AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.3 MB)
Collect
AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Habitat heterogeneity and biotic interactions mediate climate influences on seedling survival in a temperate forest

Haikun Liua,bHang ShiaQuan ZhouaMan HuaXiao ShuaKerong ZhangaQuanfa ZhangaHaishan Danga( )
Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
University of Chinese Academy of Sciences, Beijing, 100049, China
Show Author Information

Abstract

Seedling stage has long been recognized as the bottleneck of forest regeneration, and the biotic and abiotic processes that dominate at seedling stage largely affect the dynamics of forest. Seedlings might be particularly vulnerable to climate stress, so elucidating the role of interannual climate variation in fostering community dynamics is crucial to understanding the response of forest to climate change. Using seedling survival data of 69 woody species collected for five consecutive years from a 25-ha permanent plot in a temperate deciduous forest, we identified the effects of biotic interactions and habitat factors on seedling survival, and examined how those effects changed over time. We found that interannual climate variations, followed by biotic interactions and habitat conditions, were the most significant predictors of seedling survival. Understory light showed a positive impact on seedling mortality, and seedling survival responded differently to soil and air temperature. Effects of conspecific neighbor density were significantly strengthened with the increase of maximum air temperature and vapor pressure deficits in the growing season, but were weakened by increased maximum soil temperature and precipitation in the non-growing season. Surprisingly, seedling survival was strongly correlated with interannual climate variability at all life stages, and the strength of the correlation increased with seedling age. In addition, the importance of biotic and abiotic factors on seedling survival differed significantly among species-trait groups. Thus, the neighborhood-mediated effects on mortality might be significantly contributing or even inverting the direct effects of varying abiotic conditions on seedling survival, and density-dependent effects could not be the only important factor influencing seedling survival at an early stage.

References

 

Alexander, J.M., Diez, J.M., Levine, J.M., 2015. Novel competitors shape species' responses to climate change. Nature 525, 515–518. https://doi.org/10.1038/nature14952.

 
Babst, F., Bouriaud, O., Poulter, B., Trouet, V., Girardin, M.P., Frank, D.C., 2019. Twentieth century redistribution in climatic drivers of global tree growth. Sci. Adv. 5. https://doi.org/10.1126/sciadv.aat4313 eaat4313.
 

Bai, X., Queenborough, S.A., Wang, X., Zhang, J., Li, B., Yuan, Z., Xing, D., Lin, F., Ye, J., Hao, Z., 2012. Effects of local biotic neighbors and habitat heterogeneity on tree and shrub seedling survival in an old-growth temperate forest. Oecologia 170, 755–765. https://doi.org/10.1007/s00442-012-2348-2.

 

Bates, D., Mächler, M., Bolker, B., Walker, S., 2015. Fitting linear mixed-effects models using lme4. J. Stat. Software 67, 1–48. https://doi.org/10.18637/jss.v067.i01.

 

Blois, J.L., Zarnetske, P.L., Fitzpatrick, M.C., Finnegan, S., 2013. Climate change and the past, present, and future of biotic interactions. Science 341, 499–504. https://doi.org/10.1126/science.1237184.

 

Blonder, B., Noguésbravo, D., Borregaard, M.K., John, I.I., Jørgensen, P., Kraft, N., Lessard, J.P., Moruetaholme, N., Sandel, B., Svenning, J.C., 2015. Linking environmental filtering and disequilibrium to biogeography with a community climate framework. Ecology 96, 972–985. https://doi.org/10.1890/14-0589.1.

 

Camarero, J.J., Gutierrez, E., Fortin, M.J., 2006. Spatial patterns of plant richness across treeline ecotones in the Pyrenees reveal different locations for richness and tree cover boundaries. Global Ecol. Biogeogr. 15, 182–191. https://doi.org/10.1111/j.1466-822x.2006.00211.x.

 

Canham, C.D., Denslow, J.S., Platt, W.J., Runkle, J.R., Spies, T.A., White, P.S., 1990. Light regimes beneath closed canopies and tree-fall gaps in temperate and tropical forests. Can. J. For. Res. 20, 620–631. https://doi.org/10.1139/x90-084.

 

Chandra, S., Singh, A., Mathew, J.R., Singh, C.P., Pandya, M.R., Bhattacharya, B.K., Solanki, H., Nautiyal, M.C., Joshi, R., 2022. Phenocam observed flowering anomaly of Rhododendron arboreum Sm. in Himalaya: a climate change impact perspective. Environ. Monit. Assess. 194, 877. https://doi.org/10.1007/s10661-022-10466-1.

 

Chazdon, R.L., Brenes, A.R., Alvarado, B.V., 2005. Effects of climate and stand age on annual tree dynamics in tropical second-growth rain forests. Ecology 86, 1808–1815. https://doi.org/10.1890/04-0572.

 

Chen, L., Mi, X.C., Comita, L.S., Zhang, L.W., Ren, H.B., Ma, K.P., 2010. Community-level consequences of density dependence and habitat association in a subtropical broad-leaved forest. Ecol. Lett. 13, 695–704. https://doi.org/10.1111/j.1461-0248.2010.01468.x.

 

Chen, L., Wang, Y., Mi, X., Liu, X., Kraft, N., 2019. Neighborhood effects explain increasing asynchronous seedling survival in a subtropical forest. Ecology 100, e02821. https://doi.org/10.1002/ecy.2821.

 

Chesson, P., 2000. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Systemat. 31, 343–366. https://doi.org/10.1146/annurev.ecolsys.31.1.343.

 

Chu, C., Kleinhesselink, A.R., Havstad, K.M., McClaran, M.P., Peters, D.P., Vermeire, L.T., Wei, H., Adler, P.B., 2016. Direct effects dominate responses to climate perturbations in grassland plant communities. Nat. Commun. 7, 11766. https://doi.org/10.1038/ncomms11766.

 

Clark, D.B., Clark, D.A., Rich, P.M., Weiss, S., Oberbauer, S.F., 1996. Landscape-scale evaluation of understory light and canopy structures: methods and application in a neotropical lowland rain forest. Can. J. For. Res. 26, 747–757. https://doi.org/10.1139/x26-084.

 

Clark, J.S., Iverson, L., Woodall, C.W., Allen, C.D., Bell, D.M., Bragg, D.C., D'Amato, A.W., Davis, F.W., Hersh, M.H., Ibanez, I., 2016. The impacts of increasing drought on forest dynamics, structure, and biodiversity in the United States. Global Change Biol. 22, 2329–2352. https://doi.org/10.1111/gcb.13160.

 

Comita, L.S., Hubbell, S.P., 2009. Local neighborhood and species' shade tolerance influence survival in a diverse seedling bank. Ecology 90, 328–334. https://doi.org/10.1890/08-0451.1.

 

Comita, L.S., Muller-Landau, H.C., Aguilar, S., Hubbell, S.P., 2010. Asymmetric density dependence shapes species abundances in a tropical tree community. Science 329, 330–332. https://doi.org/10.1126/science.1190772.

 

Comita, L.S., Queenborough, S.A., Murphy, S.J., Eck, J.L., Xu, K.Y., Krishnadas, M., Beckman, N., Zhu, Y., 2014. Testing predictions of the Janzen-Connell hypothesis: a meta-analysis of experimental evidence for distance- and density-dependent seed and seedling survival. J. Ecol. 102, 845–856. https://doi.org/10.1111/1365-2745.12232.

 
Connell, J.H., 1971. On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. In: Den Boer, P.J., Gradwell, G.R. (Eds.), Dynamics of Populations. Centre for Agricultural Publishing and Documentation, Wageningen, The Netherlands, pp. 298–312.
 

Duursma, R.A., Blackman, C.J., Lopéz, R., Martin-StPaul, N.K., Cochard, H., Medlyn, B.E., 2019. On the minimum leaf conductance: its role in models of plant water use, and ecological and environmental controls. New Phytol. 221, 693–705. https://doi.org/10.1111/nph.15395.

 

Ettinger, A.K., HilleRisLambers, J., 2013. Climate isn't everything: competitive interactions and variation by life stage will also affect range shifts in a warming world. Am. J. Bot. 100, 1344–1355. https://doi.org/10.3732/ajb.1200489.

 

Fisher, R., McDowell, N., Purves, D., Moorcroft, P., Sitch, S., Cox, P., Huntingford, C., Meir, P., Ian Woodward, F., 2010. Assessing uncertainties in a second-generation dynamic vegetation model caused by ecological scale limitations. New Phytol. 187, 666–681. https://doi.org/10.1111/j.1469-8137.2010.03340.x.

 

Gadgil, P., 1974. Effect of temperature and leaf wetness period on infection of Pinus radiata by Dothistroma pini. NZ. J. For. Sci. 4, 495–501.

 

Green, P.T., Harms, K.E., Connell, J.H., 2014. Nonrandom, diversifying processes are disproportionately strong in the smallest size classes of a tropical forest. Proc. Natl. Acad. Sci. U.S.A. 111, 18649–18654. https://doi.org/10.1073/pnas.1321892112.

 

Gross, N., Bagousse-Pinguet, Y.L., Liancourt, P., Berdugo, M., Gotelli, N.J., Maestre, F.T., 2017. Functional trait diversity maximizes ecosystem multifunctionality. Nat. Ecol. Evol. 1, 0132. https://doi.org/10.1038/s41559-017-0132.

 

Grossiord, C., Buckley, T.N., Cernusak, L.A., Novick, K.A., Poulter, B., Siegwolf, R.T.W., Sperry, J.S., McDowell, N.G., 2020. Plant responses to rising vapor pressure deficit. New Phytol. 226, 1550–1566. https://doi.org/10.1111/nph.16485.

 

Guo, Y.L., Chen, H.Y.H., Wang, B., Xiang, W.S., Li, D.X., Li, X.K., Mallik, A.U., Ding, T., Huang, F.Z., Lu, S.H., Wen, S.J., 2020. Conspecific and heterospecific crowding facilitate tree survival in a tropical karst seasonal rainforest. For. Ecol. Manag. 481, 118751. https://doi.org/10.1016/j.foreco.2020.118751.

 

Harms, K.E., Wright, S.J., Calderon, O., Hernandez, A., Herre, E.A., 2000. Pervasive density-dependent recruitment enhances seedling diversity in a tropical forest. Nature 404, 493–495. https://doi.org/10.1038/35006630.

 

Huang, D., Han, J., Wu, W., Wu, J., 2008. Soil temperature effects on emergence and survival of Iris lactea seedlings. N. Z. J. Crop Hortic. Sci. 36, 183–188. https://doi.org/10.1080/01140670809510234.

 

Janzen, D.H., 1970. Herbivores and the number of tree species in tropical forests. Am. Nat. 104, 501–528.

 

Jiang, Y., Wang, Z.H., Chu, C.J., Kembel, S.W., He, F.L., 2022. Phylogenetic dependence of plant-soil feedback promotes rare species in a subtropical forest. J. Ecol. 110, 1237–1246. https://doi.org/10.1111/1365-2745.13879.

 

Johnson, D.J., Beaulieu, W.T., Bever, J.D., Clay, K., 2012. Conspecific negative density dependence and forest diversity. Science 336, 904–907. https://doi.org/10.1126/science.1220269.

 

Johnson, D.J., Bourg, N.A., Howe, R., Mcshea, W.J., Wolf, A., Clay, K., 2014. Conspecific negative density-dependent mortality and the structure of temperate forests. Ecology 95, 2493–2503. https://doi.org/10.1890/13-2098.1.

 
Johnson, D.J., Condit, R., Hubbell, S.P., Comita, L.S., 2017. Abiotic niche partitioning and negative density dependence drive tree seedling survival in a tropical forest. Proc. R. Soc. B: Biol. Sci. 284, 2017–2210. https://doi.org/10.1098/rspb.2017.2210, 1869.
 

Kobe, R.K., Vriesendorp, C.F., 2011. Conspecific density dependence in seedlings varies with species shade tolerance in a wet tropical forest. Ecol. Lett. 14, 503–510. https://doi.org/10.1111/j.1461-0248.2011.01612.x.

 

Kuang, X., Zhu, K., Yuan, Z.Q., Lin, F., Ye, J., Wang, X.G., Wang, Y.Y., Hao, Z.Q., 2017. Conspecific density dependence and community structure: insights from 11 years of monitoring in an old-growth temperate forest in Northeast China. Ecol. Evol. 7, 5191–5200. https://doi.org/10.1002/ece3.3050.

 

LaManna, J.A., Mangan, S.A., Alonso, A., Bourg, N.A., Brockelman, W.Y., Bunyavejchewin, S., Chang, L.-W., Chiang, J.-M., Chuyong, G.B., Clay, K., Condit, R., Cordell, S., Davies, S.J., Furniss, T.J., Giardina, C.P., Nimal Gunatilleke, I.A.U., Savitri Gunatilleke, C.V., He, F., Howe, R.W., Hubbell, S.P., Hsieh, C.-F., Inman-Narahari, F.M., Janík, D., Johnson, D.J., Kenfack, D., Korte, L., Král, K., Larson, A.J., Lutz, J.A., Mcmahon, S.M., Mcshea, W.J., Memiaghe, H.R., Nathalang, A., Novotny, V., Ong, P.S., Orwig, D.A., Ostertag, R., Parker, G.G., Phillips, R.P., Sack, L., Sun, I.-F., Tello, J.S., Thomas, D.W., Turner, B.L., Vela Díaz, D.M., Vrška, T., Weiblen, G.D., Wolf, A., Yap, S., Myers, J.A., 2017. Plant diversity increases with the strength of negative density dependence at the global scale. Science 356, 1389–1392. https://doi.org/10.1126/science.aam5678.

 

Le Bagousse-Pinguet, Y., Gross, N., Maestre, F.T., Maire, V., de Bello, F., Carlos Fonseca, C.R., Kattge, J., Valencia, E., Leps, J., Liancourt, P., 2017. Testing the environmental filtering concept in global drylands. J. Ecol. 105, 1058–1069. https://doi.org/10.1111/1365-2745.12735.

 

Li, W., Yue, F., Wang, C., Liao, J., Zhang, X., 2022. Climatic influences on intra-annual stem variation of Larix principis-rupprechtii in a semi-arid region. Front. For. Glob. Change 5, 948022. https://doi.org/10.3389/ffgc.2022.948022.

 

Liu, H.K., Xie, F.L., Shi, H., Shu, X., Zhang, K.R., Zhang, Q.F., Dang, H.S., 2022. Disentangling the effects of biotic neighbors and habitat heterogeneity on seedling survival in a deciduous broad-leaved forest. For. Ecol. Manag. 519, 120339. https://doi.org/10.1016/j.foreco.2022.120339.

 

Mangan, S.A., Schnitzer, S.A., Herre, E.A., Mack, K.M., Valencia, M.C., Sanchez, E.I., Bever, J.D., 2010. Negative plant–soil feedback predicts tree-species relative abundance in a tropical forest. Nature 466, 752–755. https://doi.org/10.1038/nature09273.

 

Marden, J.H., Mangan, S.A., Peterson, M.P., Wafula, E., Fescemyer, H.W., Der, J.P., dePamphilis, C.W., Comita, L.S., 2017. Ecological genomics of tropical trees: how local population size and allelic diversity of resistance genes relate to immune responses, cosusceptibility to pathogens, and negative density dependence. Mol. Ecol. 26, 2498–2513. https://doi.org/10.1111/mec.13999.

 

McCarthy-Neumann, S., Kobe, R.K., 2008. Tolerance of soil pathogens covaries with shade tolerance across species of tropical tree seedlings. Ecology 89, 1883–1892. https://doi.org/10.1890/07-0211.1.

 

Ohler, L.-M., Lechleitner, M., Junker, R.R., 2020. Microclimatic effects on alpine plant communities and flower-visitor interactions. Sci. Rep. 10, 1366. https://doi.org/10.1038/s41598-020-58388-7.

 

Pappas, C., Peters, R.L., Fonti, P., 2020. Linking variability of tree water use and growth with species resilience to environmental changes. Ecography 43, 1386–1399. https://doi.org/10.1111/ecog.04968.

 

Pauses, J.G., Austin, M.P., 2001. Patterns of plant species richness in relation to different environments: an appraisal. J. Veg. Sci. 12, 153–166. https://doi.org/10.2307/3236601.

 

Queenborough, S.A., Burslem, D., Garwood, N.C., Valencia, R., 2009. Taxonomic scale-dependence of habitat niche partitioning and biotic neighbourhood on survival of tropical tree seedlings. Proc. R. Soc. B: Biol. Sci. 276, 4197–4205. https://doi.org/10.1098/rspb.2009.0921.

 

Romero, G.Q., Gonçalves-Souza, T., Kratina, P., Marino, N.A., Petry, W.K., Sobral-Souza, T., Roslin, T., 2018. Global predation pressure redistribution under future climate change. Nat. Clim. Change 8 (12), 1087–1091. https://doi.org/10.1038/s41558-018-0347-y.

 

Sapak, Z., Melloy, P., Minchinton, E.J., Salam, M.U., Galea, V.J., 2023. The influence of temperature and vapour pressure deficit on conidia germination and germ tube production in an Australian Podosphaera xanthii isolate. Eur. J. Plant Pathol. 166, 315–328. https://doi.org/10.1007/s10658-023-02664-5.

 

Shi, H., Xie, F., Zhou, Q., Shu, X., Zhang, K., Dang, C., Feng, S., Zhang, Q., Dang, H., 2019. Effects of topography on tree community structure in a deciduous broad-leaved forest in north-central China. Forests 10, 53. https://doi.org/10.3390/f10010053.

 

Silvertown, J., 2004. Plant coexistence and the niche. Trends Ecol. Evol. 19, 605–611. https://doi.org/10.1016/j.tree.2004.09.003.

 

Song, X., Zhang, W., Johnson, D.J., Yang, J., Asefa, M., Deng, X., Yang, X., Cao, M., 2020. Conspecific negative density dependence in rainy season enhanced seedling diversity across habitats in a tropical forest. Oecologia 193, 949–957. https://doi.org/10.1007/s00442-020-04729-2.

 

Song, X.Y., Johnson, D.J., Cao, M., Umana, M.N., Deng, X.B., Yang, X.F., Zhang, W.F., Yang, J., 2018. The strength of density-dependent mortality is contingent on climate and seedling size. J. Veg. Sci. 29, 662–670. https://doi.org/10.1111/jvs.12645.

 

Squinzani, L.I., Piana, P.A., Brocardo, C.R., 2022. Does seed dispersal mode matter? Plant Ecol. 223, 643–657. https://doi.org/10.1007/s11258-022-01238-5.

 

Suttle, K., Thomsen, M.A., Power, M.E., 2007. Species interactions reverse grassland responses to changing climate. Science 315, 640–642. https://doi.org/10.1126/science.1136401.

 

Swinfield, T., Lewis, O.T., Bagchi, R., Freckleton, R.P., 2012. Consequences of changing rainfall for fungal pathogen-induced mortality in tropical tree seedlings. Ecol. Evol. 2, 1408–1413. https://doi.org/10.1002/ece3.252.

 

Trotsiuk, V., Babst, F., Grossiord, C., Gessler, A., Eugster, W., 2021. Tree growth in Switzerland is increasingly constrained by rising evaporative demand. J. Ecol. 109, 2981–2990. https://doi.org/10.1111/1365-2745.13712.

 

Tylianakis, J.M., Didham, R.K., Bascompte, J., Wardle, D.A., 2010. Global change and species interactions in terrestrial ecosystems. Ecol. Lett. 11, 1351–1363. https://doi.org/10.1111/j.1461-0248.2008.01250.x.

 

Uriarte, M., Lasky, J.R., Boukili, V.K., Chazdon, R.L., 2016. A trait-mediated, neighbourhood approach to quantify climate impacts on successional dynamics of tropical rainforests. Funct. Ecol. 30, 157–167. https://doi.org/10.1111/1365-2435.12576.

 

Uriarte, M., Muscarella, R., Zimmerman, J.K., 2018. Environmental heterogeneity and biotic interactions mediate climate impacts on tropical forest regeneration. Global Change Biol. 24, 692–704. https://doi.org/10.1111/gcb.14000.

 

Walker, L.R., 1991. Tree damage and recovery from hurricane Hugo in Luquillo experimental forest, Puerto Rico. Biotropica 23, 379–385. https://doi.org/10.2307/2388255.

 

Wright, J.S., 2002. Plant diversity in tropical forests: a review of mechanisms of species coexistence. Oecologia 130, 1–14. https://doi.org/10.1007/s004420100809.

 

Wright, S.J., Kitajima, K., Kraft, N.J.B., Reich, P.B., Wright, I.J., Bunker, D.E., 2010. Functional traits and the growth–mortality trade-off in tropical trees. Ecology 91, 3664–3674. https://doi.org/10.1890/09-2335.1.

 

Xu, Z., Johnson, D.J., Zhu, K., Lin, F., Ye, J., Yuan, Z., Mao, Z., Fang, S., Hao, Z., Wang, X., 2022. Interannual climate variability has predominant effects on seedling survival in a temperate forest. Ecology 103, e3643. https://doi.org/10.1002/ecy.3643.

 

Yao, J., Bachelot, B., Meng, L., Qin, J., Zhao, X., Zhang, C., 2020. Abiotic niche partitioning and negative density dependence across multiple life stages in a temperate forest in northeastern China. J. Ecol. 108, 1299–1310. https://doi.org/10.1111/1365-2745.13335.

 

Ye, J., Hao, Z.Q., Wang, X.G., Bai, X.J., Xing, D.L., Yuan, Z.Q., 2014. Local-scale drivers of multi-stemmed tree formation in Acer, in a temperate forest of Northeast China. Chin. Sci. Bull. 59, 320–325. https://doi.org/10.1007/s11434-013-0013-8.

 

Zellweger, F., De Frenne, P., Lenoir, J., Vangansbeke, P., Verheyen, K., Bernhardt-Römermann, M., Baeten, L., Hédl, R., Berki, I., Brunet, J., Van Calster, H., Chudomelová, M., Decocq, G., Dirnböck, T., Durak, T., Heinken, T., Jaroszewicz, B., Kopecký, M., Máliš, F., Macek, M., Malicki, M., Naaf, T., Nagel, T.A., Ortmann-Ajkai, A., Petřík, P., Pielech, R., Reczyńska, K., Schmidt, W., Standovár, T., Świerkosz, K., Teleki, B., Vild, O., Wulf, M., Coomes, D., 2020. Forest microclimate dynamics drive plant responses to warming. Science 368, 772–775. https://doi.org/https://doi.org/10.1126/science.aba6880.

 

Zhu, Y., Comita, L.S., Hubbell, S.P., Ma, K., 2015. Conspecific and phylogenetic density-dependent survival differs across life stages in a tropical forest. J. Ecol. 103, 957–966. https://doi.org/10.1111/1365-2745.12414.

 

Zhu, Y., Queenborough, S.A., Condit, R., Hubbell, S.P., Ma, K.P., Comita, L.S., 2018. Density-dependent survival varies with species life-history strategy in a tropical forest. Ecol. Lett. 21, 506–515. https://doi.org/10.1111/ele.12915.

Forest Ecosystems
Article number: 100138
Cite this article:
Liu H, Shi H, Zhou Q, et al. Habitat heterogeneity and biotic interactions mediate climate influences on seedling survival in a temperate forest. Forest Ecosystems, 2023, 10(5): 100138. https://doi.org/10.1016/j.fecs.2023.100138

370

Views

12

Downloads

4

Crossref

3

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 13 July 2023
Revised: 10 September 2023
Accepted: 10 September 2023
Published: 17 September 2023
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return