AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.9 MB)
Collect
AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Forest composition and red oak (Quercus sp.) response to elevation gradients across greentree reservoirs

Cassandra HugaPradip Sauda( )Keith McKnightbDouglas C. Osbornea,c
College of Forestry, Agricultural, and Natural Resources, University of Arkansas at Monticello, Monticello, AR, 71656, USA
USFWS/Lower Mississippi Valley Joint Venture, Tyler, TX, 75707, USA
Five Oaks Ag Research and Education Center, Humphrey, AR, 72073, USA
Show Author Information

Abstract

Elevation gradients within forested wetlands have long been recognized for their role in defining species composition through factors such as hydrology and soil characteristics. Greentree reservoirs (GTRs) are levee-impounded tracts of bottomland hardwood forest flooded throughout the winter months to provide habitat for overwintering waterfowl. Artificial flooding of GTRs alters the forest composition due to flood frequency, depth, and duration in combination with slight changes in topography. To evaluate the effect of elevation gradients, soil properties, and management techniques in the overstory species composition and red oak (Quercus spp.) species abundance, we inventoried 662 plots across 12 independent GTRs in eastern Arkansas. In the lower elevations ranging from 50.98 to 54.99 ​m above sea level, the importance value index (IVI) was highest for nuttall oak (Quercus texana) and overcup oak (Quercus lyrata), whereas IVI shifted to cherrybark oak (Quercus pagoda) in the higher elevations ranging from 54.99 to 58.00 ​m. Alpha diversity did not differ by elevation gradient, soil property, or management technique within GTRs. Beta diversity, using non-metric multi-dimensional scaling (NMDS) analysis, indicated site-specific variability significantly correlated with the environmental predictors, including elevation (R2 = ​0.57), easting (R2 = ​0.47), soil texture (R2 = ​0.21), and pH (R2 = ​0.12). Red oak species-specific mixed-effects modeling of abundance response using Poisson distribution suggested an inverse correlation of nuttall oak and a direct correlation of cherrybark oak abundance with elevation. However, willow oak (Quercus phellos) abundance was not significantly affected by elevation but was by silt loam soil texture and restoration management techniques. These findings will aid management efforts to reduce the dominance of less desirable species that are prominent under specific environmental conditions and promote the dominance of more desirable species. Ultimately GTR sustainability is increasingly important amid the unpredictable impacts of climate change on the preferred red oak species that are economically, ecologically, and environmentally valuable to the sustaining economy of the local community and managing habitats for wildlife.

References

 

Adams, D.E., Anderson, R.C., 1980. Species response to a moisture gradient in central Illinois forests. Am. J. Bot. 67 (3), 381–392. https://doi.org/10.2307/2442348.

 

Allen, C.E., 1980. Feeding habits of ducks in a green-tree reservoir in eastern Texas. J. Wildl. Manag. 44 (1), 232–236.

 
Allen, J.A., Keeland, B.D., Stanturf, J.A., Clewell, A.F., Kennedy Jr., H.E., 2004. A guide to bottomland hardwood restoration. USDA Forest Service, Southern Research Station, General Technical Report SRS-40, USA. https://doi.org/10.2737/SRS-GTR-40.
 
Bey, C.F., 1990. Ulmus americana L. American elm. In: Burns, R.M., Honkala, B.H. (Eds.), Silvics of North America, vol. 2. Hadrwoods. Agriculture handbook No. 654. USDA-Forest Service, Washington DC, USA, pp. 801–807.
 

Brooks, M.E., Kristensen, K., van Benthem, K.J., Magnusson, A., Berg, C.W., Nielsen, A., Skaug, H.J., Maechler, M., Bolker, B.M., 2017. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J 9 (2), 378–400. https://doi.org/10.32614/RJ-2017-066.

 

Carpenter, C., 2005. The environmental control of plant species density on a Himalayan elevation gradient. J. Biogeogr. 32 (6), 999–1018.

 

Casey, W.P., Ewel, K.C., 2006. Patterns of succession in forested depressional wetlands in north Florida, USA. Wetlands 26 (1), 147–160.

 

Christman, S.P., 1984. Breeding bird response to greentree reservoir management. J. Wildl. Manag. 48 (4), 1164–1172. https://doi.org/10.2307/3801777.

 

Clarke, K.R., 1993. Non-parametric multivariate analysis of changes in community structure. Aust. J. Ecol. 18, 117–143. https://doi.org/10.1111/j.1442-9993.1993.tb00438.x.

 

Clatterbuck, W.K., Hodges, J.D., 1988. Development of cherrybark oak and sweet gum in mixed, even-aged bottomland stands in central Mississippi, USA. Can. J. For. Res. 18 (1), 12–18.

 

Colwell, R.K., Hurtt, G.C., 1994. Nonbiological gradients in species richness and a spurious Rapoport effect. Am. Nat. 144 (4), 570–595.

 

Colwell, R.K., Lees, D.C., 2000. The mid-domain effect: geometric constraints on the geography of species richness. Trends Ecol. Evol. 15 (2), 70–76.

 

Cram, D., Saud, P., Baker, T., 2017. Structure and composition of a dry mixed-conifer forest in absence of contemporary treatments, southwest, USA. Forests 8 (9), 349.

 

Curtis, J.T., Mcintosh, R.P., 1950. The interrelations of certain analytic and synthetic phytosociological characters. Ecology 31 (3), 434–455.

 

Deller, A.S., Baldassarre, G.A., 1998. Effects of flooding on the forest community in a greentree reservoir 18 years after flood cessation. Wetlands 18 (1), 90–99.

 

D'Antonio, C.M., Tunison, J.T., Loh, R.K., 2000. Variation in the impact of exotic grasses on native plant composition in relation to fire across an elevation gradient in Hawaii. Austral Ecol. 25 (5), 507–522. https://doi.org/10.1046/j.1442-9993.2000.01079.x.

 

Ervin, G.N., Majure, L.C., Bried, J.T., 2006. Influence of long-term greentree reservoir impoundment on stand structure, species composition, and hydrophytic indicators. J. Torrey Bot. Soc. 133 (3), 468–481.

 
Esri Inc., 2022. ArcGIS Pro. Esri Inc, Version 3.0.3. https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview. (Accessed 21 March 2023).
 
Fredrickson, L.H., 1979. Floral and Faunal Changes in Lowland Hardwood Forests in Missouri Resulting from Channelization, Drainage, and Impoundment. U.S. Fish and Wildlife Service. Office of Biological Services, Washington, DC, USA.
 
Gardiner, E.S., 2001. Ecology of bottomland oaks in the southeastern United States. In: Proceedings of the Third International Oak Conference, Asheville. North Carolina, USA.
 

Gilliam, F.S., Yurish, B.M., Goodwin, L.M., 1993. Community composition of an old growth longleaf pine forest: relationship of soil texture. Bull. Torrey Bot. Club 120 (3), 287–294. https://doi.org/10.2307/2996993.

 

Gould, W.A., González, G., Carrero Rivera, G., 2006. Structure and composition of vegetation along an elevational gradient in Puerto Rico. J. Veg. Sci. 17 (5), 653–664.

 

Gracia, M., Montané, F., Piqué, J., Retana, J., 2007. Overstory structure and topographic gradients determining diversity and abundance of understory shrub species in temperate forests in central Pyrenees (NE Spain). For. Ecol. Manage. 242, 391–397.

 

Grell, A.G., Shelton, M.G., Heitzman, E., 2005. Changes in plant species composition along an elevation gradient in an old-growth bottomland hardwood-Pinus taeda Forest in Southern Arkansas. J. Torrey Bot. Soc. 132 (1), 72–89.

 

Halbritter, A.H., Fior, S., Keller, I., Billeter, R., Edwards, P.J., Holderegger, R., Karrenberg, S., Pluess, A.R., Widmer, A., Alexander, J.M., 2018. Trait differentiation and adaptation of plants along elevation gradients. J. Evol. Biol. 31 (6), 784–800.

 

Haq, S.M., Calixto, E.S., Rashid, I., Srivastava, G., Khuroo, A.A., 2022. Tree diversity, distribution and regeneration in major forest types along an extensive elevational gradient in Indian Himalaya: implications for sustainable forest management. For. Ecol. Manage. 506, 119968. https://doi.org/10.1016/j.foreco.2021.119968.

 
Harris, L.D., Gosselink, J.G., 2020. Cumulative impacts of bottomland hardwood forest conversion on hydrology, water quality, and terrestrial wildlife. In: Gosselink, J.G., Lee, L.C., Muir, T.A. (Eds.), Ecological Processes and Cumulative Impacts. CRC Press, Boca Raton, pp. 259–322.
 

Hatten, J., Sloan, J., Frey, B., Straub, J., Kaminski, R., Ezell, A., 2014. Soil and sediment carbon and nitrogen in Mississippi Alluvial Valley and interior flatwoods bottomlands. Soil Sci. Soc. Am. J. 78 (S1), S248–S260. https://doi.org/10.2136/sssaj2013.09.0417nafsc.

 

Heitmeyer, M.E., 2006. The importance of winter floods to mallards in the Mississippi Alluvial Valley. J. Wildl. Manag. 70 (1), 101–110.

 

Hodges, J.D., 1997. Development and ecology of bottomland hardwood sites. For. Ecol. Manage. 90, 117–125.

 
Hodges, J.D., Switzer, G.L., 1979. Some aspects of the ecology of southern bottomland hardwoods. In: Proc. 1978 Conf. Of the Society of American Forestry. Am. Foresters, Washington, DC, pp. 22–25.
 

Hook, D.D., 1984. Waterlogging tolerance of lowland tree species of the south. South. J. Appl. For. 8 (3), 136–149.

 
Huffman, R.T., Forsythe, S.W., 1981. Bottomland hardwood forest communities and their relation to anaerobic soil conditions. Elsevier Sci. Publishing Co., Amsterdam, pp. 187–196.
 

Jimbo, T., Saulei, S., Moses, J., Lawong, B., Kaina, G., Kiapranis, R., Hitofumi, A., Novotny, V., Attorre, F., Testolin, R., Cicuzza, D., 2023. Beyond the trees: a comparison of nonwoody species, and their ecology, in Papua New Guinea elevational gradient forest. Case Stud. Environ. 7 (1), 1831407.

 

Kassahun, Z., Renninger, H.J., 2021. Effects of drought on water use of seven tree species from four genera growing in a bottomland hardwood forest. Agri. For. Meteorol. 301, 108353.

 

Keeland, B.D., Draugelis-Dale, R.O., McCoy, J.W., 2010. Tree growth and mortality during 20 years of managing a green-tree reservoir in Arkansas, USA. Wetlands 30 (3), 405–416.

 
Kellison, R.C., Young, M.J., Braham, R.R., Jones, E.J., 2019. Major alluvial floodplains. In: Messina, M.G., Conner, M.W. (Eds.), Southern Forested Wetlands: ecology and Management. Routledge, London, pp. 291–323.
 

King, S.L., Keeland, B.D., 1999. Evaluation of reforestation in the lower Mississippi river Alluvial Valley. Restor. Ecol. 7 (4), 348–359. https://doi.org/10.1046/j.1526-100X.1999.72029.x.

 
Klimas, C., Foti, T.L., Pagan, J., Williamson, M., 2012. Potential Natural Vegetation of the Mississippi Alluvial Valley: Bayou Meto Basin, Arkansas, Field Atlas. https://apps.dtic.mil/sti/pdfs/ADA565718.pdf. (Accessed 21 March 2023).
 

Kobe, R.K., 1996. Intraspecific variation in sapling mortality and growth predicts geographic variation in forest composition. Ecol. Monogr. 66 (2), 181–201.

 

Lockhart, B.R., Guldin, J.M., Foti, T., 2010. Tree species composition and structure in an old bottomland hardwood forest in south-central Arkansas. Castanea 75 (3), 315–329.

 

Loftis, D.L., 1983. Regenerating southern Appalachian mixed hardwood stands with the shelterwood method. South. J. Appl. Finance 7 (4), 212–217.

 

Luo, Y.H., Liu, J., Tan, S.L., Cadotte, M.W., Wang, Y.H., Xu, K., Li, D.Z., Gao, L.M., 2016. Trait-based community assembly along an elevational gradient in subalpine forests: quantifying the roles of environmental factors in inter-and intraspecific variability. PLoS One 11 (5), e0155749.

 
MacDonald, P.O., Frayer, W.E., Clauser, J.K., 1979. Documentation, Chronology, and Future Projections of Bottomland Hardwood Habitat Loss in the Lower Mississippi Alluvial Plain. U.S. Fish and Wildlife Service. Division of Ecological Services, Washington, DC, USA.
 
Mahaffey, A., Evans, A., 2016. Ecological Forestry Practices for Bottomland Hardwood Forests of the Southeastern US Forest Stewards Guild. https://foreststewardsguild.org/wpcontent/uploads/2019/05/FSG_Bottomland_Hardwoodsweb. (Accessed 21 March 2023).
 

Mahayani, N.P.D., Slik, F.J., Webb, E.L., Savini, T., Gale, G.A., 2022. Changes in tree functional composition and forest functioning ten years after logging and thinning interventions in Bornean tropical forests. For. Ecol. Manage. 506, 119948.

 

Malizia, A., Blundo, C., Carilla, J., Acosta, O.O., Cuesta, F., Duque, A., Aguirre, N., Aguirre, Z., Ataroff, M., Baez, S., Calderón-Loor, M., Cayola, L., Cayuela, L., Ceballos, S., Cedillo, H., Ríos, W.F., Feeley, K.J., Fuentes, A.F., Álvarez, L.E.G., Grau, R., Homeier, J., Jadan, O., Llambi, L.D., Rivera, M.I.L., Macía, M.J., Malhi, Y., Malizia, L., Peralvo, M., Pinto, E., Tello, S., Silman, M., Young, K.R., 2020. Elevation and latitude drives structure and tree species composition in Andean forests: results from a large-scale plot network. PLoS One 15 (4), e0231553.

 

McKnight, J.S., Hook, D.D., Langdon, O.G., Johnson, R.L., 1981. Flood tolerance and related characteristics of trees of the bottomland forests of the southern United States. Dev. Agric. Manag. For. Ecol. 11, 29–69.

 
Meadows, J.S., Hodges, J.D., 1997. Silviculture of southern bottomland hardwoods: 25 years of change. In: Proc. 25th Annual Hardwood Symposium. National Hardwood Lumber Association, Memphis, pp. 1–16.
 

Meadows, J.S., Stanturf, J.A., 1997. Silvicultural systems for southern bottomland hardwood forests. For. Ecol. Manage. 90 (2–3), 127–140.

 

Meehan, T.D., Kaminski, R.M., Lebaron, G.S., Michel, N.L., Bateman, B.L., Wilsey, C.B., 2021. Half-century winter duck abundance and temperature trends in the Mississippi and Atlantic flyways. J. Wildl. Manag. 85 (4), 713–722.

 

Menge, B.A., Sutherland, J.P., 1976. Species diversity gradients: synthesis of the roles of predation, competition, and temporal heterogeneity. Am. Nat. 110 (973), 351–369.

 
Moorhead, D.J., Hodges, J.D., Reinecke, K.J., Coleman, S.S., Neary, D.G., 1991. Silvicultural options for waterfowl management in bottomland hardwood stands and greentree reservoirs. In: Proceedings of the sixth biennial southern silvicultural research conference. U.S. Forest Service, Southeastern Forest Experiment Station, Asheville, NC, pp. 710–721.
 

Morin, X., Fahse, L., Jactel, H., Scherer-Lorenzen, M., García-Valdés, R., Bugmann, H., 2018. Long-term response of forest productivity to climate change is mostly driven by change in tree species composition. Sci. Rep. 8 (1), 5627.

 
National Centers for Environmental Information, 2022. U.S. Department of Commerce Global Summary of the Year. https://www.ncei.noaa.gov/access/services/data/v1?dataset=global-summary-of-the-year&startDate=0001-01-01&endDate=9996-12-31&stations=USC00122309&format=pdf. (Accessed 21 March 2023).
 
Oksanen, J., Simpson, G.L., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O'Hara, R.B., Solymos, P., Stevens, M.H.H., Szoecs, E., Wagner, H., Barbour, M., Bedward, M., Bolker, B., Borcard, D., Carvalho, G., Chirico, M., De Caceres, M., Durand, S., Evangelista, H.B.A., FitzJohn, R., Friendly, M., Furneaux, B., Hannigan, G., Hill, M.O., Lahti, L., McGlinn, D., Ouellette, M.-H., Cunha, E.R., Smith, T., Stier, A., Ter Braak, C.J.F., Weedon, J., 2022. Vegan: community ecology package. R package version 2.6-2. https://CRAN.R-project.org/package=vegan. (Accessed 21 March 2023).
 

Pielou, E.C., 1966. The measurement of diversity in different types of biological collections. J. Theor. Biol. 13, 131–144.

 
R Core Team, 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. (Accessed 21 March 2023).
 

Rafferty, N.E., Diez, J.M., Bertelsen, C.D., 2020. Changing climate drives divergent and nonlinear shifts in flowering phenology across elevations. Curr. Biol. 30 (3), 432–441.

 

Rahbek, C., 1995. The elevational gradient of species richness: a uniform pattern? Ecography 18 (2), 200–205. https://doi.org/10.1111/j.1600-0587.1995.tb00341.x.

 

Rives, R.G., Knapp, B.O., Olson, M.G., Weegman, M.D., Muzika, R.M., 2020. Regenerating mixed bottomland hardwood forests in north Missouri: effects of harvest treatment on structure, composition, and growth through 15 years. For. Ecol. Manage. 475, 118371.

 

Rosenberg, K.V., Dokter, A.M., Blancher, P.J., Sauer, J.R., Smith, A.C., Smith, P.A., Stanton, J.C., Panjabi, A., Helft, L., Parr, M., Marra, P.P., Marra, P.P., 2019. Decline of the north American avifauna. Science 366 (6461), 120–124.

 
Sander, I.L., 1979. Regenerating oaks with the shelterwood system. In: Holt, H.A., Fischer, B.C. (Eds.), Regenerating Oaks in Upland Hardwood Forests, Proceedings of the 1979 Wright Forest Conference. Purdue University, West Lafayette, pp. 54–60.
 

Schmidt, J.P., Moore, R., Alber, M., 2014. Integrating ecosystem services and local government finances into land use planning: a case study from coastal Georgia. Landsc. Urban Plann. 122, 56–67.

 

Shannon, C.E., Weaver, W., 1949. The mathematical theory of communication. University of Illinois Press, Urbana.

 

Shear, T.H., Lent, T.J., Fraver, S., 1996. Comparison of restored and mature bottomland hardwood forests of southwestern Kentucky. Restor. Ecol. 4 (2), 111–123.

 

Siefert, A., Violle, C., Chalmandrier, L., Albert, C.H., Taudiere, A., Fajardo, A., Aarssen, L.W., Baraloto, C., Carlucci, M.B., Cianciaruso, M.V., Dantas, V.D., de Bello, F., Duarte, L.D.S., Fonseca, C.R., Freschet, G.T., Gaucherand, S., Gross, N., Hikosaka, K., Jackson, B., Jung, V., Kamiyama, C., Katabuchi, M., Kembel, S.W., Kichenin, E., Kraft, N.J.B., Lagerstrom, A., Le Bagousse-Pinguet, Y., Li, Y.Z., Mason, N., Messier, J., Nakashizuka, T., McC Overton, J., Peltzer, D.A., Perez-Ramos, I.M., Pillar, V.D., Prentice, H.C., Richardson, S., Sasaki, T., Schamp, B.S., Schob, C., Shipley, B., Sundqvist, M., Sykes, M.T., Vandewalle, M., Wardle, D.A., 2015. A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. Ecol. Lett. 18 (12), 1406–1419.

 

Skeen, J.N., 1973. An extension of the concept of importance value in analyzing forest communities. Ecology 54 (3), 655–656.

 
Smith, D.W., Linnartz, N.E., 1980. The southern hardwood region. In: Barrett, J.W. (Ed.), Regional Silviculture of the United States. John Wiley and Sons, New York, pp. 145–230.
 
Soil Survey Staff, 2023. Natural Resources Conservation Service, United States Department of Agriculture. Soil Survey Geographic (SSURGO) Database for [Survey Area, Arkansas]. http://datagateway.nrcs.usda.gov/. (Accessed 21 March 2023).
 

Spears, J.G., Wallen, K.E., Osborne, D.C., 2022. Value similarity and trustworthiness predict support for waterfowl management. Wildl. Soc. Bull. 46, e1375. https://doi.org/10.1002/wsb.1375.

 

Stage, A.R., Salas, C., 2007. Interactions of elevation, aspect, and slope in models of forest species composition and productivity. For. Sci. 53 (4), 486–492.

 

Straub, J.N., Leach, A.G., Kaminski, R.M., Ezell, A.W., Leininger, T.D., 2019. Red oak acorn yield in green-tree reservoirs and nonimpounded forests in Mississippi. J. Wildl. Manag. 43 (3), 491–499.

 

Sundqvist, M.K., Sanders, N.J., Wardle, D.A., 2013. Community and ecosystem responses to elevational gradients: processes, mechanisms, and insights for global change. Annu. Rev. Ecol. Evol. Syst. 44, 261–280.

 

Tanner, J.T., 1986. Distribution of tree species in Louisiana bottomland forests. Castanea 51 (3), 168–174.

 

Twilley, R.R., Bentley, S.J., Chen, Q., Edmonds, D.A., Hagen, S.C., Lam, N.S.N., Willson, C.S., Xu, K., Braud, D., Peele, R.H., McCall, A., 2016. Co-evolution of wetland landscapes, flooding, and human settlement in the Mississippi River Delta Plain. Sustain. Sci. 11, 711–731.

 
United States Soil Conservation Service, Arkansas Agricultural Experiment Station, University of Arkansas, F.C.E. S, 1982. General Soil Map, State of Arkansas. Library of Congress Geography and Map Division, Washington, DC. https://www.loc.gov/item/90684418/. (Accessed 21 March 2023).
 
U.S. Fish and Wildlife Service, 2011. The Federal Duck Stamp Program. Protecting Habitat: Your Duck Stamp Dollars at Work. https://www.fws.gov/service/duck-stamps. (Accessed 21 March 2023).
 

Wang, J., Hu, A., Meng, F., Zhao, W., Yang, Y., Soininen, J., Shen, J., Zhou, J., 2022. Embracing mountain microbiome and ecosystem functions under global change. New Phytol. 234 (6), 1987–2002.

 
Webb, E.L., Gautam, A.P., 2001. Effects of community forest management on the structure and diversity of a successional broadleaf forest in Nepal. Int. For. Rev. 3 (2), 146–157. http://www.jstor.org/stable/42609370. (Accessed 21 March 2023).
 

Whittaker, R.H., 1956. Vegetation of the great smoky mountains. Ecol. Monogr. 26 (1), 2–80. https://doi.org/10.2307/1943577.

 

Wigley, T.B., Filer, T.H., 1989. Characteristics of greentree reservoirs: a survey of managers. Wildl. Soc. Bull. 17 (2), 136–142.

 

Yeom, D.J., Kim, J.H., 2011. Comparative evaluation of species diversity indices in the natural deciduous forest of Mt. Jeombong. For. Sci. Tech. 7 (2), 68–74.

 
Yu, Y., Wei, W., Chen, L., Rodrigo-Comino, J., 2021. Responses of soil moisture to rainfall pulses and land preparation techniques. In: Rodrigo-Comino, J. (Ed.), Precipitation: Earth Surface Responses and Processes. Elsevier, Netherlands, pp. 441–458. https://doi.org/10.1016/C2019-0-04852-2.
 

Zhu, Z.X., Nizamani, M.M., Sahu, S.K., Kunasingam, A., Wang, H.F., 2019. Tree abundance, richness, and phylogenetic diversity along an elevation gradient in the tropical forest of Diaoluo Mountain in Hainan, China. Acta Oecol. 101, 103481.

Forest Ecosystems
Article number: 100141
Cite this article:
Hug C, Saud P, McKnight K, et al. Forest composition and red oak (Quercus sp.) response to elevation gradients across greentree reservoirs. Forest Ecosystems, 2023, 10(5): 100141. https://doi.org/10.1016/j.fecs.2023.100141

417

Views

9

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 02 July 2023
Revised: 26 August 2023
Accepted: 13 September 2023
Published: 28 September 2023
© 2023 The Authors.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Return