AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3 MB)
Collect
AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Grouping tree species to estimate basal area increment in temperate multispecies forests in Durango, Mexico

Jaime Roberto Padilla-Martíneza( )Carola PaulaKai HusmannaJosé Javier Corral-RivasbKlaus von Gadowc,d
Department of Forest Economics and Sustainable Land-use Planning, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 1, 37077, Göttingen, Germany
Facultad de Ciencias Forestales, Universidad Juárez del Estado de Durango, Río Papaloapan y Boulevard Durango S/N, 34120, Durango, Mexico
Faculty of Forestry and Forest Ecology, Georg-August-Universität, Büsgenweg 5, 37077, Göttingen, Germany
Department of Forestry and Wood Science, Faculty of AgriSciences, Stellenbosch University, Stellenbosch Private Bag X1, Stellenbosch, 7602, South Africa
Show Author Information

Abstract

Multispecies forests have received increased scientific attention, driven by the hypothesis that biodiversity improves ecological resilience. However, a greater species diversity presents challenges for forest management and research. Our study aims to develop basal area growth models for tree species cohorts. The analysis is based on a dataset of 423 permanent plots (2,500 ​m2) located in temperate forests in Durango, Mexico. First, we define tree species cohorts based on individual and neighborhood-based variables using a combination of principal component and cluster analyses. Then, we estimate the basal area increment of each cohort through the generalized additive model to describe the effect of tree size, competition, stand density and site quality. The principal component and cluster analyses assign a total of 37 tree species to eight cohorts that differed primarily with regard to the distribution of tree size and vertical position within the community. The generalized additive models provide satisfactory estimates of tree growth for the species cohorts, explaining between 19 and 53 percent of the total variation of basal area increment, and highlight the following results: ⅰ) most cohorts show a “rise-and-fall” effect of tree size on tree growth; ⅱ) surprisingly, the competition index “basal area of larger trees” had showed a positive effect in four of the eight cohorts; ⅲ) stand density had a negative effect on basal area increment, though the effect was minor in medium- and high-density stands, and ⅳ) basal area growth was positively correlated with site quality except for an oak cohort. The developed species cohorts and growth models provide insight into their particular ecological features and growth patterns that may support the development of sustainable management strategies for temperate multispecies forests.

References

 

Aguirre-Calderón, O.A., Hui, G., Gadow, K.v., Pérez, J., 2003. An analysis of spatial forest structure using neighborhood-based variables. For. Ecol. Manag. 183, 137–145. https://doi.org/10.1016/S0378-1127(03)00102-6.

 

Alfaro-Reyna, T., Martínez-Vilalta, J., Retana, J., 2019. Regeneration patterns in Mexican pine-oak forests. For. Ecosyst. 6, 50. https://doi.org/10.1186/s40663-019-0209-8.

 

Almeida, J.A.S., Barbosa, L.M.S., Pais, A.A.C.C., Formosinho, S.J., 2007. Improving hierarchical cluster analysis: a new method with outlier detection and automatic clustering. Chemometr. Intell. Lab. Syst. 87, 208–217. https://doi.org/10.1016/j.chemolab.2007.01.005.

 

Álvarez-González, J.G., Zingg, A., Gadow, K.v., 2010. Estimating growth in beech forests: a study based on long term experiments in Switzerland. Ann. For. Sci. 67, 307. https://doi.org/10.1051/forest/2009113.

 
Asthon, M.S., Kelty, M.J., 2018. The practice of silviculture applied forest ecology. John Wiley & Sons Ltd, Hoboken, NJ, USA.
 

Bayat, M., Knoke, T., Heidari, S., Hamidi, S.K., Burkhart, H., Jaafari, A., 2022. Modeling tree growth responses to climate change: a case study in natural deciduous mountain forests. Forests 13, 1816. https://doi.org/10.3390/f13111816.

 

Bohn, F.J., Huth, A., 2017. The importance of forest structure to biodiversity–productivity relationships. Royal Soc. Open Sci. 4, 160521. https://doi.org/10.1098/rsos.160521.

 

Bravo-Oviedo, A., Condés, S., Rio, M., Pretzsch, H., Ducey, M., 2018. Maximum stand density strongly depends on species-specific wood stability, shade and drought tolerance. Forestry 91, 459–469. https://doi.org/10.1093/forestry/cpy006.

 

Bravo-Oviedo, A., Pretzsch, H., Ammer, C., Andenmatten, E., Barbati, A., Barreiro, S., Brang, P., Bravo, F., Coll, L., Ouden, J., Ducey, M., Forrester, D., Giergiczny, M., Jacobsen, J., Lesinski, J., Löf, M., Mason, B., Matović, B., Metslaid, M., Zlatanov, T., 2014. European mixed forests: definition and research perspectives. For. Syst. 23, 518–533. https://doi.org/10.5424/fs/2014233-06256.

 

Briseño-Reyes, J., Corral-Rivas, J.J., Solis-Moreno, R., Padilla-Martínez, J.R., Vega-Nieva, D.J., López-Serrano, P.M., Vargas-Larreta, B., Diéguez-Aranda, U., Quiñonez-Barraza, G., López-Sánchez, C.A., 2020. Individual tree diameter and height growth models for 30 tree species in mixed-species and uneven-aged forests of Mexico. Forests 11, 429. https://doi.org/10.3390/f11040429.

 
Burkhart, H.E., Tomé, M., 2012. Growth and yield models for uneven-aged stands. In: Burkhart, H.E., Tomé, M. (Eds.), Modeling Forest Trees and Stands. Springer Netherlands, Dordrecht, pp. 339–361.
 
Cancino, J., Gadow, K.v., 2002. Stem number guide curves for uneven-aged forests development and limitations. In: Gadow, K.v., Nagel, J., Saborowski, J. (Eds.), Continuous Cover Forestry: Assessment, Analysis, Scenarios, Managing Forest Ecosystems. Springer Netherlands, Dordrecht, pp. 163–174.
 

Chai, Z., Sun, C., Wang, D., Liu, W., Zhang, C., 2017. Spatial structure and dynamics of predominant populations in a virgin old-growth oak forest in the Qinling Mountains, China. Scand. J. For. Res. 32, 19–29. https://doi.org/10.1080/02827581.2016.1183703.

 

Copenheaver, C.A., Chambers, C.P., Evans, A.L., Walker, D.M., Peterson, J.A., Byers, A., Garren, A.M., Hawks, B.S., Howell, R., 2022. A comparison of early-European settlement and present-day species mingling patterns in the eastern deciduous forest, USA. Hum. Ecol. 50, 925–936. https://doi.org/10.1007/s10745-022-00356-y.

 

Corral-Rivas, J.J., Briseño Reyes, J., López-Sánchez, C., Diéguez-Aranda, U., González-González, J.M., 2016. Sistema de Planeación Forestal para Bosque Templado (SiPlaFor). TRESEME 40, 24–26.

 

Corral-Rivas, J.J., González-Elizondo, M.S., Lujan-Soto, J., Gadow, K.v., 2018. Effects of density and structure on production in the communal forests of the Mexican Sierra Madre Occidental. South. For. J. For. Sci. 81, 1–10. https://doi.org/10.2989/20702620.2018.1463152.

 
Crawley, M.J., 2002. Statistical Computing: an Introduction to Data Analysis Using S-Plus.John Wiley, Chichester, UK.
 

Cysneiros, V.C., Pelissari, A.L., Machado, S.A., Figueiredo-Filho, A., David, H.C., 2017. Cluster and discriminant analyses for stem volume modelling of tree species groups in an Amazon rainforest. J. Trop. For. Sci. 29, 325–333. https://doi.org/10.26525/jtfs2017.29.3.325333.

 

Dănescu, A., Albrecht, A.T., Bauhus, J., 2016. Structural diversity promotes productivity of mixed, uneven-aged forests in southwestern Germany. Oecologia 182, 319–333. https://doi.org/10.1007/s00442-016-3623-4.

 

del Río, M., Pretzsch, H., Alberdi, I., Bielak, K., Bravo, F., Brunner, A., Condés, S., Ducey, M.J., Fonseca, T., von Lüpke, N., Pach, M., Peric, S., Perot, T., Souidi, Z., Spathelf, P., Sterba, H., Tijardovic, M., Tomé, M., Vallet, P., Bravo-Oviedo, A., 2016. Characterization of the structure, dynamics, and productivity of mixed-species stands: review and perspectives. Eur. J. For. Res. 135, 23–49. https://doi.org/10.1007/s10342-015-0927-6.

 

Fischer, C., 2016. Comparing the logarithmic transformation and the Box-Cox transformation for individual tree basal area increment models. For. Sci. 62, 297–306. https://doi.org/10.5849/forsci.15-135.

 

Forrester, D.I., 2021. Does individual-tree biomass growth increase continuously with tree size? For. Ecol. Manag. 481, 118717. https://doi.org/10.1016/j.foreco.2020.118717.

 

Forrester, D.I., Ammer, C., Annighöfer, P.J., Barbeito, I., Bielak, K., Bravo-Oviedo, A., Coll, L., del Río, M., Drössler, L., Heym, M., Hurt, V., Löf, M., den Ouden, J., Pach, M., Pereira, M.G., Plaga, B.N.E., Ponette, Q., Skrzyszewski, J., Sterba, H., Svoboda, M., Zlatanov, T.M., Pretzsch, H., 2018. Effects of crown architecture and stand structure on light absorption in mixed and monospecific Fagus sylvatica and Pinus sylvestris forests along a productivity and climate gradient through Europe. J. Ecol. 106, 746–760. https://doi.org/10.1111/1365-2745.12803.

 

Franceschini, T., Martin-Ducup, O., Schneider, R., 2016. Allometric exponents as a tool to study the influence of climate on the trade-off between primary and secondary growth in major north-eastern American tree species. Ann. Bot. 117, 551–563. https://doi.org/10.1093/aob/mcw003.

 

Gadow, K.v., 1993. Zur bestandesbeschreibung in der Forsteinrichtung. Forst Holz 48, 602–606.

 
Gadow, K.v., Hui, G.Y., 2002. In: Characterizing forest spatial structure and diversity. Presented at the Sustainable Forestry in Temperate Regions. SUFOR, University of Lund, Lund, Sweden, pp. 20–30.
 

Glatthorn, J., Feldmann, E., Tabaku, V., Leuschner, C., Meyer, P., 2018. Classifying development stages of primeval European beech forests: is clustering a useful tool? BMC Ecol. 18, 47. https://doi.org/10.1186/s12898-018-0203-y.

 

González-Cásares, M., Pompa-García, M., Camarero, J.J., 2017. Differences in climate–growth relationship indicate diverse drought tolerances among five pine species coexisting in Northwestern Mexico. Trees (Berl.) 31, 531–544. https://doi.org/10.1007/s00468-016-1488-0.

 

González-Elizondo, M.S., González-Elizondo, M., Tena-Flores, J.A., Ruacho-González, L., López-Enríquez, I.L., 2012. Vegetación de la Sierra Madre Occidental, México: una síntesis. Acta Bot. Mex., 351–403. https://doi.org/10.21829/abm100.2012.40.

 

Graciano-Ávila, G., Calderón, O., Rodríguez, E., Lujan-Sotoju, J., 2021. Analysis of the composition, structure and diversity of tree species in a temperate forest in northwestern Mexico. Sustain. For. 4, 19. https://doi.org/10.24294/sf.v4i1.1599.

 

Graz, F.P., 2004. The behaviour of the species mingling index Msp in relation to species dominance and dispersion. Eur. J. For. Res. 123, 87–92. https://doi.org/10.1007/s10342-004-0016-8.

 
Hastie, T.J., Tibshirani, R.J., 1990. Generalized Additive Models, 1st ed. Routledge, NewYork.
 
Howard, J.L., 2003. Pinus arizonica. Fire Eff. Inf. Syst. https://www.fs.usda.gov/database/feis/plant/tree/pinarz. (Accessed 25 September 2023).
 

Hu, Y.B., Hui, G.Y., 2015. How to describe the crowding degree of trees based on the relationship of neighboring trees. J. Beijing For. Univ. 37 (9), 1–8. https://doi.org/10.13332/j.1000-1522.20150125.

 

Hui, G., Zhang, G., Zhao, Z., Yang, A., 2019. Methods of forest structure research: a review. Curr. For. Rep. 5, 142–154. https://doi.org/10.1007/s40725-019-00090-7.

 

Hui, G.Y., Albert, M., Gadow, K.v., 1998. DasUmgebungsmaß als Parameter zur Nachbildung von Bestandesstrukturen. Forstwiss. Cent. Ver. Mit Tharandter Forstl. Jahrb. 117, 258–266. https://doi.org/10.1007/BF02832980.

 

Johnsen, K., Samuelson, L., Teskey, R., McNulty, S., Fox, T., 2001. Process models as tools in forestry research and management. For. Sci. 47, 2–8. https://doi.org/10.1093/forestscience/47.1.2.

 

Juma, R., Pukkala, T., de-Miguel, S., Muchiri, M., 2014. Evaluation of different approaches to individual tree growth and survival modelling using data collected at irregular intervals – a case study for Pinus patula in Kenya. For. Ecosyst. 1, 14. https://doi.org/10.1186/s40663-014-0014-3.

 

Köhler, P., Ditzer, T., Huth, A., 2000. Concepts for the aggregation of tropical tree species into functional types and the application to Sabah's lowland rain forests. J. Trop. Ecol. 16, 591–602. https://doi.org/10.1017/S0266467400001590.

 

Kuuluvainen, T., 2009. Forest management and biodiversity conservation based on natural ecosystem dynamics in northern Europe: the complexity challenge. Ambio 38, 309–315.

 

Lengyel, A., Botta-Dukát, Z., 2019. Silhouette width using generalized mean—a flexible method for assessing clustering efficiency. Ecol. Evol. 9, 13231–13243. https://doi.org/10.1002/ece3.5774.

 

Li, Y., Hui, G., Zhao, Z., Hu, Y., 2012. The bivariate distribution characteristics of spatial structure in natural Korean pine broad-leaved forest. J. Veg. Sci. 23, 1180–1190. https://doi.org/10.1111/j.1654-1103.2012.01431.x.

 

Liang, J., Crowther, T.W., Picard, N., Wiser, S., Zhou, M., Alberti, G., Schulze, E.-D., McGuire, A.D., Bozzato, F., Pretzsch, H., de-Miguel, S., Paquette, A., Hérault, B., Scherer-Lorenzen, M., Barrett, C.B., Glick, H.B., Hengeveld, G.M., Nabuurs, G.-J., Pfautsch, S., Viana, H., Vibrans, A.C., Ammer, C., Schall, P., Verbyla, D., Tchebakova, N., Fischer, M., Watson, J.V., Chen, H.Y.H., Lei, X., Schelhaas, M.-J., Lu, H., Gianelle, D., Parfenova, E.I., Salas, C., Lee, E., Lee, B., Kim, H.S., Bruelheide, H., Coomes, D.A., Piotto, D., Sunderland, T., Schmid, B., Gourlet-Fleury, S., Sonké, B., Tavani, R., Zhu, J., Brandl, S., Vayreda, J., Kitahara, F., Searle, E.B., Neldner, V.J., Ngugi, M.R., Baraloto, C., Frizzera, L., Bałazy, R., Oleksyn, J., Zawiła-Niedźwiecki, T., Bouriaud, O., Bussotti, F., Finér, L., Jaroszewicz, B., Jucker, T., Valladares, F., Jagodzinski, A.M., Peri, P.L., Gonmadje, C., Marthy, W., O’Brien, T., Martin, E.H., Marshall, A.R., Rovero, F., Bitariho, R., Niklaus, P.A., Alvarez-Loayza, P., Chamuya, N., Valencia, R., Mortier, F., Wortel, V., Engone-Obiang, N.L., Ferreira, L.V., Odeke, D.E., Vasquez, R.M., Lewis, S.L., Reich, P.B., 2016. Positive biodiversity-productivity relationship predominant in global forests. Science 354, aaf8957. https://doi.org/10.1126/science.aaf8957.

 

Liu, D., Zhou, C., He, X., Zhang, X., Feng, L., Zhang, H., 2022. The Effect of stand density, biodiversity, and spatial structure on stand basal area increment in natural spruce-fir-broadleaf mixed forests. Forests 13, 162. https://doi.org/10.3390/f13020162.

 

Lleti, R., Ortiz, M.C., Sarabia, L.A., Sánchez, M.S., 2004. Selecting variables for k-means cluster analysis by using a genetic algorithm that optimises the silhouettes. Anal. Chim. Acta 515, 87–100. https://doi.org/10.1016/j.aca.2003.12.020.

 

López-Sánchez, C.L., Bolívar-Cimé, B., Aparicio-Rentería, A., Viveros-Viveros, H., 2020. Population structure of Alnus jorullensis, a species used as firewood by five rural communities in a natural protected area of Mexico. Bot. Sci. 98, 238–247. https://doi.org/10.17129/botsci.2392.

 

López-Serrano, P., Nieva, D., Corral-Rivas, J.J., Reyes, J., Antúnez, P., 2022. Diversidad e importancia ecológica de la vegetación arbórea en el Parque El Tecuán en Durango. Rev. Mex. Cienc. For. 13, 34–53. https://doi.org/10.29298/rmcf.v13i74.1273.

 

Lujan-Soto, J., Corral-Rivas, J.J., Aguirre Calderon, O.A., Gadow, K.v., 2015. Grouping forest tree species on the Sierra Madre Occidental, Mexico. Ger. J. For. Res. Allg. Forst Jagdztg. 186, 63–71.

 
Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., Hornik, K., 2019. Cluster: clusteranalysis basics and extensions. R package version 2.1.0.
 

Masera, O.R., Garza-Caligaris, J.F., Kanninen, M., Karjalainen, T., Liski, J., Nabuurs, G.J., Pussinen, A., de Jong, B.H.J., Mohren, G.M.J., 2003. Modeling carbon sequestration in afforestation, agroforestry and forest management projects: the CO2FIX V.2 approach. Ecol. Model. 164, 177–199. https://doi.org/10.1016/S0304-3800(02)00419-2.

 

Monserud, R.A., Sterba, H., 1996. A basal area increment model for individual trees growing in even- and uneven-aged forest stands in Austria. For. Ecol. Manag. 80, 57–80. https://doi.org/10.1016/0378-1127(95)03638-5.

 

Murtagh, F., Contreras, P., 2017. Algorithms for hierarchical clustering: an overview, Ⅱ. WIREs Data Min. Knowl. Discov. 7, e1219. https://doi.org/10.1002/widm.1219.

 

Návar, J., Gonzalez-Elizondo, M.S., 2009. Diversidad, estructura y productividad de bosques templados de Durango, México. Polibotánica 27, 71–87.

 

Padilla-Martínez, J.R., Corral-Rivas, J.J., Briseño-Reyes, J., Paul, C., López-Serrano, P.M., Gadow, K.v., 2020. Patterns of density and production in the community forests of the Sierra Madre Occidental, Mexico. Forests 11, 307. https://doi.org/10.3390/f11030307.

 

Padilla-Martínez, J.R., Paul, C., Corral-Rivas, J.J., Husmann, K., Diéguez-Aranda, U., Gadow, K.v., 2022. Evaluation of the site form as a site productive indicator in temperate uneven-aged multispecies forests in Durango, Mexico. Plants 11, 2764. https://doi.org/10.3390/plants11202764.

 
Pavek, D.S., 1993. Pinus strobiformis. Fire Effects Information System. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory. https://www.fs.usda.gov/database/feis/plants/tree/pinsto/all.html.(Accessed 25 September 2023).
 
Pavek, D.S., 1994a. Pinus engelmannii. Fire Effects Information System. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory. https://www.fs.usda.gov/database/feis/plants/tree/pineng/all.html. (Accessed 25 September 2023).
 
Pavek, D.S., 1994b. Pinus leiophylla var. chihuahuana. Fire Effects Information System. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory. https://www.fs.usda.gov/database/feis/plants/tree/pinleic/all.html. (Accessed 25 September 2023).
 

Perin, J., Claessens, H., Lejeune, P., Brostaux, Y., Hébert, J., 2017. Distance-independent tree basal area growth models for Norway spruce, Douglas-fir and Japanese larch in Southern Belgium. Eur. J. For. Res. 136, 193–204. https://doi.org/10.1007/s10342-016-1019-y.

 

Pommerening, A., 2002. Approaches to quantifying forest structures. For. Int. J. For. Res. 75, 305–324. https://doi.org/10.1093/forestry/75.3.305.

 

Pommerening, A., Stoyan, D., 2006. Edge-correction needs in estimating indices of spatial forest structure. Can. J. For. Res. 36, 1723–1739. https://doi.org/10.1139/x06-060.

 

Pompa-García, M., 2014. Concentración de carbono en Pinus cembroides Zucc: fuente potential de mitigación del calentamiento global. Rev. Chapingo Ser. Cienc. For. Ambiente 20. https://doi.org/10.5154/r.rchscfa.2014.04.014.

 

Pretzsch, H., 2014. Canopy space filling and tree crown morphology in mixed-species stands compared with monocultures. For. Ecol. Manag. 327, 251–264. https://doi.org/10.1016/j.foreco.2014.04.027.

 

Qiao, X., Hautier, Y., Geng, Y., Wang, S., Wang, J., Zhang, N., Zhang, Z., Zhang, C., Zhao, X., Gadow, K.v., 2023. Biodiversity contributes to stabilizing ecosystem productivity across spatial scales as much as environmental heterogeneity in a large temperate forest region. For. Ecol. Manag. 529, 120695. https://doi.org/10.1016/j.foreco.2022.120695.

 

Quiñonez-Barraza, G., De los Santos Posadas, H.M., Álvarez González, J.G., 2015. Crecimiento en diámetro normal para Pinus en. Durango 66, 108–125. https://doi.org/10.29298/rmcf.v6i29.220.

 
R Core Team, 2021. R: a language and environment for statistical computing. Vienna, Austria. https://cran.r-project.org/doc/manuals/r-release/R-exts.html. (Accessed 25 September 2023).
 

Rousseeuw, P.J., 1987. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65. https://doi.org/10.1016/0377-0427(87)90125-7.

 
Rzedowski, J., 1978. Vegetación de México. Limusa, México, D.F.
 

Schelhaas, M.-J., Hengeveld, G.M., Heidema, N., Thürig, E., Rohner, B., Vacchiano, G., Vayreda, J., Redmond, J., Socha, J., Fridman, J., Tomter, S., Polley, H., Barreiro, S., Nabuurs, G.-J., 2018. Species-specific, pan-European diameter increment models based on data of 2.3 million trees. For. Ecosyst. 5, 21. https://doi.org/10.1186/s40663-018-0133-3.

 

Schmitt, S., Maréchaux, I., Chave, J., Fischer, F.J., Piponiot, C., Traissac, S., Hérault, B., 2020. Functional diversity improves tropical forest resilience: insights from a long-term virtual experiment. J. Ecol. 108, 831–843. https://doi.org/10.1111/1365-2745.13320.

 

Schütz, J.-P., Saniga, M., Diaci, J., Vrška, T., 2016. Comparing close-to-nature silviculture with processes in pristine forests: lessons from Central Europe. Ann. For. Sci. 73, 911–921. https://doi.org/10.1007/s13595-016-0579-9.

 
Secretaría de Medio Ambiente y Recursos Naturales, 2010. NOM-059-SEMARNAT-2010, Protección Ambiental-Especies Nativas de México de Flora y Fauna SilvestresCategorías de Riesgo y Especificaciones Para su Inclusión, Exclusión o Cambio-Lista de Especies en Riesgo. https://www.dof.gob.mx/normasOficiales/4254/semarnat/semarnat.htm. (Accessed 25 September 2023).
 
Snook, L., Negreros-Castillo, P., 1986. Effects of Mexico’s selective cutting system on pine regeneration and growth in a mixed pine-oak (Pinus-Quercus) forest. In: Current Topics in Forest Research: Emphasis on Contributions by Women Scientists. USDA For Serv Gen Tech Rep, Asheville, NC, USA, pp. 27–31.
 

Tenzin, J., Tenzin, K., Hasenauer, H., 2017. Individual tree basal area increment models for broadleaved forests in Bhutan. Forestry 90, 367–380. https://doi.org/10.1093/forestry/cpw065.

 

Tharwat, A., Gaber, T., Ibrahim, A., Hassanien, A.E., 2017. Linear discriminant analysis: a detailed tutorial. Ai Commun. 30, 169–190. https://doi.org/10.3233/AIC-170729.

 
Tirmenstein, D., 1999. Juniperus deppeana. Fire Effects Information System. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory. https://www.fs.usda.gov/database/feis/plants/tree/jundep/all.html/. (Accessed 25 September 2023).
 

Torresan, C., del Río, M., Hilmers, T., Notarangelo, M., Bielak, K., Binder, F., Boncina, A., Bosela, M., Forrester, D.I., Hobi, M.L., Nagel, T.A., Bartkowicz, L., Sitkova, Z., Zlatanov, T., Tognetti, R., Pretzsch, H., 2020. Importance of tree species size dominance and heterogeneity on the productivity of spruce-fir-beech mountain forest stands in Europe. For. Ecol. Manag. 457, 117716. https://doi.org/10.1016/j.foreco.2019.117716.

 

Torres-Rojo, J.M., Moreno-Sánchez, R., Mendoza-Briseño, M.A., 2016. Sustainable forest management in Mexico. Curr. For. Rep. 2, 93–105. https://doi.org/10.1007/s40725-016-0033-0.

 
Twery, M.J., Weiskittel, A.R., 2013. Forest-management modelling. In: Wainwright, J., Mulligan, M. (Eds.), Environmental Modelling. John Wiley & Sons, Ltd, pp. 379–398. https://doi.org/10.1002/9781118351475.ch23.
 

Vanclay, J.K., 1991. Aggregating tree species to develop diameter increment equations for tropical rainforests. For. Ecol. Manag. 42, 143–168. https://doi.org/10.1016/0378-1127(91)90022-N.

 

Vospernik, S., 2021. Basal area increment models accounting for climate and mixture for Austrian tree species. For. Ecol. Manag. 480, 118725. https://doi.org/10.1016/j.foreco.2020.118725.

 

Vospernik, S., Heym, M., Pretzsch, H., Pach, M., Steckel, M., Aldea, J., Brazaitis, G., Bravo-Oviedo, A., Del Rio, M., Löf, M., Pardos, M., Bielak, K., Bravo, F., Coll, L., Černý, J., Droessler, L., Ehbrecht, M., Jansons, A., Korboulewsky, N., Jourdan, M., Nord-Larsen, T., Nothdurft, A., Ruiz-Peinado, R., Ponette, Q., Sitko, R., Svoboda, M., Wolff, B., 2023. Tree species growth response to climate in mixtures of Quercus robur/Quercus petraea and Pinus sylvestris across Europe - a dynamic, sensitive equilibrium. For. Ecol. Manag. 530, 120753. https://doi.org/10.1016/j.foreco.2022.120753.

 

Wallace, J., Aquilué, N., Archambault, C., Carpentier, S., Francoeur, X., Greffard, M.-H., Laforest, I., Galicia, L., Messier, C., 2015. Present forest management structures and policies in temperate forests of Mexico: challenges and prospects for unique tree species assemblages. For. Chron. 91, 306–317. https://doi.org/10.5558/tfc2015-052.

 

Wehenkel, C., Corral-Rivas, J.J., Hernández-Díaz, J.C., Gadow, K.v., 2011. Estimating balanced structure areas in multi-species forests on the Sierra Madre Occidental, Mexico. Ann. For. Sci. 68, 385–394. https://doi.org/10.1007/s13595-011-0027-9.

 

Westoby, M., Falster, D.S., Moles, A.T., Vesk, P.A., Wright, I.J., 2002. Plant ecological strategies: some leading dimensions of variation between species. Annu. Rev. Ecol. Systemat. 33, 125–159. https://doi.org/10.1146/annurev.ecolsys.33.010802.150452.

 

Wood, S.N., 2003. Thin plate regression splines. J. R. Stat. Soc. Ser. B Stat. Methodol. 65, 95–114.

 

Wood, S.N., 2011. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B Stat. Methodol. 73, 3–36. https://doi.org/10.1111/j.1467-9868.2010.00749.x.

 

Wu, Z., Fan, C., Zhang, C., Zhao, X., Gadow, K.v., 2022. Effects of biotic and abiotic drivers on the growth rates of individual trees in temperate natural forests. For. Ecol. Manag. 503, 119769. https://doi.org/10.1016/j.foreco.2021.119769.

 

Wykoff, W., 1990. A basal area increment model for individual conifers in the northern Rocky Mountains. For. Sci. 36 (4), 1077–1104. https://doi.org/10.1093/forestscience/36.4.1077.

 

Xue, J., Lee, C., Wakeham, S., Armstrong, R., 2011. Using principal components analysis (PCA) with cluster analysis to study the organic geochemistry of sinking particles in the ocean. Org. Geochem. 42, 356–367. https://doi.org/10.1016/j.orggeochem.2011.01.012.

Forest Ecosystems
Article number: 100158
Cite this article:
Padilla-Martínez JR, Paul C, Husmann K, et al. Grouping tree species to estimate basal area increment in temperate multispecies forests in Durango, Mexico. Forest Ecosystems, 2024, 11(1): 100158. https://doi.org/10.1016/j.fecs.2023.100158

167

Views

4

Downloads

2

Crossref

2

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 27 September 2023
Revised: 12 November 2023
Accepted: 05 December 2023
Published: 09 December 2023
© 2023 The Authors.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Return