AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (4.9 MB)
Collect
AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Detecting the presence of natural forests using airborne laser scanning data

Marie-Claude Jutras-Perreault( )Terje GobakkenErik NæssetHans Ole Ørka
Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, NMBU, P.O. Box, NO-1432 Ås, Norway
Show Author Information

Abstract

Centuries of forest exploitation have caused significant loss of natural forests in Europe, leading to a decline in populations for many species. To prevent further loss in biodiversity, the Norwegian government has set a target of protecting 10% of the forested area. However, recent data from the National Forest Inventory (NFI) reveals that less than 2% of Norway's forested area consists of natural forests. To identify forests with high conservation value, we used vertical and horizontal variables derived from airborne laser scanning (ALS) data, along with NFI plot measurements. Our study aimed to predict the presence of natural forests across three counties in southeastern Norway, using three different definitions: pristine, near-natural, and semi-natural forests. Natural forests are scarce, and their underrepresentation in field reference data can compromise the accuracy of the predictions. To address this, we assessed the potential gain of including additional field data specifically targeting natural forests to achieve a better balance in the dataset. Additionally, we examined the impact of stratifying the data by dominant tree species on the performance of the models. Our results revealed that semi-natural forests were the most accurately predicted, followed by near-natural and pristine forests, with Matthews correlation coefficient values of 0.32, 0.24, and 0.17, respectively. Including additional field data did not improve the predictions. However, stratification by species improved the accuracy of predictions for near-natural and semi-natural forests, while reducing accuracy for pristine forests. The use of horizontal variables did not improve the predictions. Our study demonstrates the potential of ALS data in identifying forests with high conservation value. It provides a basis for further research on the use of ALS data for the detection and conservation of natural forests, offering valuable insights to guide future forest preservation efforts.

References

 
Ågren, G.I., Chertov, O., Kahle, H.-P., Kellomäki, S., Komarov, A., Mellert, K.-H., Van Oijen, M., Prietzel, J., Spiecker, H., Straussberger, R., Rehfuess, K.-E., 2008. Analysis of the long-term consequences for sustainability of observed growth changes of the European forests. In: Kahle, H.-P. (Ed.), Causes and Consequences of Forest Growth Trends in Europe: Results of the Recognition Project. European Forest Institute Research, p. 235.
 

Baldi, P., Brunak, S., Chauvin, Y., Andersen, C.A., Nielsen, H., 2000. Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics 16 (5), 412-424. https://doi.org/10.1093/bioinformatics/16.5.412.

 

Bater, C.W., Coops, N.C., Gergel, S.E., LeMay, V., Collins, D., 2009. Estimation of standing dead tree class distributions in northwest coastal forests using lidar remote sensing. Can. J. For. Res. 39 (6), 1080-1091. https://doi.org/10.1139/X09-030.

 

Blaschke, T., Tiede, D., Heurich, M., 2004. 3D landscape metrics to modelling forest structure and diversity based on laser scanning data. Int. Arch. Photogrammetry. 36 (8/W2), 129-132.

 

Bonnet, S., Gaulton, R., Lehaire, F., Lejeune, P., 2015. Canopy gap mapping from airborne laser scanning: an assessment of the positional and geometrical accuracy. Rem. Sens. 7 (9), 11267-11294. https://doi.org/10.3390/rs70911267.

 

Bontemps, J.-D., Hervé, J.-C., Dhôte, J.-F., 2009. Long-term changes in forest productivity: a consistent assessment in even-aged stands. For. Sci. 55 (6), 549-564. https://doi.org/10.1093/forestscience/55.6.549.

 

Braastad, H., 1966. Volume tables for birch. Medd. Nor. Skogforsoksves. 21 (1), 23–78.

 
Cao, C., Chicco, D., Hoffman, M.M., 2020. The MCC-F1 Curve: a Performance Evaluation Technique for Binary Classification. arXiv preprint arXiv:2006.11278. https://arxiv.org/abs/2006.11278. (Accessed 15 August 2023).
 

Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P., 2002. SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321-357.

 

Chicco, D., Jurman, G., 2020. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genom. 21 (1), 6. https://doi.org/10.1186/s12864-019-6413-7.

 

Dalponte, M., Coomes, D.A., 2016. Tree-centric mapping of forest carbon density from airborne laser scanning and hyperspectral data. Methods Ecol. Evol. 7 (10), 1236-1245. https://doi.org/10.1111/2041-210X.12575.

 

de Assis Barros, L., Elkin, C., 2021. An index for tracking old-growth value in disturbance-prone forest landscapes. Ecol. Indicat. 121, 107175. https://doi.org/10.1016/j.ecolind.2020.107175.

 
Direktoratet for naturforvaltning (engl.: Norwegian Directorat for Nature Management), 2007. Kartlegging Av Naturtyper-Verdisetting Av Biologisk Mangfold (engl.: Mapping Nature Types-Valuing Biological Diversity). Trondheim, Norway.
 

Edman, M., Gustafsson, M., Stenlid, J., Ericson, L., 2004. Abundance and viability of fungal spores along a forestry gradient – responses to habitat loss and isolation? Oikos 104 (1), 35-42. https://doi.org/10.1111/j.0030-1299.2004.12454.x.

 

Esseen, P.-A., Ehnström, B., Ericson, L., Sjöberg, K., 1997. Boreal forests. Ecol. Bull. 46, 16-47.

 
Framstad, E., Blindheim, T., Granhus, A., Nowell, M., Sverdrup-Thygeson, A., 2016. Evaluering Av Norsk Skogvern I 2016. Dekning Av Mål for Skogvernet Og Behov for Supplerende Vern (engl.: Evaluation of Norwegian Forest Protection in 2016. Coverage of Targets for Forest Protection and Need for Supplementary Protection). Norsk Institutt for Natursforsking (engl.: Norwegian Institute for Natural Research), Oslo, Norway.
 

Fuhr, M., Lalechère, E., Monnet, J.M., Bergès, L., 2022. Detecting overmature forests with airborne laser scanning (ALS). Remote Sens. Ecol. Conserv. 8 (5), 731-743. https://doi.org/10.1002/rse2.274.

 

Gaulton, R., Malthus, T.J., 2010. LiDAR mapping of canopy gaps in continuous cover forests: a comparison of canopy height model and point cloud based techniques. Int. J. Rem. Sens. 31 (5), 1193-1211. https://doi.org/10.1080/01431160903380565.

 

Gjerde, I., Sætersdal, M., Blom, H.H., 2007. Complementary Hotspot Inventory – a method for identification of important areas for biodiversity at the forest stand level. Biol. Conserv. 137 (4), 549-557.

 

Huo, L., Strengbom, J., Lundmark, T., Westerfelt, P., Lindberg, E., 2023. Estimating the conservation value of boreal forests using airborne laser scanning. Ecol. Indicat. 147, 109946. https://doi.org/10.1016/j.ecolind.2023.109946.

 

Jutras-Perreault, M.-C., Gobakken, T., Ørka, H.O., 2021. Comparison of two algorithms for estimating stand-level changes and change indicators in a boreal forest in Norway. Int. J. Appl. Earth Obs. 98, 102316. https://doi.org/10.1016/j.jag.2021.102316.

 

Kane, V.R., Gersonde, R.F., Lutz, J.A., McGaughey, R.J., Bakker, J.D., Franklin, J.F., 2011. Patch dynamics and the development of structural and spatial heterogeneity in Pacific Northwest forests. Can. J. For. Res. 41 (12), 2276-2291. doi: 10.1139/X11-128.

 

Kennedy, R.E., Yang, Z., Cohen, W.B., 2010. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr - temporal segmentation algorithms. Remote Sens. Environ. 114, 2897-2910. https://doi.org/10.1016/j.rse.2010.07.008.

 

Kennedy, R. E., Yang, Z., Gorelick, N., Braaten, J., Cavalcante, L., Cohen, W. B., Healey, S., 2018. Implementation of the LandTrendr Algorithm on Google Earth Engine. Rem. Sens. 10 (691), 1–10. https://doi.org/10.3390/rs10050691.

 

King, G., Zeng, L., 2001. Logistic regression in rare events data. Polit. Anal. 9 (2), 137-163. https://doi.org/10.1093/oxfordjournals.pan.a004868.

 

Koukoulas, S., Blackburn, G.A., 2004. Quantifying the spatial properties of forest canopy gaps using LiDAR imagery and GIS. Int. J. Rem. Sens. 25 (15), 3049-3072. https://doi.org/10.1080/01431160310001657786.

 

Linder, P., Elfving, B., Zackrisson, O., 1997. Stand structure and successional trends in virgin boreal forest reserves in Sweden. For. Ecol. Manag. 8 (1), 17-33. https://doi.org/10.1016/S0378-1127(97)00076-5.

 

Magnusson, M., Olsson, J., Hedenås, H., 2014. Red-listed wood-inhabiting fungi in natural and managed forest landscapes adjacent to the timberline in central Sweden. Scand. J. For. Res. 29 (5), 455-465.

 

Maltamo, M., Packalén, P., Yu, X., Eerikäinen, K., Hyyppä, J., Pitkänen, J., 2005. Identifying and quantifying structural characteristics of heterogeneous boreal forests using laser scanner data. For. Ecol. Manag. 216 (1-3), 41-50. https://doi.org/10.1016/j.foreco.2005.05.034.

 

Martin, M., Valeria, O., 2022. "Old" is not precise enough: airborne laser scanning reveals age-related structural diversity within old-growth forests. Remote Sens. Environ. 278, 113098. https://doi.org/10.1016/j.rse.2022.113098.

 

Martinuzzi, S., Vierling, L.A., Gould, W.A., Falkowski, M.J., Evans, J.S., Hudak, A.T., Vierling, K.T., 2009. Mapping snags and understory shrubs for a LiDAR-based assessment of wildlife habitat suitability. Remote Sens. Environ. 113 (12), 2533-2546. https://doi.org/10.1016/j.rse.2009.07.002.

 

Næsset, E., 2004. Practical large-scale forest stand inventory using a small-footprint airborne scanning laser. Scand. J. For. Res. 19 (2), 164-179. https://doi.org/10.1080/02827580310019257.

 
PEFC Norway, 2022. Norwegian PEFC forest standard. https://cdn.pefc.org/pefc.no/media/2023-08/97ce7286-674d-4ff3-9735-b4fccf2b5e99/6458d675-2be4-568c-b7ef-70c54fbfb7a3.pdf. (Accessed 15 August 2023).
 

Ørka, H.O., Jutras-Perreault, M.-C., Næsset, E., Gobakken, T., 2022. A framework for a forest ecological base map–an example from Norway. Ecol. Indicat. 136, 108636. https://doi.org/10.1016/j.ecolind.2022.108636.

 

Paillet, Y., Bergès, L., Hjältén, J., Ódor, P., Avon, C., Bernhardt-Römermann, M., Bijlsma, R.J., De Bruyn, L., Fuhr, M., Grandin, U., Kanka, R., Lundin, L., Luque, S., Magura, T., Matesanz, S., Mészáros, I., Sebastià, M.T., Schmidt, W., Standovár, T., Tóthmérész, B., Uotila, A., Valladares, F., Vellak, K., Virtanen, R., 2010. Biodiversity differences between managed and unmanaged forests: meta-analysis of species richness in Europe. Conserv. Biol. 24 (1), 101-112.

 

Penttilä, R., Lindgren, M., Miettinen, O., Rita, H., Hanski, I., 2006. Consequences of forest fragmentation for polyporous fungi at two spatial scales. Oikos 114 (2), 225-240. https://doi.org/10.1111/j.2006.0030-1299.14349.x.

 

Pesonen, A., Maltamo, M., Eerikäinen, K., Packalèn, P., 2008. Airborne laser scanning-based prediction of coarse woody debris volumes in a conservation area. For. Ecol. Manag. 255 (8), 3288-3296. https://doi.org/10.1016/j.foreco.2008.02.017.

 

Potapov, P., Yaroshenko, A., Turubanova, S., Dubinin, M., Laestadius, L., Thies, C., Aksenov, D., Egorov, A., Yesipova, Y., Glushkov, I., Karpachevskiy, M., Kostikova, A., Manisha, A., Tsybikova, E., Zhuravleva, I., 2008. Mapping the World's intact forest landscapes by remote sensing. Ecol. Soc. 13 (2), 51.

 

Rolstad, J., Framstad, E., Gundersen, V., Storaunet, K.O., 2002. Naturskog i Norge. Definisjoner, økologi og bruk i norsk skog-og miljøforvaltning (engl.: natural forest in Norway. Definitions, ecology and use in Norwegian forest and environmental management). Aktuelt fra skogforskningen (engl.: News from Forest Research) 1, 1-53.

 

Schumacher, J., Hauglin, M., Astrup, R., Breidenbach, J., 2020. Mapping forest age using National Forest Inventory, airborne laser scanning, and Sentinel-2 data. For. Ecosyst. 7 (1), 1-14. https://doi.org/10.1186/s40663-020-00274-9.

 

Siitonen, J., 2001. Forest management, coarse woody debris and saproxylic organisms: fennoscandian boreal forests as an example. Ecol. Bull. 49(49), 11-41.

 

Socha, J., Solberg, S., Tymińska-Czabańska, L., Tompalski, P., Vallet, P., 2021. Height growth rate of Scots pine in Central Europe increased by 29% between 1900 and 2000 due to changes in site productivity. For. Ecol. Manag. 490, 119102. https://doi.org/10.1016/j.foreco.2021.119102.

 
Søgaard, G., Eriksen, R., Astrup, R.A., Øyen, B.-H., 2012. Effekter Av Ulike Miljøhensyn På Tilgjengelig Skogareal Og Volum I Norske Skoger (engl.: Effects of Various Environmental Considerations on Available Forest Area and Volume in Norwegian Forests). Norsk Institutt for Skog Landskap (engl.: Norwegian Institute of Forests and Lanscape), Norway.
 
Steinset, T.A., 1999. Norsk Skoghåndbok 2000 (engl.: Norwegian Forest Handbook 2000). Landbruksforlaget (engl.: The Agriculture Publishing House), Norway.
 

Stokland, J., Kauserud, H., 2004. Phellinus nigrolimitatus—a wood-decomposing fungus highly influenced by forestry. For. Ecol. Manag. 187 (2-3), 333-343. https://doi.org/10.1016/j.foreco.2003.07.004.

 

Stokland, J.N., Larsson, K.-H., 2011. Legacies from natural forest dynamics: different effects of forest management on wood-inhabiting fungi in pine and spruce forests. For. Ecol. Manag. 261 (11), 1707-1721. https://doi.org/10.1016/j.foreco.2011.01.003.

 
Stokland, J.N., Tomter, S.M., Söderberg, G.U., 2004. Development of dead wood indicators for biodiversity monitoring: experiences from Scandinavia. In: Marchetti, M. (Ed.), Monitoring and Indicators of Forest Biodiversity in Europe–From Ideas to Operationality. European Forest Institute, Finland, pp. 207–226.
 
Storaunet, K.O., Rolstad, J., 2015. Mengde og utvikling av død ved i produktiv skog i Norge. Med basis i data fra Landsskogtakseringens 7. (1994-1998) og 10. takst (2010-2013) (engl.: Amount and development of dead wood in productive forests in Norway. Based on data from the 7th (1994-1998) and 10th (2010-2013) National Forest Inventory assessment). Oppdragsrapport fra Skog og landskap (engl.: Assignment report from Forest and Landscape), Norway.
 
Storaunet, K.O., Rolstad, J., 2020. Naturskog i Norge. En areal beregning basert på bestandsalder i Landsskogtakseringens takstimdrev fra 1990 til 2016 (engl.: Natural forest in Norway. An area calculation based on stand age in National Forest Inventory from 1990 to 2016). NIBIO, Norway.
 

Storaunet, K.O., Rolstad, J., Gjerde, I., Gundersen, V.S., 2005. Historical logging, productivity, and structural characteristics of boreal coniferous forests in Norway. Silva Fenn. 39 (3), 429.

 
Stortinget (engl.: Norwegian Parliament), 2016. Vedtak 667 (engl.: Resolution 667). https://www.stortinget.no/no/Saker-og-publikasjoner/Vedtak/Vedtak/Sak/?p=64248. (Accessed 15 August 2023).
 

Svensson, J., Bubnicki, J.W., Jonsson, B.G., Andersson, J., Mikusiński, G., 2020. Conservation significance of intact forest landscapes in the scandinavian mountains green belt. Landsc. Ecol. 35, 2113-2131. https://doi.org/10.1007/s10980-020-01088-4.

 

Sverdrup-Thygeson, A., Ørka, H.O., Gobakken, T., Næsset, E., 2016. Can airborne laser scanning assist in mapping and monitoring natural forests? For. Ecol. Manag. 369, 116-125. https://doi.org/10.1016/j.foreco.2016.03.035.

 

Tikkanen, O.-P., Martikainen, P., Hyvärinen, E., Junninen, K., Kouki, J., 2006. Red-listed boreal forest species of Finland: associations with forest structure, tree species, and decaying wood. Ann. Zool. Fenn. 43 (4), 373-383.

 
Tomter, S.M., Dalen, L.S., 2014. Bærekraftig Skogbruk I Norge (engl.: Sustainable Forestry in Norway). Norsk Institutt for Skog Og Landskap (engl.: Norwegian Institute for Forests and Landscape), Norway.
 
Tveite, B., 1977. Bonitetskurver for Gran: Site-Index Curves for Norway Spruce (Picea Abies (L.) Karst). Norsk Institutt for Skogforskning (engl.: Norwegian Institute for Forest Research), Norway.
 

Vehmas, M., Packalén, P., Maltamo, M., Eerikäinen, K., 2011. Using airborne laser scanning data for detecting canopy gaps and their understory type in mature boreal forest. Ann. For. Sci. 68 (4), 825-835. https://doi.org/10.1007/s13595-011-0079-x.

 

Vepakomma, U., St-Onge, B., Kneeshaw, D., 2008. Spatially explicit characterization of boreal forest gap dynamics using multi-temporal lidar data. Remote Sens. Environ. 112 (5), 2326-2340. https://doi.org/10.1016/j.rse.2007.10.001.

 
Viken, K.O., 2018. Landsskogtakseringens Feltinstruks 2018 (engl.: National Forest Inventory Field Instruction 2018). NIBIO, Norway.
 

Zimble, D.A., Evans, D.L., Carlson, G.C., Parker, R.C., Grado, S.C., Gerard, P.D., 2003. Characterizing vertical forest structure using small-footprint airborn LiDAR. Remote Sens. Environ. 87 (2-3), 171-182.

Forest Ecosystems
Article number: 100146
Cite this article:
Jutras-Perreault M-C, Gobakken T, Næsset E, et al. Detecting the presence of natural forests using airborne laser scanning data. Forest Ecosystems, 2023, 10(6): 100146. https://doi.org/10.1016/j.fecs.2023.100146

236

Views

1

Downloads

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 13 June 2023
Revised: 28 September 2023
Accepted: 19 October 2023
Published: 24 October 2023
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return