AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (7.8 MB)
Collect
AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Eucalyptus carbon stock estimation in subtropical regions with the modeling strategy of sample plots – airborne LiDAR – Landsat time series data

Xiandie Jianga,bDengqiu Lia,b,cGuiying Lia,b,cDengsheng Lua,b,c( )
Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, 350117, China
Institute of Geography, Fujian Normal University, Fuzhou, 350117, China
Fujian Provincial Engineering Research Center for Forest Carbon Metering, Fujian Normal University, Fuzhou, 350117, China
Show Author Information

Abstract

Updating eucalyptus carbon stock data in a timely manner is essential for better understanding and quantifying its effects on ecological and hydrological processes. At present, there are no suitable methods to accurately estimate the eucalyptus carbon stock in a large area. This research aimed to explore the transferability of the eucalyptus carbon stock estimation model at temporal and spatial scales and assess modeling performance through the strategy of combining sample plots, airborne LiDAR and Landsat time series data in subtropical regions of China. Specifically, eucalyptus carbon stock estimates in typical sites were obtained by applying the developed models with the combination of airborne LiDAR and field measurement data; the eucalyptus plantation ages were estimated using the random localization segmentation approach from Landsat time series data; and regional models were developed by linking LiDAR-derived eucalyptus carbon stock and vegetation age (e.g., months or years). To examine the models' robustness, the developed models at the regional scale were transferred to estimate carbon stocks at the spatial and temporal scales, and the modeling results were evaluated using validation samples accordingly. The results showed that carbon stock can be successfully estimated using the age-based models (both age variables in months and years as predictor variables), but the month-based models produced better estimates with a root mean square error (RMSE) of 6.51 ​t·ha−1 for Yunxiao County, Fujian Province, and 6.33 ​t·ha−1 for Gaofeng Forest Farm, Guangxi Zhuang Autonomous Region. Particularly, the month-based models were superior for estimating the carbon stocks of young eucalyptus plantations of less than two years. The model transferability analyses showed that the month-based models had higher transferability than the year-based models at the temporal scale, indicating their possibility for analysis of carbon stock change. However, both the month-based and year-based models expressed relatively poor transferability at a spatial scale. This study provides new insights for cost-effective monitoring of carbon stock change in intensively managed plantation forests.

References

 

Almeida, C., Galvão, L., Aragão, L., Ometto, J., Jacon, A., Pereira, F., Sato, L., Lopes, A., Graca, P., Silva, C., Ferreira, J., Longo, M., 2019. Combining LiDAR and hyperspectral data for aboveground biomass modeling in the Brazilian Amazon using different regression algorithms. Remote Sens. Environ. 232, 111323. https://doi.org/10.1016/j.rse.2019.111323.

 

Bouvier, M., Durrieu, S., Fournier, R.A., Saint-Geours, N., Guyon, D., Grau, E., Boissieu, F., 2019. Influence of sampling design parameters on biomass predictions derived from airborne Lidar data. Can. J. Remote Sens. 45, 650-672. https://doi.org/10.1080/07038992.2019.1669013.

 

Cai, B., 2018. Analysis of carbon storage of arbor stand in Zhangzhou City. For. Prospect Des. 38(4), 27-30. (in Chinese).

 

Coops, N.C., Tompalski, P., Goodbody, T.R.H., Queinnec, M., Luther, J.E., Bolton, D.K., White, J., Wulder, M., Lier, O., Hermosilla, T., 2021. Modelling Lidar-derived estimates of forest attributes over space and time: A review of approaches and future trends. Remote Sens. Environ. 260, 112477. https://doi.org/10.1016/j.rse.

 

Dalponte, M., Jucker, T., Liu, S., Frizzera, L., Gianelle, D., 2019. Characterizing forest carbon dynamics using multi-temporal Lidar data. Remote Sens. Environ. 224, 412-420. https://doi.org/10.1016/j.rse.2019.02.018.

 

David, R., Rosser, N., Donoghue, D., 2022. Improving above ground biomass estimates of Southern Africa dryland forests by combining Sentinel-1 SAR and Sentinel-2 multispectral imagery. Remote Sens. Environ. 282, 113232. https://doi.org/10.1016/j.rse.2022.113232.

 

Diao, J., Feng, T., Li, M., Zhu, Z., Liu, J., Biging, G., Zheng, G., Shen, W., Wang, H., Wang, J., Ji, B., 2020. Use of vegetation change tracker, spatial analysis, and random forest regression to assess the evolution of plantation stand age in Southeast China. Ann. Forest Sci. 77, 27. https://doi.org/10.1007/s13595-020-0924-x.

 

Dong, P., Chen, Q., 2018. LiDAR remote sensing and applications. CRC Press, Taylor & Francis Group, New York, USA.

 

Du, H., Zeng, F., Wang, K., Song, T., Wen, Y., Li, C., Peng, W., Liang, H., Zhu, H., Zeng, S., 2014. Dynamics of biomass and productivity of three major plantation types in southern China. Acta Ecol. Sin. 34(10), 2712-2724. https://doi.org/10.5846/stxb201212121788. (in Chinese).

 

Fang, L., Yang, J., Zhang, W.Q., Zhang, W.D., Yan, Q., 2019. Combining allometry and Landsat-derived disturbance history to estimate tree biomass in subtropical planted forests. Remote Sens. Environ. 235, 111423. https://doi.org/10.1016/j.rse.2019.111423.

 

Foody, G.M., Boyd, D.S., Cutler, M.E.J., 2003. Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions. Remote Sens. Environ. 85, 463-474.

 

Guo, Q., Su, Y., Hu, T., Liu, J., 2018. Lidar principles, processing and applications in forest ecology. Higher Education Press, Beijing, China. (in Chinese).

 

Hirigoyen, A., Varo-Martinez, M.A., Rachid-Casnati, C., Franco, J., Navarro-Cerrillo, R.M., 2020. Stand characterization of eucalyptus spp. plantations in Uruguay using airborne Lidar scanner technology. Remote Sens. 12, 3947. https://doi.org/10.3390/rs12233947.

 

Houghton, R.A., Hall, F., Goetz, S., 2009. Importance of biomass in the global carbon cycle. J. Geophys. Res. 114, G00E03. https://doi.org/10.1029/2009JG000935.

 

Hu, T., Su, Y., Xue, B., Liu, J., Zhao, X., Fang, J., Guo, Q., 2016. Mapping global forest aboveground biomass with space borne Lidar, optical imagery, and forest inventory data. Remote Sens. 8, 565. https://doi.org/10.3390/rs8070565.

 

Huang, C., Gong, W., Pang, Y., 2022. Remote sensing and forest carbon monitoring – a Review of recent progress, challenges and opportunities. J. Geodesy Geoinf. Sci. 5(2): 124-147. https://doi.org/10.11947/j.JGGS.2022.0212.

 

Jiang, X., Li, G., Lu, D., Moran, E., Batistella, M., 2020a. Modeling forest aboveground carbon density in the Brazilian Amazon with integration of MODIS and airborne Lidar data. Remote Sens. 12, 3330. https://doi.org/10.3390/rs12203330.

 

Jiang, X., Li, G., Lu, D., Chen, E., Wei, X., 2020b. Stratification-based forest aboveground biomass estimation in a subtropical region using airborne Lidar data. Remote Sens. 12, 1101. https://doi.org/10.3390/rs12071101.

 

Jiang, X., Zhao, S., Chen, Y., Lu, D., 2022. Exploring tree species classification in subtropical regions with a modified hierarchy-based classifier using high spatial resolution multisensor data. J. Remote Sens. 2022, 9847835. https://doi.org/10.34133/2022/9847835.

 

Kennedy, R., Yang, Z., Warren, B., 2010. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr - temporal segmentation algorithms. Remote Sens. Environ. 114 (12), 2897-2910. https://doi.org/10.1016/j.rse.2010.07.008.

 

Lefsky, M.A., Ramond, T., Weimer, C.S., 2011. Alternate spatial sampling approaches for ecosystem structure inventory using space borne Lidar. Remote Sens. Environ. 115, 1361-1368. https://doi.org/10.1016/j.rse.2011.01.016.

 

Lei, T., Liao, L., Tao, Y., Wu, X., Li, M., 2023. Forest age mapping using Landsat time-series stacks data based on forest disturbance and empirical relationships between age and height. Remote Sens. 15, 2862. https://doi.org/10.3390/rs15112862.

 

Li, D., Lu, D., Wu, Y., Luo, K., 2022. Retrieval of eucalyptus planting history and stand age using random localization segmentation and continuous land-cover classification based on Landsat time-series data. GIScience Remote Sens. 59, 1426-1445. https://doi.org/10.1080/15481603.2022.2118440.

 

Liang, B., Wang, J., Zhang, Z., Zhang, J., Zhang, J., Cressey, E.L., Wang, Z., 2022. Planted forest is catching up with natural forest in China in terms of carbon density and carbon storage. Fundam. Res. 2, 688-696. https://doi.org/10.1016/j.fmre.2022.04.008.

 

Lin, X., Shang, R., Chen, J., Zhao, G., Zhang, X., Huang, Y., Yu, G., He, N., Xu, L., Jiao, W., 2023. High-resolution forest age mapping based on forest height maps derived from GEDI and ICESat-2 space-borne lidar data. Agr. Forest Meteorol. 339, 109592. https://doi.org/10.1016/j.agrformet.2023.109592.

 

Liu, Z., Ye, Z., Xu, X., Lin, H., Zhang, T., Long, J., 2022. Mapping forest stock volume based on growth characteristics of crown using multi-temporal Landsat 8 OLI and ZY-3 Stereo images in planted eucalyptus forest. Remote Sens. 14, 5082. https://doi.org/10.3390/rs14205082.

 

Lu, D., 2005. Aboveground biomass estimation using Landsat TM Data in the Brazilian Amazon. Int. J. Remote Sens. 26(12), 2509-2525. https://doi.org/10.1080/01431160500142145.

 

Lu, D., Batistella, M., Moran, E., 2005. Satellite estimation of aboveground biomass and impacts of forest stand structure. Photogramm. Eng. Rem Sens. 71(8), 967-974.

 

Lu, D., Chen, Q., Wang, G., Liu, L., Li, G., Moran, E., 2016. A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. Int. J. Digit. Earth 9, 63-105. https://doi.org/10.1080/17538947.2014.990526.

 

Maire, I.G., Marsden, C., Nouvellon, Y., Grinand, C., Hakamada, R., Stape, J.L., Laclau, J., 2011. MODIS NDVI time-series allow the monitoring of Eucalyptus plantation biomass. Remote Sens. Environ. 115, 2613-2625. https://doi.org/10.1016/j.rse.2011.05.017.

 

Nguyen, T.H., Jones, S., Soto-Berelov, M., Haywood, A., Hislop, S., 2019. Landsat time-series for estimating forest aboveground biomass and its dynamics across space and time: A review. Remote Sens. 12, 98. https://doi.org/10.3390/rs12010098.

 

Piao, S., He, Y., Wang, X., Chen, F., 2022. Estimation of China's terrestrial ecosystem carbon sink: methods, progress and prospects. Sci. China Earth Sci. 65(4), 641-651. https://doi.org/10.1007/s11430-021-9892-6.

 

Poorazimy, M., Shataee, S., McRoberts, R., Mohammadi, J., 2020. Integrating airborne laser scanning data, space-borne radar data and digital aerial imagery to estimate aboveground carbon stock in Hyrcanian forests, Iran. Remote Sens. Environ. 240, 111669. https://doi.org/10.1016/j.rse.2020.111669.

 

Puliti, S., Breidenbach, J., Schumacher, J., Hauglin, M., Klingenberg, T.F., Astrup, R., 2021. Above-ground biomass change estimation using national forest inventory data with Sentinel-2 and Landsat. Remote Sens. Environ. 265, 112644. https://doi.org/10.1016/j.rse.2021.112644.

 

Puliti, S., Saarela, S., Gobakken, T., Ståhl, G., Naesset, E., 2018. Combining UAV and Sentinel-2 auxiliary data for forest growing stock volume estimation through hierarchical model-based inference. Remote Sens. Environ. 204, 485-497. https://doi.org/10.1016/j.rse.2017.10.007.

 

Sagar, A., Vega, C., Bouriaud, O., Piedallu, C., Renaud, J., 2022. Multisource forest inventories: A model-based approach using k-NN to reconcile forest attributes statistics and map products, ISPRS J. Photogramm. Remote Sens. 192, 175-188. https://doi.org/10.1016/j.isprsjprs.2022.08.016.

 

Santoro, M., Cartus, O., Fransson, J., 2022. Dynamics of the Swedish forest carbon pool between 2010 and 2015 estimated from satellite L-band SAR observations. Remote Sens. Environ. 270, 112846. https://doi.org/10.1016/j.rse.2021.112846.

 

Shang, R., Chen, J., Xu, M., Lin, X., Li, P., Yu, G., He, N., Xu, L., Gong, P., Liu, H., Liu, L., Jiao, W., 2023. China's current forest age structure will lead to weakened carbon sinks in the near future. The Innovation. 4(6), 100515. https://doi.org/10.1016/j.xinn.2023.100515.

 

Shin, J., Temesgen, H., Strunk, J.L., Hilker, T., 2016. Comparing modeling methods for predicting forest attributes using lidar metrics and ground measurements. Can. J. Remote Sens. 42, 739-765. https://doi.org/10.1080/07038992.2016.1252908.

 

da Silva, V.S., Silva, C.A., Mohan, M., Cardil, A., Rex, F.E., Loureiro, G.H., de Almeida, D.R.A., Broadbent, E.N., Gorgens, E.B., Corte, A.P.D., Silva, E.A., Valbuena, R., Klauberg, C., 2020. Combined impact of sample size and modeling approaches for predicting stem volume in Eucalyptus spp. forest plantations using field and Lidar data. Remote Sens. 12, 1438. https://doi.org/10.3390/rs12091438.

 

Sun, X., Wang, G., Huang, M., Chang, R., Ran, F., 2016. Forest biomass carbon stocks and variation in Tibet's carbon-dense forests from 2001 to 2050. Sci. Rep. 6, 34687. https://doi.org/10.1038/srep34687.

 

Verbesselt, J., Rob, H., Achim, Z., Darius, C., 2010. Phenological change detection while accounting for abrupt and gradual trends in satellite image time series. Remote Sens. Environ. 114 (12), 2970-2980. https://doi.org/10.1016/j.rse.2010.08.003.

 

Wulder, M.A., Loveland, T.R., Roy, D.P., Crawford, C.J., Masek, J.G., Woodcock, C.E., Allen, R., Anderson, M.C., Belward, A.S., Cohen, W.B., Dwyer, J., Erb, A., Gao, F., Griffiths, P., Helder, D., Hermosilla, T., Hipple, J.D., Hostert, P., Hughes, M.J., Huntington, J., Johnson, D.M., Kennedy, R., Kilic, A., Li, Z., Lymburner, L., McCorkel, J., Pahlevan, N., Scambos, T.A., Schaaf, C., Schott, J.R., Sheng, Y.W., Storey, J., Vermote, E., Vogelmann, J., White, J.C., Wynne, R.H., Zhu, Z., 2019. Current status of Landsat program, science, and applications. Remote Sens. Environ. 225, 127-147. https://doi.org/10.1016/j.rse.2019.02.015.

 

Xiao, J., Chevallier, F., Gomez, C., Guanter, L., Hicke, J.A., Huete, A.R., Ichii, K., Ni, W., Pang, Y., Rahman, A.F., Sun, G., Yuan, W., Zhang, L., Zhang, X., 2019. Remote sensing of the terrestrial carbon cycle: A review of advances over 50 years. Remote Sens. Environ. 233, 111383. https://doi.org/10.1016/j.rse.2019.111383.

 

Yan, W.Y., Shaker, A., El-Ashmawy, N., 2015. Urban land cover classification using airborne LiDAR data: A review. Remote Sens. Environ. 158, 295-310. https://doi.org/10.1016/j.rse.2014.11.001.

 

Yu, X., Lu, D., Jiang, X., Li, G., Chen, Y., Li, D., Chen, E., 2020. Examining the roles of spectral, spatial, and topographic features in improving land-cover and forest classifications in a subtropical region. Remote Sens. 12, 2907. https://doi.org/10.3390/rs12182907.

 

Yu, Z., Zhou, G., Liu, S., Sun, P., Agathokleous, E., 2020. Impacts of forest management intensity on carbon accumulation of China's forest plantations. For. Ecol. Manag. 472, 118252. https://doi.org/10.1016/j.foreco.2020.118252.

 

Zhang, X., Wu, Z., Xu, Z., Xu, L., Lin, J., 2021. Estimated biomass carbon in thinned Cunninghamia lanceolate plantations at different stand-ages. J. For. Res. 32, 1489-1501. https://doi.org/10.1007/s11676-020-01221-8.

 

Zhao, P., Lu, D., Wang, G., Liu, L., Li, D., Zhu, J., Yu, S., 2016. Forest aboveground biomass estimation in Zhejiang Province using the integration of Landsat TM and ALOS PALSAR data. Int. J. Appl. Earth Obs. Geoinformation 53, 1-15. https://doi.org/10.1016/j.jag.2016.08.007.

 

Zhou, J., Zhang, L., Ma, H., Zhang, W., 2019. Comparison and evaluation of airborne Lidar point cloud data processing software. Geo. Spat. Inf. Technol. 42, 101-104. (in Chinese).

 

Zhu, Z., Fu, Y., Curtis, E.W., Pontus, O., James, E.V., Christopher, H., Wang, M., Dai, S., Yu, Y., 2016. Including land cover change in analysis of greenness trends using all available Landsat 5, 7, and 8 images: A case study from Guangzhou, China (2000-2014). Remote Sens. Environ. 185, 243-257. https://doi.org/10.1016/j.rse.2016.03.036.

 

Zhu, W., Xu, Y., Wang, Z., Du A., 2018. Soil Carbon and nitrogen storage and C/N ratios in Eucalyptus plantations of different ages. Eucalypt Sci. Technol. 35, 16-19. (in Chinese).

Forest Ecosystems
Article number: 100149
Cite this article:
Jiang X, Li D, Li G, et al. Eucalyptus carbon stock estimation in subtropical regions with the modeling strategy of sample plots – airborne LiDAR – Landsat time series data. Forest Ecosystems, 2023, 10(6): 100149. https://doi.org/10.1016/j.fecs.2023.100149

223

Views

4

Downloads

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 26 May 2023
Revised: 18 October 2023
Accepted: 10 November 2023
Published: 18 November 2023
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return