.org/10.1016/j.scitotenv.2018.12.223.

 

Yu, F.Y., Wu, Z.F., Shen, J., Huang, J.H., Groen, T.A., Skidmore, A.K., Ma, K.P., Wang, T.J., 2021. Low-elevation endemic Rhododendrons in China are highly vulnerable to climate and land use change. Ecol. Indic. 126, 107699. https://doi.org/10.1016/j.ecolind.2021.107699.

 

Zhang, J.H., Li, K.J., Liu, X.F., Yang, L., Shen, S.K., 2021. Interspecific variance of suitable habitat changes for four alpine Rhododendron species under climate change: implications for their reintroductions. Forests 12, 1520. https://doi.org/10.3390/f12111520.

Forest Ecosystems
Article number: 100124
Cite this article:
Li K-J, Liu X-F, Zhang J-H, et al. Complexity responses of Rhododendron species to climate change in China reveal their urgent need for protection. Forest Ecosystems, 2023, 10(4): 100124. https://doi.org/10.1016/j.fecs.2023.100124

406

Views

17

Downloads

5

Crossref

5

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 12 February 2023
Revised: 18 June 2023
Accepted: 24 June 2023
Published: 04 July 2023
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return