AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (5.7 MB)
Collect
AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Assessing spatiotemporal variations of forest carbon density using bi-temporal discrete aerial laser scanning data in Chinese boreal forests

Zhiyong Qia,b,cShiming Lia,b,c( )Yong Panga,b,cGuang ZhengdDan Konga,b,cZengyuan Lia,b,c
Research Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Beijing, 100091, China
Key Laboratory of Forestry Remote Sensing and Information System, National Forestry and Grassland Administration, Beijing, 100091, China
National Forestry and Grassland Science Data Center, Beijing, 100091, China
International Institute for Earth System Science, Nanjing University, Nanjing, 210023, China
Show Author Information

Abstract

Assessing the changes in forest carbon stocks over time is critical for monitoring carbon dynamics, estimating the balance between carbon uptake and release from forests, and providing key insights into climate change mitigation. In this study, we quantitatively characterized spatiotemporal variations in aboveground carbon density (ACD) in boreal natural forests in the Greater Khingan Mountains (GKM) region using bi-temporal discrete aerial laser scanning (ALS) data acquired in 2012 and 2016. Moreover, we evaluated the transferability of the proposed design model using forest field plot data and produced a wall-to-wall map of ACD changes for the entire study area from 2012 to 2016 ​at a grid size of 30 ​m. In addition, we investigated the relationships between carbon dynamics and the dominant tree species, age groups, and topography of undisturbed forested areas to better understand ACD variations by employing heterogeneous forest canopy structural characteristics. The results showed that the performance of the temporally transferable model (R2 ​= ​0.87, rRMSE ​= ​18.25%), which included stable variables, was statistically equivalent to that obtained from the model fitted directly by the 2016 field plots (R2 ​= ​0.87, rRMSE ​= ​17.47%). The average rate of change in carbon sequestration across the entire study region was 1.35 ​Mg·ha−1·year−1 based on the changes in ALS-based ACD values over the course of four years. The relative change rates of ACD decreased as the elevation increased, with the highest and lowest ACD growth rates occurring in the middle-aged and mature forest stands, respectively. The Gini coefficient, which represents forest canopy surface structure heterogeneity, is sensitive to carbon dynamics and is a reliable predictor of the relative change rate of ACD. This study demonstrated the applicability of bi-temporal ALS for predicting forest carbon dynamics and fine-scale spatial change patterns. Our research contributed to a better understanding of the influence of remote sensing-derived environmental variables on forest carbon dynamic patterns and the development of context-specific management approaches to increase forest carbon stocks.

References

 

Adnan, S., Maltamo, M., Mehtätalo, L., Ammaturo, R.N.L., Packalen, P., Valbuena, R., 2021. Determining maximum entropy in 3D remote sensing height distributions and using it to improve aboveground biomass modelling via stratification. Remote Sens. Environ. 260, 112464. https://doi.org/10.1016/j.rse.2021.112464.

 

Akaike, H., 1974. A new look at the statistical model identification. IEEE Trans. Automat. Control 19, 716–723. https://doi.org/10.1109/TAC.1974.1100705.

 

Asner, G.P., Mascaro, J., Muller-Landau, H.C., Vieilledent, G., Vaudry, R., Rasamoelina, M., Hall, J.S., van Breugel, M., 2012. A universal airborne LiDAR approach for tropical forest carbon mapping. Oecologia 168, 1147–1160. https://doi.org/10.1007/s00442-011-2165-z.

 

Bohn, F.J., Huth, A., 2017. The importance of forest structure to biodiversity–productivity relationships. R. Soc. Open Sci. 4 (1), 160521. https://doi.org/10.1098/rsos.160521.

 

Bollandsås, O.M., Ene, L.T., Gobakken, T., Næsset, E., 2018. Estimation of biomass change in montane forests in Norway along a 1200 km latitudinal gradient using airborne laser scanning: a comparison of direct and indirect prediction of change under a model-based inferential approach. Scand. J. For. Res. 33 (2), 155–165. https://doi.org/10.1080/02827581.2017.1338354.

 

Bouvier, M., Durrieu, S., Fournier, R.A., Renaud, J. -P., 2015. Generalizing predictive models of forest inventory attributes using an area-based approach with airborne LiDAR data. Remote Sens. Environ. 156, 322–334. https://doi.org/10.1016/j.rse.2014.10.004.

 

Bradshaw, C.J.A., Warkentin, I.G., Sodhi, N.S., 2009. Urgent preservation of boreal carbon stocks and biodiversity. Trends Ecol. Evol. 24 (10), 541–548. https://doi.org/10.1016/j.tree.2009.03.019.

 

Cai, H.Y., Li, F.R., Jin, G.Z., 2019. Fine root biomass, production and turnover rates in plantations versus natural forests: effects of stand characteristics and soil properties. Plant Soil 436, 463–474. https://doi.org/10.1007/s11104-019-03948-8.

 

Cao, L., Coops, N.C., Innes, J.L., Sheppard, S.R.J., Fu, L.Y., Ruan, H.H., She, G.H., 2016. Estimation of forest biomass dynamics in subtropical forests using multi-temporal airborne LiDAR data. Remote Sens. Environ. 178, 158–171. https://doi.org/10.1016/j.rse.2016.03.012.

 

Chen, C.G., Zhu, J.F., 1989. Woody Biomass Manual of Typical Species in the Northeast of China. China Forestry Publishing House, Beijing.

 

Chen, Y., Zhu, X., 2012. Site quality assessment of a Pinus radiata plantation in Victoria, Australia, using LiDAR technology. South. For. J. For. Sci. 74 (4), 217–227. https://doi.org/10.2989/20702620.2012.741767.

 

Coops, N.C., Hilker, T., Wulder, M.A., St-Onge, B., Newnham, G., Siggins, A., Trofymow, J.A., 2007. Estimating canopy structure of Douglas-fir forest stands from discrete-return LiDAR. Trees (Berl.) 21, 295–310. https://doi.org/10.1007/s00468-006-0119-6.

 

Coops, N.C., Tompalski, P., Goodbody, T.R.H., Queinnec, M., Luther, J.E., Bolton, D.K., White, J.C., Wulder, M.A., van Lier, O.R., Hermosilla, T., 2021. Modelling LiDAR-derived estimates of forest attributes over space and time: a review of approaches and future trends. Remote Sens. Environ. 260, 112477. https://doi.org/10.1016/j.rse.2021.112477.

 

Dalponte, M., Jucker, T., Liu, S., Frizzera, L., Gianelle, D., 2019. Characterizing forest carbon dynamics using multi-temporal lidar data. Remote Sens. Environ. 224, 412–420. https://doi.org/10.1016/j.rse.2019.02.018.

 

de Almeida, C.T., Galvão, L.S., Aragão, L.E.D.E., Ometto, J.P.H.B., Jacon, A.D., Pereira, F.R.D., Sato, L.Y., Lopes, A.P., Graça, P.M.L.D., Silva, C.V.D., Ferreira-Ferreira, J., Longo, M., 2019a. Combining LiDAR and hyperspectral data for aboveground biomass modeling in the Brazilian Amazon using different regression algorithms. Remote Sens. Environ. 232, 111323. https://doi.org/10.1016/j.rse.2019.111323.

 

de Almeida, D.R.A., Stark, S.C., Shao, G., Schietti, J., Nelson, B.W., Silva, C.A., Gorgens, E.B., Valbuena, R., de Almeida Papa, D., Brancalion, P.H.S., 2019b. Optimizing the remote detection of tropical rainforest structure with airborne LiDAR: leaf area profile sensitivity to pulse density and spatial sampling. Rem. Sens. 11 (1), 92. https://doi.org/10.3390/rs11010092.

 

de Moura, Y.M., Balzter, H., Galvão, L.S., Dalagnol, R., Espírito-Santo, F., Santos, E.G., Garcia, M., Bispo, P.D., Oliveira, R.C., Shimabukuro, Y.E., 2020. Carbon dynamics in a human-modified tropical forest: a case study using multi-temporal LiDAR data. Rem. Sens. 12 (3), 430. https://doi.org/10.3390/rs12030430.

 

Dong, J.R., Kaufmann, R.K., Myneni, R.B., Tucker, C.J., Kauppi, P.E., Liski, J., Buermann, W., Alexeyev, V., Hughes, M.K., 2003. Remote sensing estimates of boreal and temperate forest woody biomass: carbon pools, sources, and sinks. Remote Sens. Environ. 84, 393–410. https://doi.org/10.1016/S0034-4257(02)00130-X.

 

Fassnacht, F.E., Hartig, F., Latifi, H., Berger, C., Hernández, J., Corvalán, P., Koch, B., 2014. Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass. Remote Sens. Environ. 154, 102–114. https://doi.org/10.1016/j.rse.2014.07.028.

 

Fekety, P.A., Falkowski, M.J., Hudak, A.T., 2014. Temporal transferability of LiDAR-based imputation of forest inventory attributes. Can. J. For. Res. 45, 422–435. https://doi.org/10.1139/cjfr-2014-0405.

 

Forrester, D.I., 2019. Linking forest growth with stand structure: tree size inequality, tree growth or resource partitioning and the asymmetry of competition. For. Ecol. Manag. 447, 139–157. https://doi.org/10.1016/j.foreco.2019.05.053.

 

Fu, X.Y., Zhang, Z.N., Cao, L., Coops, N.C., Goodbody, T.R.H., Liu, H., Shen, X., Wu, X.Q., 2021. Assessment of approaches for monitoring forest structure dynamics using bi-temporal digital aerial photogrammetry point clouds. Remote Sens. Environ. 255, 112300. https://doi.org/10.1016/j.rse.2021.112300.

 

Glasser, G.J., 1962. Variance formulas for the mean difference and coefficient of concentration. J. Am. Stat. Assoc. 57, 648–654. https://doi.org/10.2307/2282402.

 

Gobakken, T., Korhonen, L., Næsset, E., 2013. Laser-assisted selection of field plots for an area-based forest inventory. Silv. Fenn. 47, 943. https://doi.org/10.14214/sf.943.

 

Goodbody, T.R.H., Coops, N.C., White, J.C., 2019. Digital aerial photogrammetry for updating area-based forest inventories: a review of opportunities, challenges, and future directions. Curr. For. Rep. 5, 55–75. https://doi.org/10.1007/s40725-019-00087-2.

 

Hagar, J.C., Yost, A., Haggerty, P.K., 2020. Incorporating LiDAR metrics into a structure-based habitat model for a canopy-dwelling species. Remote Sens. Environ. 236, 111499. https://doi.org/10.1016/j.rse.2019.111499.

 

Hao, H.K., Li, W.Z., Zhao, X., Chang, Q.R., Zhao, P.X., 2019. Estimating the aboveground carbon density of coniferous forests by combining airborne LiDAR and allometry models at plot level. Front. Plant Sci. 10, 917. https://doi.org/10.3389/fpls.2019.00917.

 

Hu, L., Fan, W.J., Ren, H.Z., Liu, S.H., Cui, Y.K., Zhao, P., 2018. Spatiotemporal dynamics in vegetation GPP over the Great Khingan Mountains using GLASS products from 1982 to 2015. Rem. Sens. 10 (3), 488. https://doi.org/10.3390/rs10030488.

 

Hudak, A.T., Strand, E.K., Vierling, L.A., Byrne, J.C., Eitel, J.U.H., Martinuzzi, S., Falkowski, M.J., 2012. Quantifying aboveground forest carbon pools and fluxes from repeat LiDAR surveys. Remote Sens. Environ. 123, 25–40. https://doi.org/10.1016/j.rse.2012.02.023.

 

Huertas, C., Sabatier, D., Derroire, G., Ferry, B., Jackson, T.D., Pélissier, R., Vincent, G., 2022. Mapping tree mortality rate in a tropical moist forest using multi-temporal LiDAR. Int. J. Appl. Earth Obs. Geoinf. 109, 102780. https://doi.org/10.1016/j.jag.2022.102780.

 
IPCC, 2003. Good Practice Guidance for Land Use, Land-Use Change and Forestry. Institute for Global Environment Strategies, Kanagawa, Japan.
 

Jenness, J.S., 2004. Calculating landscape surface area from digital elevation models. Wildl. Soc. Bull. 32 (3), 829–839. https://doi.org/10.2193/0091-7648(2004)032[0829:CLSAFD]2.0.CO;2.

 

Jiang, H., Apps, M.J., Peng, C.H., Zhang, Y.L., Liu, J.X., 2002. Modelling the influence of harvesting on Chinese boreal forest carbon dynamics. For. Ecol. Manag. 169, 65–82. https://doi.org/10.1016/S0378-1127(02)00299-2.

 

Karjalainen, T., Korhonen, L., Packalen, P., Maltamo, M., 2018. The transferability of airborne laser scanning based tree-level models between different inventory areas. Can. J. For. Res. 49, 228–236. https://doi.org/10.1139/cjfr-2018-0128.

 

Khosravipour, A., Skidmore, A.K., Isenburg, M., Wang, T.J., Hussin, Y.A., 2014. Generating pit-free canopy height models from airborne LiDAR. Photogramm. Eng. Rem. Sens. 80, 863–872. https://doi.org/10.14358/PERS.80.9.863.

 

Knapp, N., Fischer, R., Huth, A., 2018. Linking lidar and forest modeling to assess biomass estimation across scales and disturbance states. Remote Sens. Environ. 205, 199–209. https://doi.org/10.1016/j.rse.2017.11.018.

 

Kursa, M.B., Rudnicki, W.R., 2010. Feature selection with the Boruta package. J. Stat. Software 36 (11), 1–13. https://doi.org/10.18637/jss.v036.i11.

 

Liang, S.L., 2007. Recent developments in estimating land surface biogeophysical variables from optical remote sensing. Prog. Phys. Geogr. Earth Environ. 31 (5), 501–516. https://doi.org/10.1177/0309133307084626.

 

Liu, K., Shen, X., Cao, L., Wang, G.B., Cao, F.L., 2018. Estimating forest structural attributes using UAV-LiDAR data in Ginkgo plantations. ISPRS J. Photogrammetry Remote Sens. 146, 465–482. https://doi.org/10.1016/j.isprsjprs.2018.11.001.

 

Lu, D.S., Chen, Q., Wang, G.X., Liu, L.J., Li, G.Y., Moran, E., 2016. A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. Int. J. Digital Earth 9 (1), 63–105. https://doi.org/10.1080/17538947.2014.990526.

 
Lumley, T., Miller, A., 2004. Package 'leaps' –regression subset selection. https://cran.r-project.org/web/packages/leaps/leaps.pdf. (Accessed 28 August 2023).
 

Ma, Z.H., Peng, C.H., Zhu, Q.A., Chen, H., Yu, G.R., Li, W.Z., Zhou, X.L., Wang, W.F., Zhang, W.H., 2012. Regional drought-induced reduction in the biomass carbon sink of Canada's boreal forests. Proc. Natl. Acad. Sci. USA 109, 2423–2427. https://doi.org/10.1073/pnas.1111576109.

 

Marcos, J.A., Marcos, E., Taboada, A., Tárrega, R., 2007. Comparison of community structure and soil characteristics in different aged Pinus sylvestris plantations and a natural pine forest. For. Ecol. Manag. 247, 35–42. https://doi.org/10.1016/j.foreco.2007.04.022.

 

Martins-Neto, R.P., Tommaselli, A.M.G., Imai, N.N., David, H.C., Miltiadou, M., Honkavaara, E., 2021. Identification of significative LiDAR metrics and comparison of machine learning approaches for estimating stand and diversity variables in heterogeneous Brazilian Atlantic forest. Rem. Sens. 13 (13), 2444. https://doi.org/10.3390/rs13132444.

 

Moran, C.J., Rowell, E.M., Seielstad, C.A., 2018. A data-driven framework to identify and compare forest structure classes using LiDAR. Remote Sens. Environ. 211, 154–166. https://doi.org/10.1016/j.rse.2018.04.005.

 

Mura, M., McRoberts, R.E., Chirici, G., Marchetti, M., 2015. Estimating and mapping forest structural diversity using airborne laser scanning data. Remote Sens. Environ. 170, 133–142. https://doi.org/10.1016/j.rse.2015.09.016.

 

Næsset, E., Bollandsås, O.M., Gobakken, T., 2005. Comparing regression methods in estimation of biophysical properties of forest stands from two different inventories using laser scanner data. Remote Sens. Environ. 94 (4), 541–553. https://doi.org/10.1016/j.rse.2004.11.010.

 

Næsset, E., Bollandsås, O.M., Gobakken, T., Gregoire, T.G., Ståhl, G., 2013. Model-assisted estimation of change in forest biomass over an 11 year period in a sample survey supported by airborne LiDAR: a case study with post-stratification to provide "activity data.". Remote Sens. Environ. 128, 299–314. https://doi.org/10.1016/j.rse.2012.10.008.

 

Næsset, E., Gobakken, T., Holmgren, J., Hyyppä, H., Hyyppä, J., Maltamo, M., Nilsson, M., Olsson, H., Persson, Å., Söderman, U., 2004. Laser scanning of forest resources: the nordic experience. Scand. J. For. Res. 19, 482–499. https://doi.org/10.1080/02827580410019553.

 

Navarro, J.A., Tomé, J.L., Marino, E., Guillén-Climent, M.L., Fernández-Landa, A., 2020. Assessing the transferability of airborne laser scanning and digital aerial photogrammetry derived growing stock volume models. Int. J. Appl. Earth Obs. Geoinf. 91, 102135. https://doi.org/10.1016/j.jag.2020.102135.

 

Økseter, R., Bollandsås, O.M., Gobakken, T., Næsset, E., 2015. Modeling and predicting aboveground biomass change in young forest using multi-temporal airborne laser scanner data. Scand. J. For. Res. 30 (5), 458–469. https://doi.org/10.1080/02827581.2015.1024733.

 

Ordway, E.M., Asner, G.P., 2020. Carbon declines along tropical forest edges correspond to heterogeneous effects on canopy structure and function. Proc. Natl. Acad. Sci. USA 117 (14), 7863–7870. https://doi.org/10.1073/pnas.1914420117.

 

Pan, Y., Birdsey, R.A., Fang, J., Houghton, R., Kauppi, P.E., Kurz, W.A., Phillips, O.L., Shvidenko, A., Lewis, S.L., Canadell, J.G., Ciais, P., Jackson, R.B., Pacala, S.W., McGuire, A.D., Piao, S., Rautiainen, A., Sitch, S., Hayes, D., 2011. A large and persistent carbon sink in the world's forests. Science 333, 988–993. https://doi.org/10.1126/science.1201609.

 

Pang, Y., Li, Z.Y., Ju, H.B., Lu, H., Jia, W., Si, L., Guo, Y., Liu, Q.W., Li, S.M., Liu, L.X., Xie, B.X., Tan, B.X., Dian, Y.Y., 2016. LiCHy: the CAF's LiDAR, CCD and hyperspectral integrated airborne observation system. Rem. Sens. 8 (5), 398. https://doi.org/10.3390/rs8050398.

 

Reich, P.B., Rich, R.L., Lu, X., Wang, Y.-P., Oleksyn, J., 2014. Biogeographic variation in evergreen conifer needle longevity and impacts on boreal forest carbon cycle projections. Proc. Natl. Acad. Sci. USA 111, 13703–13708. https://doi.org/10.1073/pnas.1216054110.

 

Réjou-Méchain, M., Tymen, B., Blanc, L., Fauset, S., Feldpausch, T.R., Monteagudo, A., Phillips, O.L., Richard, H., Chave, J., 2015. Using repeated small-footprint LiDAR acquisitions to infer spatial and temporal variations of a high-biomass Neotropical forest. Remote Sens. Environ. 169, 93–101. https://doi.org/10.1016/j.rse.2015.08.001.

 

Roussel, J.-R., Auty, D., Coops, N.C., Tompalski, P., Goodbody, T.R.H., Meador, A.S., Bourdon, J.-F., de Boissieu, F., Achim, A., 2020. lidR: an R package for analysis of Airborne Laser Scanning (ALS) data. Remote Sens. Environ. 251, 112061. https://doi.org/10.1016/j.rse.2020.112061.

 

Serreze, M.C., Walsh, J.E., Chapin, F.S., Osterkamp, T., Dyurgerov, M., Romanovsky, V., Oechel, W.C., Morison, J., Zhang, T., Barry, R.G., 2000. Observational evidence of recent change in the northern high-latitude environment. Clim. Change 46, 159–207. https://doi.org/10.1023/A:1005504031923.

 

Shin, J., Temesgen, H., Strunk, J.L., Hilker, T., 2016. Comparing modeling methods for predicting forest attributes using LiDAR metrics and ground measurements. Can. J. Rem. Sens. 42 (6), 739–765. https://doi.org/10.1080/07038992.2016.1252908.

 

Simonson, W., Ruiz-Benito, P., Valladares, F., Coomes, D., 2016. Modelling above-ground carbon dynamics using multi-temporal airborne LiDAR: insights from a Mediterranean woodland. Biogeosciences 13 (4), 961–973. https://doi.org/10.5194/bg-13-961-2016.

 

Song, C.H., 2012. Optical remote sensing of forest leaf area index and biomass. Prog. Phys. Geogr. Earth Environ. 37, 98–113. https://doi.org/10.1177/0309133312471367.

 

Stan, A.B., Daniels, L.D., 2014. Growth releases across a natural canopy gap-forest gradient in old-growth forests. For. Ecol. Manag. 313, 98–103. https://doi.org/10.1016/j.foreco.2013.11.004.

 

Sumnall, M., Peduzzi, A., Fox, T.R., Wynne, R.H., Thomas, V.A., Cook, B., 2016. Assessing the transferability of statistical predictive models for leaf area index between two airborne discrete return LiDAR sensor designs within multiple intensely managed Loblolly pine forest locations in the south-eastern USA. Remote Sens. Environ. 176, 308–319. https://doi.org/10.1016/j.rse.2016.02.012.

 

Sun, W.L., Liu, X.H., 2019. Review on carbon storage estimation of forest ecosystem and applications in China. For. Ecosyst. 7, 4. https://doi.org/10.1186/s40663-019-0210-2.

 

Tompalski, P., White, J.C., Coops, N.C., Wulder, M.A., 2019. Demonstrating the transferability of forest inventory attribute models derived using airborne laser scanning data. Remote Sens. Environ. 227, 110–124. https://doi.org/10.1016/j.rse.2019.04.006.

 

Tymińska-Czabańska, L., Hawryło, P., Socha, J., 2022. Assessment of the effect of stand density on the height growth of Scots pine using repeated ALS data. Int. J. Appl. Earth Obs. Geoinf. 108, 102763. https://doi.org/10.1016/j.jag.2022.102763.

 

Valbuena, R., Maltamo, M., Mehtätalo, L., Packalen, P., 2017. Key structural features of Boreal forests may be detected directly using L-moments from airborne lidar data. Remote Sens. Environ. 194, 437–446. https://doi.org/10.1016/j.rse.2016.10.024.

 

Wei, Y.W., Yu, D.P., Lewis, B.J., Zhou, L., Zhou, W.M., Fang, X.M., Zhao, W., Wu, S.N., Dai, L.M., 2014. Forest carbon storage and tree carbon pool dynamics under natural forest protection program in northeastern China. Chin. Geogr. Sci. 24, 397–405. https://doi.org/10.1007/s11769-014-0703-4.

 

White, J.C., Wulder, M.A., Vastaranta, M., Coops, N.C., Pitt, D., Woods, M., 2013. The utility of image-based point clouds for forest inventory: a comparison with airborne laser scanning. Forests 4 (3), 518–536. https://doi.org/10.3390/f4030518.

 

Wulder, M.A., Bater, C.W., Coops, N.C., Hilker, T., White, J.C., 2008. The role of LiDAR in sustainable forest management. For. Chron. 84 (6), 807–826. https://doi.org/10.5558/tfc84807-6.

 

Xiao, J.F., Chevallier, F., Gomez, C., Guanter, L., Hicke, J.A., Huete, A.R., Ichii, K., Ni, W.J., Pang, Y., Rahman, A.F., Sun, G.Q., Yuan, W.P., Zhang, L., Zhang, X.Y., 2019. Remote sensing of the terrestrial carbon cycle: a review of advances over 50 years. Remote Sens. Environ. 233, 111383. https://doi.org/10.1016/j.rse.2019.111383.

 

Zeller, L., Pretzsch, H., 2019. Effect of forest structure on stand productivity in Central European forests depends on developmental stage and tree species diversity. For. Ecol. Manag. 434, 193–204. https://doi.org/10.1016/j.foreco.2018.12.024.

 

Zhang, W.M., Qi, J.B., Wan, P., Wang, H.T., Xie, D.H., Wang, X.Y., Yan, G.J., 2016. An easy-to-use airborne LiDAR data filtering method based on cloth simulation. Rem. Sens. 8 (6), 501. https://doi.org/10.3390/rs8060501.

 

Zhao, K.G., Suarez, J.C., Garcia, M., Hu, T.X., Wang, C., Londo, A., 2018. Utility of multitemporal lidar for forest and carbon monitoring: tree growth, biomass dynamics, and carbon flux. Remote Sens. Environ. 204, 883–897. https://doi.org/10.1016/j.rse.2017.09.007.

 

Zhao, K.G., Valle, D., Popescu, S., Zhang, X.S., Mallick, B., 2013. Hyperspectral remote sensing of plant biochemistry using Bayesian model averaging with variable and band selection. Remote Sens. Environ. 132, 102–119. https://doi.org/10.1016/j.rse.2012.12.026.

Forest Ecosystems
Article number: 100135
Cite this article:
Qi Z, Li S, Pang Y, et al. Assessing spatiotemporal variations of forest carbon density using bi-temporal discrete aerial laser scanning data in Chinese boreal forests. Forest Ecosystems, 2023, 10(5): 100135. https://doi.org/10.1016/j.fecs.2023.100135

321

Views

2

Downloads

3

Crossref

3

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 10 March 2023
Revised: 20 August 2023
Accepted: 27 August 2023
Published: 01 September 2023
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return