AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (6.6 MB)
Collect
AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Spatiotemporal dynamics and geo-environmental factors influencing mangrove gross primary productivity during 2000–2020 in Gaoqiao Mangrove Reserve, China

Demei Zhaoa,bYinghui Zhanga,bJunjie Wanga,c( )Jianing ZhendZhen Shena,bKunlun XiangeHaoli Xianga,bYongquan Wanga,bGuofeng Wua,b( )
MNR Key Laboratory for Geo-Environmental Monitoring of Great Bay Area & Guangdong Key Laboratory of Urban Informatics & Shenzhen Key Laboratory of Spatial Smart Sensing and Services, Shenzhen University, Shenzhen, 518060, China
School of Architecture and Urban Planning, Shenzhen University, Shenzhen, 518060, China
College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
Guangdong Ecological Meteorology Center, Guangzhou, 510275, China
Show Author Information

Abstract

Background

Mangrove forests are a significant contributor to the global carbon cycle, and the accurate estimation of their gross primary productivity (GPP) is essential for understanding the carbon budget within blue carbon ecosystems. Little attention has been given to the investigation of spatiotemporal patterns and ecological variations within mangrove ecosystems, as well as the quantitative analysis of the influence of geo-environmental factors on time-series estimations of mangrove GPP.

Methods

This study explored the spatiotemporal dynamics of mangrove GPP from 2000 to 2020 in Gaoqiao Mangrove Reserve, China. A leaf area index (LAI)-based light-use efficiency (LUE) model was combined with Landsat data on Google Earth Engine (GEE) to reveal the variations in mangrove GPP using the Mann-Kendall (MK) test and Theil-Sen median trend. Moreover, the spatiotemporal patterns and ecological variations in mangrove ecosystems across regions were explored using four landscape indicators. Furthermore, the effects of six geo-environmental factors (species distribution, offshore distance, elevation, slope, planar curvature and profile curvature) on GPP were investigated using Geodetector and multi-scale geo-weighted regression (MGWR).

Results

The results showed that the mangrove forest in the study area experienced an area loss from 766.26 ​ha in 2000 to 718.29 ​ha in 2020, mainly due to the conversion to farming, terrestrial forest and aquaculture zones. Landscape patterns indicated high levels of vegetation aggregation near water bodies and aquaculture zones, and low levels of aggregation but high species diversity and distribution density near building zone. The mean value of mangrove GPP continuously increased from 6.35 ​g ​C·m−2·d−1 in 2000 to 8.33 ​g ​C·m−2·d−1 in 2020, with 23.21% of areas showing a highly and significantly increasing trend (trend value ​ > ​0.50). The Geodetector and MGWR analyses showed that species distribution, offshore distance and elevation contributed most to the GPP variations.

Conclusions

These results provide guidelines for selecting GPP products, and the combination of Geodetector and MGWR based on multiple geo-environmental factors could quantitatively capture the mode, direction, pathway and intensity of the influencing factors on mangrove GPP variation. The findings provide a foundation for understanding the spatiotemporal dynamics of mangrove GPP at the landscape or regional scale.

References

 

Ahmed, N., Cheung, W.W.L., Thompson, S., Glaser, M., 2017. Solutions to blue carbon emissions: shrimp cultivation, mangrove deforestation and climate change in coastal Bangladesh. Mar. Pol. 82, 68–75. https://doi.org/10.1016/j.marpol.2017.05.007.

 

Akritas, M.G., Murphy, S.A., Lavalley, M.P., 1995. The Theil-Sen estimator with doubly censored-data and applications to astronomy. J. Am. Stat. Assoc. 90, 170–177. https://doi.org/10.2307/2291140.

 

Alam, M.I., Yeasmin, S., Khatun, M.M., Rahman, M.M., Ahmed, M.U., Debrot, A.O., Ahsan, M.N., Verdegem, M.C.J., 2022. Effect of mangrove leaf litter on shrimp (Penaeus monodon, Fabricius, 1798) and color. Aquac. Rep. 25, 101185. https://doi.org/10.1016/j.aqrep.2022.101185.

 

Alongi, D.M., 2014. Carbon cycling and storage in mangrove forests. Ann. Rev. Mar. Sci 6, 195–219. https://doi.org/10.1146/annurev-marine-010213-135020.

 

Alvarado-Barrientos, M.S., López-Adame, H., Lazcano-Hernández, H.E., Arellano-Verdejo, J., Hernández-Arana, H.A., 2021. Ecosystem-atmosphere exchange of CO2, water, and energy in a basin mangrove of the northeastern coast of the Yucatan peninsula. J. Geophys. Research-Biogeo. 126 (2), e2020JG005811. https://doi.org/10.1029/2020JG005811.

 

Arifanti, V.B., Kauffman, J.B., Hadriyanto, D., Murdiyarso, D., Diana, R., 2019. Carbon dynamics and land use carbon footprints in mangrove-converted aquaculture: the case of the Mahakam Delta, Indonesia. For. Ecol. Manag. 432, 17–29. https://doi.org/10.1016/j.foreco.2018.08.047.

 

Arjasakusuma, S., Kusuma, S.S., Rafif, R., Saringatin, S., Wicaksono, P., 2020. Combination of Landsat 8 OLI and Sentinel-1 SAR time-series data for mapping paddy fields in parts of west and central Java provinces, Indonesia. ISPRS Int. J. Geo-Inf. 9 (11), 663. https://doi.org/10.3390/ijgi9110663.

 

Barik, J., Mukhopadhyay, A., Ghosh, T., Mukhopadhyay, S.K., Chowdhury, S.M., Hazra, S., 2018. Mangrove species distribution and water salinity: an indicator species approach to Sundarban. J. Coast Conserv. 22, 361–368. https://doi.org/10.1007/s11852-017-0584-7.

 

Braghiere, R.K., Quaife, T., Black, E., He, L., Chen, J.M., 2019. Underestimation of global photosynthesis in earth system models due to representation of vegetation structure. Global Biogeochem. Cycles 33, 1358–1369. https://doi.org/10.1029/2018GB006135.

 

Brunsdon, C., Fotheringham, S., Charlton, M., 1998. Geographically weighted regression–modelling spatial non-stationarity. J. Roy. Stat. Soc. D-Sta. 47 (3), 431–443. https://doi.org/10.1111/1467-9884.00145.

 

Chen, L., Msigwa, G., Yang, M.Y., Osman, A.I., Fawzy, S., Rooney, D.W., Yap, P.-S., 2022. Strategies to achieve a carbon neutral society: a review. Environ. Chem. Lett. 20, 2277–2310. https://doi.org/10.1007/s10311-022-01435-8.

 

Cui, X.W., Liang, J., Lu, W.Z., Chen, H., Liu, F., Lin, G.X., Xu, F.H., Luo, Y.Q., Lin, G.H., 2018. Stronger ecosystem carbon sequestration potential of mangrove wetlands with respect to terrestrial forests in subtropical China. Agric. For. Meteorol. 249, 71–80. https://doi.org/10.1016/j.agrformet.2017.11.019.

 

Drew, C.A., Eggleston, D.B., 2008. Juvenile fish densities in Florida Keys mangroves correlate with landscape characteristics. Mar. Ecol. Prog. Ser. 362, 233–243. https://doi.org/10.3354/meps07430.

 

Fan, J.Y., Pan, J.Y., 2006. Convergence properties of a self-adaptive Levenberg-Marquardt algorithm under local error bound condition. Comput. Optim. Appl. 34, 47–62. https://doi.org/10.1007/s10589-005-3074-z.

 

Ferreira, T.O., Otero, X.L., Vidal-Torrado, P., Macías, F., 2007. Effects of bioturbation by root and crab activity on iron and sulfur biogeochemistry in mangrove substrate. Geoderma 142, 36–46. https://doi.org/10.1016/j.geoderma.2007.07.010.

 

Gebremichael, M., Barros, A.P., 2006. Evaluation of MODIS gross primary productivity (GPP) in tropical monsoon regions. Remote Sens. Environ. 100 (2), 150–166. https://doi.org/10.1016/j.rse.2005.10.009.

 

Gnanamoorthy, P., Selvam, V., , 2020. Seasonal variations of net ecosystem (CO2) exchange in the Indian tropical mangrove forest of Pichavaram. Estuarin. Coast. Shelf. S. 243, 106828. https://doi.org/10.1016/jecss.2020.106828.

 

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R., 2017. Google earth engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031.

 

Griscom, B.W., Adams, J., Ellis, P.W., Houghton, R.A., Lomax, G., Miteva, D.A., Schlesinger, W.H., Shoch, D., Siikamäki, J.V., Smith, P., Woodbury, P., Zganjar, C., Blackman, A., Campari, J., Conant, R.T., Delgado, C., Elias, P., Gopalakrishna, T., Hamsik, M.R., Herrero, M., Kiesecker, J., Landis, E., Laestadius, L., Leavitt, S.M., Minnemeyer, S., Polasky, S., Potapov, P., Putz, F.E., Sanderman, J., Silvius, M., Wollenberg, E., Fargione, J., 2017. Natural climate solutions. Proc. Natl. Acad. Sci. U.S.A. 114 (44), 11645–11650. https://doi.org/10.1073/pnas.1710465114.

 

Hamed, K.H., Rao, A.R., 1998. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 204, 182–196. https://doi.org/10.1016/S0022-1694(97)00125-X.

 

Hilker, T., Hall, F.G., Coops, N.C., Black, A.T., Jassal, R., Mathys, A., Grant, N., 2014. Potentials and limitations for estimating daytime ecosystem respiration by combining tower-based remote sensing and carbon flux measurements. Remote Sens. Environ. 150, 44–52. https://doi.org/10.1016/j.rse.2014.04.018.

 

Hu, L., Fan, W.J., Ren, H.Z., Liu, S.H., Cui, Y.K., Zhao, P., 2018. Spatiotemporal dynamics in vegetation GPP over the Great Khingan Mountains using GLASS products from 1982 to 2015. Rem. Sens. 10 (3), 488. https://doi.org/10.3390/rs10030488.

 

Huang, Q., Qiu, F., Fan, W.L., Liu, Y.B., Zhang, Q., 2019. Evaluation of different methods for estimating the fraction of sunlit leaves and its contribution for photochemical reflectance index utilization in a coniferous forest. Rem. Sens. 11 (14), 1643. https://doi.org/10.3390/rs11141643.

 

Ishtiaque, A., Myint, S.W., Wang, C.Y., 2016. Examining the ecosystem health and sustainability of the world's largest mangrove forest using multi-temporal MODIS products. Sci. Total Environ. 569, 1241–1254. https://doi.org/10.1016/j.scitotenv.2016.06.200.

 

Jain, S., Sannigrahi, S., Sen, S., Bhatt, S., Chakraborti, S., Rahmat, S., 2020. Urban heat island intensity and its mitigation strategies in the fast-growing urban area. J. Urban Manag. 9 (1), 54–66. https://doi.org/10.1016/j.jum.2019.09.004.

 

Javi, S.T., Malekmohammadi, B., Mokhtari, H., 2014. Application of geographically weighted regression model to analysis of spatiotemporal varying relationships between groundwater quantity and land use changes (case study: khanmirza Plain, Iran). Environ. Monit. Assess. 186, 3123–3138. https://doi.org/10.1007/s10661-013-3605-5.

 

Jia, M.M., Wang, Z.M., Zhang, Y.Z., Mao, D.H., Wang, C., 2018. Monitoring loss and recovery of mangrove forests during 42 years: the achievements of mangrove conservation in China. Int. J. Appl. Earth. Obs. 73, 535–545. https://doi.org/10.1016/j.jag.2018.07.025.

 

Kanniah, K.D., Kang, C.S., Sharma, S., Amir, A.A., 2021. Remote sensing to study mangrove fragmentation and its impacts on leaf area index and gross primary productivity in the south of Peninsular Malaysia. Rem. Sens. 13 (8), 1427. https://doi.org/10.3390/rs13081427.

 

Koomen, E., Opdam, P., Steingrover, E., 2012. Adapting complex multi-level landscape systems to climate change. Landsc. Ecol. 27, 469–471. https://doi.org/10.1007/s10980-012-9721-8.

 

Kovacs, J.M., Wang, J.F., Flores-Verdugo, F., 2005. Mapping mangrove leaf area index at the species level using IKONOS and LAI-2000 sensors for the Agua Brava Lagoon, Mexican Pacific. Estuar. Coast. Shelf Sci. 62, 377–384. https://doi.org/10.1016/j.ecss.2004.09.027.

 

Lee, S.Y., Primavera, J.H., Dahdouh-Guebas, F., McKee, K., Bosire, J.O., Cannicci, S., Diele, K., Fromard, F., Koedam, N., Marchand, C., Mendelssohn, I., Mukherjee, N., Record, S., 2014. Ecological role and services of tropical mangrove ecosystems: a reassessment. Global Ecol. Biogeogr. 23 (7), 726–743. https://doi.org/10.1111/geb.12155.

 

Lele, N., Kripa, M.K., Panda, M., Das, S.K., Nivas, A.H., Divakaran, N., Naik-Gaonkar, S., Sawant, A., Pattnaik, A.K., Samal, R.N., Thangaradjou, T., Saravanakumar, A., Rodrigues, B.F., Murthy, T.V.R., 2021. Seasonal variation in photosynthetic rates and satellite-based GPP estimation over mangrove forest. Environ. Monit. Assess. 193, 61. https://doi.org/10.1007/s10661-021-08846-0.

 

Lewis, R.R., Milbrandt, E.C., Brown, B., Krauss, K.W., Rovai, A.S., Beever, J.W., Flynn, L.L., 2016. Stress in mangrove forests: early detection and preemptive rehabilitation are essential for future successful worldwide mangrove forest management. Mar. Pollut. Bull. 109 (2), 764–771. https://doi.org/10.1016/j.marpolbul.2016.03.006.

 

Li, M.S., Lee, S.Y., 1997. Mangroves of China: a brief review. For. Ecol. Manag. 96 (3), 241–259. https://doi.org/10.1016/S0378-1127(97)00054-6.

 

Li, X., Xiao, J.F., 2019. Mapping photosynthesis solely from solar-induced chlorophyll fluorescence: a global, fine-resolution dataset of gross primary production derived from OCO-2. Rem. Sens. 11 (21), 2563. https://doi.org/10.3390/rs11212563.

 

Liu, J.G., Lai, D.Y.F., 2019. Subtropical mangrove wetland is a stronger carbon dioxide sink in the dry than wet seasons. Agric. For. Meteorol. 278, 107644. https://doi.org/10.1016/j.agrformet.2019.107644.

 

Liu, M.L., Tian, H.Q., Lu, C.Q., Xu, X.F., Chen, G.S., Ren, W., 2012. Effects of multiple environment stresses on evapotranspiration and runoff over eastern China. J. Hydrol. 426, 39–54. https://doi.org/10.1016/j.jhydrol.2012.01.009.

 

Liu, Z.J., Shao, Q.Q., Liu, J.Y., 2015. The performances of MODIS-GPP and -ET products in China and their sensitivity to input Data (FPAR/LAI). Rem. Sens. 7 (1), 135–152. https://doi.org/10.3390/rs70100135.

 

Lovelock, C.E., Reef, R., 2020. Variable impacts of climate change on blue carbon. One Earth 3 (2), 195–211. https://doi.org/10.1016/j.oneear.2020.07.010.

 

Lovelock, C.E., Simpson, L.T., Duckett, L.J., Feller, I.C., 2015. Carbon budgets for Caribbean mangrove forests of varying structure and with phosphorus enrichment. Forests 6 (10), 3528–3546. https://doi.org/10.3390/f6103528.

 

Lu, W.Z., Xiao, J.F., Cui, X.W., Xu, F.H., Lin, G.X., Lin, G.H., 2019. Insect outbreaks have transient effects on carbon fluxes and vegetative growth but longer-term impacts on reproductive growth in a mangrove forest. Agric. For. Meteorol. 279, 107747. https://doi.org/10.1016/j.agrformet.2019.107747.

 

Ma, C., Wang, C.Y., 2009. A nonsmooth Levenberg–Marquardt method for solving semi-infinite programming problems. J. Comput. Appl. Math. 230 (2), 633–642. https://doi.org/10.1016/j.cam.2009.01.004.

 

Masnavi, M.R., Motedayen, H., Saboonchi, P., Hemmati, M., 2021. Analyses of landscape concept and landscape approach from theoretical to operational levels: a review of literature. Manzar 13 (57), 22–37. https://doi.org/10.22034/MANZAR.2021.283818.2128.

 

Matin, N.H., Jalali, M., 2017. The effect of waterlogging on electrochemical properties and soluble nutrients in paddy soils. Paddy Water Environ. 15, 443–455. https://doi.org/10.1007/s10333-016-0562-y.

 

Méndez-Alonzo, R., López-Portillo, J., Rivera-Monroy, V.H., 2008. Latitudinal variation in leaf and tree traits of the mangrove Avicennia germinans (Avicenniaceae) in the central region of the Gulf of Mexico. Biotropica 40 (4), 449–456. https://doi.org/10.1111/j.1744-7429.2008.00397.x.

 

Mu, Q.Z., Heinsch, F.A., Zhao, M.S., Running, S.W., 2007. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens. Environ. 111 (4), 519–536. https://doi.org/10.1016/j.rse.2007.04.015.

 

Mukherjee, N., Sutherland, W.J., Khan, M.N.I., Berger, U., Schmitz, N., Dahdouh-Guebas, F., Koedam, N., 2014. Using expert knowledge and modeling to define mangrove composition, functioning, and threats and estimate time frame for recovery. Ecol. Evol. 4 (11), 2247–2262. https://doi.org/10.1002/ece3.1085.

 

Myneni, R.B., Hoffman, S., Knyazikhin, Y., Privette, J.L., Glassy, J., Tian, Y., Wang, Y., Song, X., Zhang, Y., Smith, G.R., Lotsch, A., Friedl, M., Morisette, J.T., Votava, P., Nemani, R.R., Running, S.W., 2002. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens. Environ. 83, 214–231. https://doi.org/10.1016/S0034-4257(02)00074-3.

 

Myneni, R.B., Los, S.O., Asrar, G., 1995. Potential gross primary productivity of terrestrial vegetation from 1982–1990. Geophys. Res. Lett. 22 (19), 2617–2620. https://doi.org/10.1029/95GL02562.

 

Myneni, R.B., Ramakrishna, R., Nemani, R., Running, S.W., 1997. Estimation of global leaf area index and absorbed par using radiative transfer models. IEEE Trans. Geosci. Rem. Sens. 35 (6), 1380–1393. https://doi.org/10.1109/36.649788.

 

Narula, S.C., Wellington, J.F., 2007. Multiple criteria linear regression. Eur. J. Oper. Res. 181 (2), 767–772. https://doi.org/10.1016/j.ejor.2006.06.026.

 

Patnaik, S., Biswal, B., 2020. Importance of nutrient loading and irrigation in gross primary productivity trends in India. J. Hydrol. 588, 125047. https://doi.org/10.1016/j.jhydrol.2020.125047.

 

Pei, Y.Y., Dong, J.W., Zhang, Y., Yang, J.L., Zhang, Y.Q., Jiang, C.Y., Xiao, X.M., 2020. Performance of four state-of-the-art GPP products (VPM, MOD17, BESS and PML) for grasslands in drought years. Ecol. Inf. 56, 101052. https://doi.org/10.1016/j.ecoinf.2020.101052.

 

Poulter, B., Heyder, U., Cramer, W., 2009. Modeling the sensitivity of the seasonal cycle of GPP to dynamic LAI and soil depths in tropical rainforests. Ecosystems 12, 517–533. https://doi.org/10.1007/s10021-009-9238-4.

 

Rasquinha, D.N., Mishra, D.R., 2021. Tropical cyclones shape mangrove productivity gradients in the Indian subcontinent. Sci. Rep. 11 (1), 17355. https://doi.org/10.1038/s41598-021-96752-3.

 

Raza, S., Zamanian, K., Ullah, S., Kuzyakov, Y., Virto, I., Zhou, J.B., 2021. Inorganic carbon losses by soil acidification jeopardize global efforts on carbon sequestration and climate change mitigation. J. Clean. Prod. 315, 128036. https://doi.org/10.1016/j.jclepro.2021.128036.

 

Richardson, A.D., Black, T.A., Ciais, P., Delbart, N., Friedl, M.A., Gobron, N., Hollinger, D.Y., Kutsch, W.L., Longdoz, B., Luyssaert, S., Migliavacca, M., Montagnani, L., Munger, J.W., Moors, E., Piao, S.L., Rebmann, C., Reichstein, M., Saigusa, N., Tomelleri, E., Vargas, R., Varlagin, A., 2010. Influence of spring and autumn phenological transitions on forest ecosystem productivity. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 3227–3246. https://doi.org/10.1098/rstb.2010.0102.

 

Rodda, S.R., Thumaty, K.C., Fararoda, R., Jha, C.S., Dadhwal, V.K., 2022. Unique characteristics of ecosystem CO2 exchange in Sundarban mangrove forest and their relationship with environmental factors. Estuar. Coast. Shelf Sci. 267, 107764. https://doi.org/10.1016/j.ecss.2022.107764.

 

Rodda, S.R., Thumaty, K.C., Jha, C.S., Dadhwal, V.K., 2016. Seasonal variations of carbon dioxide, water vapor and energy fluxes in tropical Indian mangroves. Forests 7 (2), 35. https://doi.org/10.3390/f7020035.

 

Sazeides, C.I., Christopoulou, A., Fyllas, N.M., 2021. Coupling photosynthetic measurements with biometric data to estimate gross primary productivity (GPP) in Mediterranean pine forests of different post-fire age. Forests 12 (9), 1256. https://doi.org/10.3390/f12091256.

 

Schloss, A.L., Kicklighter, D.W., Kaduk, J., Wittenberg, U., Intercomparison, P.P.N.M., 1999. Comparing global models of terrestrial net primary productivity (NPP): comparison of NPP to climate and the Normalized Difference Vegetation Index (NDVI). Global Change Biol. 5, 25–34. https://doi.org/10.1046/j.1365-2486.1999.00004.x.

 

Su, J., Yin, B.C., Chen, L.Z., Gasparatos, A., 2022. Priority areas for mixed-species mangrove restoration: the suitable species in the right sites. Environ. Res. Lett. 17, 065001. https://doi.org/10.1088/1748-9326/ac6b48.

 

Sun, Z.Y., Wang, X.F., Yamamoto, H., Tani, H., Zhong, G.S., Yin, S., Guo, E.L., 2018. Spatial pattern of GPP variations in terrestrial ecosystems and its drivers: climatic factors, CO2 concentration and land-cover change, 1982-2015. Ecol. Inf. 46, 156-165. https://doi.org/10.1016/j.ecoinf.2018.06.006.

 

Tagliabue, G., Panigada, C., Dechant, B., Baret, F., Cogliati, S., Colombo, R., Migliavacca, M., Rademske, P., Schickling, A., Schuttemeyer, D., Verrelst, J., Rascher, U., Ryu, Y., Rossini, M., 2019. Exploring the spatial relationship between airborne-derived red and far-red sun-induced fluorescence and process-based GPP estimates in a forest ecosystem. Remote Sens. Environ. 231, 111272. https://doi.org/10.1016/j.rse.2019.111272.

 

Turner, D.P., Ritts, W.D., Cohen, W.B., Gower, S.T., Zhao, M.S., Running, S.W., Wofsy, S.C., Urbanski, S., Dunn, A.L., Munger, J.W., 2003a. Scaling gross primary production (GPP) over boreal and deciduous forest landscapes in support of MODIS GPP product validation. Remote Sens. Environ. 88, 256–270. https://doi.org/10.1016/j.rse.2003.06.005.

 

Turner, D.P., Urbanski, S., Bremer, D., Wofsy, S.C., Meyers, T., Gower, S.T., Gregory, M., 2003b. A cross-biome comparison of daily light use efficiency for gross primary production. Global Change Biol. 9 (3), 383–395. https://doi.org/10.1046/j.1365-2486.2003.00573.x.

 

Valderrama, L., Troche, C., Rodriguez, M.T., Marquez, D., Vázquez, B., Velázquez, S., Vázquez, A., Cruz, M.I., Ressl, R., 2014. Evaluation of mangrove cover changes in Mexico during the 1970-2005 period. Wetlands 34, 747–758. https://doi.org/10.1007/s13157-014-0539-9.

 

Valiela, I., Bowen, J.L., York, J.K., 2001. Mangrove forests: one of the world's threatened major tropical environments. Bioscience 51 (10), 807–815. https://doi.org/10.1641/0006-3568(2001)051[0807:MFOOTW]2.0.CO;2.

 

Wang, L.C., Zhu, H.J., Lin, A.W., Zou, L., Qin, W.M., Du, Q.Y., 2017. Evaluation of the latest MODIS GPP products across multiple biomes using global eddy covariance flux data. Rem. Sens. 9 (5), 418. https://doi.org/10.3390/rs9050418.

 

Xiao, X.M., Hollinger, D., Aber, J., Goltz, M., Davidson, E.A., Zhang, Q.Y., Moore, B., 2004. Satellite-based modeling of gross primary production in an evergreen needleleaf forest. Remote Sens. Environ. 89 (4), 519–534. https://doi.org/10.1016/j.rse.2003.11.008.

 

Xie, X.Y., Li, A.N., Jin, H.A., Bian, J.H., Zhang, Z.J., Nan, X., 2021. Comparing three remotely sensed approaches for simulating gross primary productivity over mountainous watersheds: a case study in the Wanglang National Nature Reserve, China. Rem. Sens. 13 (18), 3567. https://doi.org/10.3390/rs13183567.

 

Yan, S.R., Li, M., Sun, T., Liu, Q., Liang, L.Q., Wang, X., Li, C.H., 2021. The complex drought effects associated with the regulation of water-use efficiency in a temperate water-limited basin. J. Hydrol-Reg. Stud. 36, 100864. https://doi.org/10.1016/j.ejrh.2021.100864.

 

Yang, Y.T., Guan, H.D., Shang, S.H., Long, D., Simmons, C.T., 2014. Toward the use of the MODIS ET product to estimate terrestrial GPP for nonforest ecosystems. Geosci. Rem. Sens. Lett. IEEE 11 (9), 1624–1628. https://doi.org/10.1109/LGRS.2014.2302796.

 

You, Y.F., Wang, S.Y., Ma, Y.X., Wang, X.Y., Liu, W.H., 2019. Improved modeling of gross primary productivity of alpine grasslands on the Tibetan Plateau using the Biome-BGC Model. Rem. Sens. 11 (11), 1287. https://doi.org/10.3390/rs11111287.

 

Yu, G.R., Zhang, L.M., Sun, X.M., Fu, Y.L., Wen, X.F., Wang, Q.F., Li, S.G., Ren, C.Y., Song, X., Liu, Y.F., Han, S.J., Yan, J.H., 2008. Environmental controls over carbon exchange of three forest ecosystems in eastern China. Global Change Biol. 14 (11), 2555–2571. https://doi.org/10.1111/j.1365-2486.2008.01663.x.

 

Zeng, N., Jiang, K.J., Han, P.F., Hausfather, Z., Cao, J.J., Kirk-Davidoff, D., Ali, S., Zhou, S., 2022. The Chinese carbon-neutral goal: challenges and prospects. Adv. Atmos. Sci. 39, 1229–1238. https://doi.org/10.1007/s00376-021-1313-6.

 

Zhang, Y.G., Guanter, L., Berry, J.A., Joiner, J., van der Tol, C., Huete, A., Gitelson, A., Voigt, M., Köhler, P., 2014. Estimation of vegetation photosynthetic capacity from space-based measurements of chlorophyll fluorescence for terrestrial biosphere models. Global Change Biol. 20 (12), 3727–3742. https://doi.org/10.1111/gcb.12664.

 

Zhang, Y.J., Xu, M., Chen, H., Adams, J., 2009. Global pattern of NPP to GPP ratio derived from MODIS data: effects of ecosystem type, geographical location and climate. Global Ecol. Biogeogr. 18 (3), 280–290. https://doi.org/10.1111/j.1466-8238.2008.00442.x.

 

Zhang, Y.L., Song, C.H., Band, L.E., Sun, G., 2019. No proportional increase of terrestrial gross carbon sequestration from the greening Earth. J. Geophys. Res-biogeo. 124 (8), 2540–2553. https://doi.org/10.1029/2018JG004917.

 

Zhang, Y.S., Xiao, L., Guan, D.S., Chen, Y.J., Motelica-Heino, M., Peng, Y.S., Lee, S.Y., 2021. The role of mangrove fine root production and decomposition on soil organic carbon component ratios. Ecol. Indicat. 125, 107525. https://doi.org/10.1016/j.ecolind.2021.107525.

 

Zhang, Y.H., Hu, Z.W., Wang, J.Z., Gao, X., Yang, C., Yang, F.S., Wu, G.F., 2023. Temporal upscaling of MODIS instantaneous FAPAR improves forest gross primary productivity (GPP) simulation. Int. J. Appl. Earth. Obs. 121, 103360. https://doi.org/10.1016/j.jag.2023.103360.

 

Zhao, D.M., Zhen, J.N., Zhang, Y.H., Miao, J., Shen, Z., Jiang, X.P., Wang, J.J., Jiang, J.C., Tang, Y.Z., Wu, G.F., 2022. Mapping mangrove leaf area index (LAI) by combining remote sensing images with PROSAIL-D and XGBoost methods. Remote Sens. Ecol. Conserv. 9 (3), 370–389. https://doi.org/10.1002/rse2.315.

 

Zhao, M.S., Heinsch, F.A., Nemani, R.R., Running, S.W., 2005. Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sens. Environ. 95 (2), 164–176. https://doi.org/10.1016/j.rse.2004.12.011.

 

Zheng, Y., Zhang, L., Xiao, J.F., Yuan, W.P., Yan, M., Li, T., Zhang, Z.Q., 2018. Sources of uncertainty in gross primary productivity simulated by light use efficiency models: model structure, parameters, input data, and spatial resolution. Agric. For. Meteorol. 263, 242–257. https://doi.org/10.1016/j.agrformet.2018.08.003.

 

Zheng, Y.H., Takeuchi, W., 2022. Estimating mangrove forest gross primary production by quantifying environmental stressors in the coastal area. Sci. Rep. 12, 2238. https://doi.org/10.1038/s41598-022-06231-6.

 

Zhu, J.J., Yan, B., 2022. Blue carbon sink function and carbon neutrality potential of mangroves. Sci. Total Environ. 822, 153438. https://doi.org/10.1016/j.scitotenv.2022.153438.

 

Zhu, X.D., Hou, Y.W., Zhang, Y.G., Lu, X.L., Liu, Z.Q., Weng, Q.H., 2021a. Potential of sun-induced chlorophyll fluorescence for indicating mangrove canopy photosynthesis. J. Geophys. Res-Biogeo. 126 (4), e2020JG006159. https://doi.org/10.1029/2020JG006159.

 

Zhu, X.D., Sun, C.Y., Qin, Z.C., 2021b. Drought-induced salinity enhancement weakens mangrove greenhouse gas cycling. J. Geophys. Res-Biogeo. 126 (8), 18. https://doi.org/10.1029/2021JG006416.

Forest Ecosystems
Article number: 100137
Cite this article:
Zhao D, Zhang Y, Wang J, et al. Spatiotemporal dynamics and geo-environmental factors influencing mangrove gross primary productivity during 2000–2020 in Gaoqiao Mangrove Reserve, China. Forest Ecosystems, 2023, 10(5): 100137. https://doi.org/10.1016/j.fecs.2023.100137

407

Views

8

Downloads

1

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 21 June 2023
Revised: 31 August 2023
Accepted: 31 August 2023
Published: 07 September 2023
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return