AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2 MB)
Collect
AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Aboveground carbon sequestration of Cunninghamia lanceolata forests: Magnitude and drivers

Chen Wanga,b,cShuguang Liua,c,d( )Yu Zhua,b,cAndrew R. SmitheYing Ninga,b,fDeming Dengg
National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Central South University of Forestry and Technology, Changsha 410004, China
Technology Innovation Center for Ecological Conservation and Restoration in Dongting Lake Basin, Ministry of Natural Resources, Changsha 410007, China
College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
School of Ecology and Environment, Hainan University, Haikou 570228, China
School of Natural Sciences, Bangor University, Gwynedd, LL57 2UW, UK
College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China
Hunan Prospecting Designing & Research General Institute for Agriculture, Forestry & Industry, Changsha 410007, China
Show Author Information

Abstract

Understanding the spatial variation, temporal changes, and their underlying driving forces of carbon sequestration in various forests is of great importance for understanding the carbon cycle and carbon management options. How carbon density and sequestration in various Cunninghamia lanceolata forests, extensively cultivated for timber production in subtropical China, vary with biodiversity, forest structure, environment, and cultural factors remain poorly explored, presenting a critical knowledge gap for realizing carbon sequestration supply potential through management. Based on a large-scale database of 449 permanent forest inventory plots, we quantified the spatial-temporal heterogeneity of aboveground carbon densities and carbon accumulation rates in Cunninghamia lanceolate forests in Hunan Province, China, and attributed the contributions of stand structure, environmental, and management factors to the heterogeneity using quantile age-sequence analysis, partial least squares path modeling (PLS-PM), and hot-spot analysis. The results showed lower values of carbon density and sequestration on average, in comparison with other forests in the same climate zone (i.e., subtropics), with pronounced spatial and temporal variability. Specifically, quantile regression analysis using carbon accumulation rates along an age sequence showed large differences in carbon sequestration rates among underperformed and outperformed forests (0.50 and 1.80 ​Mg·​ha−1·yr−1). PLS-PM demonstrated that maximum DBH and stand density were the main crucial drivers of aboveground carbon density from young to mature forests. Furthermore, species diversity and geo-topographic factors were the significant factors causing the large discrepancy in aboveground carbon density change between low- and high-carbon-bearing forests. Hotspot analysis revealed the importance of culture attributes in shaping the geospatial patterns of carbon sequestration. Our work highlighted that retaining large-sized DBH trees and increasing shade-tolerant tree species were important to enhance carbon sequestration in C. lanceolate forests.

References

 

Ali, A., Lin, S.L., He, J.K., Kong, F.M., Yu, J.H., Jiang, H.S., 2019. Climate and soils determine aboveground biomass indirectly via species diversity and stand structural complexity in tropical forests. For. Ecol. Manage. 432, 823–831.

 

Ali, A., Lin, S.L., He, J.K., Kong, F.M., Yu, J.H., Jiang, H.S., 2019. Big-sized trees overrule remaining trees’ attributes and species richness as determinants of aboveground biomass in tropical forests. Glob. Chang. Biol. 25, 2810–2824.

 

Ali, A., Lin, S.L., He, J.K., Kong, F.M., Yu, J.H., Jiang, H.S., 2019. Elucidating space, climate, edaphic, and biodiversity effects on aboveground biomass in tropical forests. Land Degrad. Dev. 30, 918–927.

 

Ali, A., Mattsson, E., 2017. Individual tree size inequality enhances aboveground biomass in homegarden agroforestry systems in the dry zone of Sri Lanka. Sci. Total Environ. 575, 6–11.

 

Ali, A., Sanaei, A., Li, M., Nalivan, O.A., Ahmadaali, K., Pour, M.J., Valipour, A., Karami, J., Aminpour, M., Kaboli, H., 2020. Impacts of climatic and edaphic factors on the diversity, structure and biomass of species-poor and structurally-complex forests. Sci. Total Environ. 706, 135719.

 

Ali, A., Yan, E.-R., Chen, H.Y., Chang, S.X., Zhao, Y.-T., Yang, X.-D., Xu, M.-S., 2016. Stand structural diversity rather than species diversity enhances aboveground carbon storage in secondary subtropical forests in Eastern China. Biogeosciences 13, 4627–4635.

 

Aryal, D.R., De Jong, B.H., Ochoa-Gaona, S., Esparza-Olguin, L., Mendoza-Vega, J., 2014. Carbon stocks and changes in tropical secondary forests of southern Mexico. Agric. Ecosyst. Environ. 195, 220–230.

 
Barton, K., 2016. Package “MuMIn”: Multi-Model Inference. R Package. Version 1.15. 6. https://cran.r-project.org/web/packages/MuMIn/index.html. (Accessed 22 October 2016).
 

Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., Rödenbeck, C., Arain, M.A., Baldocchi, D., Bonan, G.B., 2010. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329, 834–838.

 

Bourdier, T., Cordonnier, T., Kunstler, G., Piedallu, C., Lagarrigues, G., Courbaud, B., 2016. Tree size inequality reduces forest productivity: an analysis combining inventory data for ten European species and a light competition model. PLoS One 11, e0151852.

 

Bukoski, J.J., Cook-Patton, S.C., Melikov, C., Ban, H., Chen, J.L., Goldman, E.D., Harris, N.L., Potts, M.D., 2022. Rates and drivers of aboveground carbon accumulation in global monoculture plantation forests. Nat. Commun. 13, 4206.

 

Cai, H., Nong, S., Zhang, W., Jiang, J., Xiong, X., Liu, F., 2014. Modeling of standing tree biomass for main species of trees in Guangxi province. For. Resour. Manag. 4, 58–61.

 

Cavanaugh, K.C., Gosnell, J.S., Davis, S.L., Ahumada, J., Boundja, P., Clark, D.B., Mugerwa, B., Jansen, P.A., O’Brien, T.G., Rovero, F., 2014. Carbon storage in tropical forests correlates with taxonomic diversity and functional dominance on a global scale. Glob. Ecol. Biogeogr. 23, 563–573.

 

Chen, L.C., Guan, X., Li, H.M., Wang, Q.K., Zhang, W.D., Yang, Q.P., Wang, S.L., 2019. Spatiotemporal patterns of carbon storage in forest ecosystems in Hunan Province, China. For. Ecol. Manag. 432, 656–666.

 

Chen, W., Liu, S., Zhao, S., Zhu, Y., Feng, S., Wang, Z., Wu, Y., Xiao, J., Yuan, W., Yan, W., 2023. Temporal dynamics of ecosystem, inherent, and underlying water use efficiencies of forests, grasslands, and croplands and their responses to climate change. Carbon Bal. Manag. 18, 1–14.

 

Chu, C., Lutz, J.A., Král, K., Vrška, T., Yin, X., Myers, J.A., Abiem, I., Alonso, A., Bourg, N., Burslem, D.F., 2019. Direct and indirect effects of climate on richness drive the latitudinal diversity gradient in forest trees. Ecol. Lett. 22, 245–255.

 

Clark, J.S., 2010. Individuals and the variation needed for high species diversity in forest trees. Science 327, 1129–1132.

 

Cordonnier, T., Kunstler, G., 2015. The Gini index brings asymmetric competition to light. Perspect. Plant Ecol. Evol. Systemat. 17, 107–115.

 

Diao, J., Liu, J., Zhu, Z., Wei, X., Li, M., 2022. Active forest management accelerates carbon storage in plantation forests in Lishui, southern China. For. Ecosyst. 9, 100004.

 

Ding, Y., Peng, S., 2020. Spatiotemporal trends and attribution of drought across China from 1901–2100. Sustainability 12, 477.

 

Dong, T., Zhang, Y., Zhang, Y., Zhang, S., 2016. Continuous planting under a high density enhances the competition for nutrients among young Cunninghamia lanceolata saplings. Ann. For. Sci. 73, 331–339.

 

Fang, J., Shen, Z., Tang, Z., Wang, X., Wang, Z., Feng, J., Liu, Y., Qiao, X., Wu, X., Zheng, C., 2012. Forest community survey and the structural characteristics of forests in China. Ecography 35, 1059–1071.

 

Feng, F., Wang, K.C., 2021. Merging high-resolution satellite surface radiation data with meteorological sunshine duration observations over China from 1983 to 2017. Rem. Sens. 13, 602.

 

Forrester, D.I., Ammer, C., Annighöfer, P.J., Barbeito, I., Bielak, K., Bravo-Oviedo, A., Coll, L., del Río, M., Drössler, L., Heym, M., 2018. Effects of crown architecture and stand structure on light absorption in mixed and monospecific Fagus sylvatica and Pinus sylvestris forests along a productivity and climate gradient through Europe. J. Ecol. 106, 746–760.

 

Friedlingstein, P., Jones, M.W., O'sullivan, M., Andrew, R.M., Bakker, D.C., Hauck, J., Le Quéré, C., Peters, G.P., Peters, W., Pongratz, J., 2022. Global carbon budget 2021. Earth Syst. Sci. Data 14, 1917–2005.

 
Fu, Y., 2016. Quantitative Estimation of Biomass and Carbon Storage for Chinese FirPlantation. Ph.D Dissertation. Beijing Forestry University, Beijing. (in Chinese).
 

Gamfeldt, L., Snäll, T., Bagchi, R., Jonsson, M., Gustafsson, L., Kjellander, P., Ruiz-Jaen, M.C., Fröberg, M., Stendahl, J., Philipson, C.D., 2013. Higher levels of multiple ecosystem services are found in forests with more tree species. Nat. Commun. 4, 1340.

 

Gao, W.Q., Lei, X.D., Gao, D.L., Li, Y.T., 2021. Mass-ratio and complementarity effects simultaneously drive aboveground biomass in temperate Quercus forests through stand structure. Ecol. Evol. 11, 16806–16816.

 

Grace, J.B., Anderson, T.M., Seabloom, E.W., Borer, E.T., Adler, P.B., Harpole, W.S., Hautier, Y., Hillebrand, H., Lind, E.M., Pärtel, M., 2016. Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature 529, 390–393.

 

Hooker, T.D., Compton, J.E., 2003. Forest ecosystem carbon and nitrogen accumulation during the first century after agricultural abandonment. Ecol. Appl. 13, 299–313.

 

Huang, J., Sun, S., Xue, Y., Zhang, J., 2014. Spatial and temporal variability of precipitation indices during 1961–2010 in Hunan Province, central south China. Theor. Appl. Climatol. 118, 581–595.

 

Jucker, T., Avăcăriței, D., Bărnoaiea, I., Duduman, G., Bouriaud, O., Coomes, D.A., 2016. Climate modulates the effects of tree diversity on forest productivity. J. Ecol. 104, 388–398.

 

Jucker, T., Bouriaud, O., Coomes, D.A., 2015. Crown plasticity enables trees to optimize canopy packing in mixed-species forests. Funct. Ecol. 29, 1078–1086.

 

Lan, S.A., Du, H., Zeng, F.P., Song, T.Q., Peng, W.X., Han, C., Chen, L., Su, L., 2016. Carbon storage and allocation in Cunninghamia lanceolata plantations with different stand ages. Chin. J. Appl. Ecol. 27, 1125–1134.

 

Lee, Y.-J., Lee, C.-B., Lee, M.-K., 2023. Tree size variation induced by stand age mainly regulates aboveground biomass across three major stands of temperate forests in South Korea. Front. For. Glob. Chang. 6, 1229661.

 

Liang, J., Buongiorno, J., Monserud, R.A., Kruger, E.L., Zhou, M., 2007. Effects of diversity of tree species and size on forest basal area growth, recruitment, and mortality. For. Ecol. Manag. 243, 116–127.

 

Liang, J., Crowther, T.W., Picard, N., Wiser, S., Zhou, M., Alberti, G., Schulze, E.-D., McGuire, A.D., Bozzato, F., Pretzsch, H., 2016. Positive biodiversity-productivity relationship predominant in global forests. Science 354, aaf8957.

 

Liu, B., Liu, Q., Daryanto, S., Guo, S., Huang, Z., Wang, Z., Wang, L., Ma, X., 2018. Responses of Chinese fir and Schima superba seedlings to light gradients: implications for the restoration of mixed broadleaf-conifer forests from Chinese fir monocultures. For. Ecol. Manag. 419, 51–57.

 

Liu, X., Trogisch, S., He, J.-S., Niklaus, P.A., Bruelheide, H., Tang, Z., Erfmeier, A., Scherer-Lorenzen, M., Pietsch, K.A., Yang, B., 2018. Tree species richness increases ecosystem carbon storage in subtropical forests. Proc. Biol. Sci. 285, 20181240.

 

Loreau, M., Hector, A., 2001. Partitioning selection and complementarity in biodiversity experiments. Nature 412, 72–76.

 

Luo, Y., Wang, X., Ouyang, Z., Lu, F., Feng, L., Tao, J., 2020. A review of biomass equations for China's tree species. Earth Syst. Sci. Data 12, 21–40.

 

Lutz, J.A., Furniss, T.J., Johnson, D.J., Davies, S.J., Allen, D., Alonso, A., Anderson-Teixeira, K.J., Andrade, A., Baltzer, J., Becker, K.M., 2018. Global importance of large-diameter trees. Glob. Ecol. Biogeogr. 27, 849–864.

 

Luyssaert, S., Inglima, I., Jung, M., Richardson, A.D., Reichstein, M., Papale, D., Piao, S., Schulze, E.D., Wingate, L., Matteucci, G., 2007. CO2 balance of boreal, temperate, and tropical forests derived from a global database. Glob. Chang. Biol. 13, 2509–2537.

 

Ma, X., Fan, S., Chen, S., Lin, S., 2003. Study on biomass productivity of Chinese fir plantations after successive planting. Sci. Silvae Sin. 39, 78–83.

 
Manepalli, U.R., Bham, G.H., Kandada, S., 2011. Evaluation of hotspots identification using kernel density estimation (K) and Getis-Ord (Gi*) on I-630. In: 3rd International Conference on Road Safety and Simulation. September 14–16, 2011, Indianapolis, USA.
 

Måren, I.E., Sharma, L.N., 2021. Seeing the wood for the trees: carbon storage and conservation in temperate forests of the Himalayas. For. Ecol. Manag. 487, 119010.

 

Moeslund, J.E., Arge, L., Bøcher, P.K., Dalgaard, T., Svenning, J.C., 2013. Topography as a driver of local terrestrial vascular plant diversity patterns. Nord. J. Bot. 31, 129–144.

 

Morin, X., Fahse, L., Scherer-Lorenzen, M., Bugmann, H., 2011. Tree species richness promotes productivity in temperate forests through strong complementarity between species. Ecol. Lett. 14, 1211–1219.

 

Orihuela-Belmonte, D., De Jong, B., Mendoza-Vega, J., Van der Wal, J., Paz-Pellat, F., Soto-Pinto, L., Flamenco-Sandoval, A., 2013. Carbon stocks and accumulation rates in tropical secondary forests at the scale of community, landscape and forest type. Agric. Ecosyst. Environ. 171, 72–84.

 

Ouyang, S., Xiang, W., Wang, X., Xiao, W., Chen, L., Li, S., Sun, H., Deng, X., Forrester, D.I., Zeng, L., 2019. Effects of stand age, richness and density on productivity in subtropical forests in China. J. Ecol. 107, 2266–2277.

 

Pan, Y., Birdsey, R.A., Fang, J., Houghton, R., Kauppi, P.E., Kurz, W.A., Phillips, O.L., Shvidenko, A., Lewis, S.L., Canadell, J.G., 2011. A large and persistent carbon sink in the world's forests. Science 333, 988–993.

 
Peng, S., 2019. 1-km Monthly Mean Temperature Dataset for China (1901–2017).National Tibetan Plateau Data Center, Beijing, China.
 
Peng, S., 2020. 1-km Monthly Precipitation Dataset for China (1901–2020). NationalTibetan Plateau Data Center, Beijing, China. (in Chinese).
 

Peng, S., Ding, Y., Liu, W., Li, Z., 2019. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth Syst. Sci. Data 11, 1931–1946.

 

Peng, S., Ding, Y., Wen, Z., Chen, Y., Cao, Y., Ren, J., 2017. Spatiotemporal change and trend analysis of potential evapotranspiration over the Loess Plateau of China during 2011–2100. Agric. For. Meteorol. 233, 183–194.

 

Peng, S., Gang, C., Cao, Y., Chen, Y., 2018. Assessment of climate change trends over the Loess Plateau in China from 1901 to 2100. Int. J. Climatol. 38, 2250–2264.

 

Poorter, L., Bongers, F., Aide, T.M., Almeyda Zambrano, A.M., Balvanera, P., Becknell, J.M., Boukili, V., Brancalion, P.H., Broadbent, E.N., Chazdon, R.L., 2016. Biomass resilience of Neotropical secondary forests. Nature 530, 211–214.

 

Poorter, L., van der Sande, M.T., Thompson, J., Arets, E.J., Alarcón, A., Álvarez-Sánchez, J., Ascarrunz, N., Balvanera, P., Barajas-Guzmán, G., Boit, A., 2015. Diversity enhances carbon storage in tropical forests. Glob. Ecol. Biogeogr. 24, 1314–1328.

 

Pretzsch, H., 2005. Diversity and productivity in forests: evidence from long-term experimental plots. Ecol. Stud. 176, 41–64.

 

Pyles, M.V., Magnago, L.F.S., Maia, V.A., Pinho, B.X., Pitta, G., de Gasper, A.L., Vibrans, A.C., Dos Santos, R.M., van den Berg, E., Lima, R.A., 2022. Human impacts as the main driver of tropical forest carbon. Sci. Adv. 8, eabl7968.

 

Ren, L., Huo, J., Xiang, X., Pan, Y., Li, Y., Wang, Y., Meng, D., Yu, C., Chen, Y., Xu, Z., 2023. Environmental conditions are the dominant factor influencing stability of terrestrial ecosystems on the Tibetan plateau. Commun. Earth Environ. 4, 196.

 
Sanchez, G., 2013. PLS Path Modeling with R. Trowchez Editions, Berkeley. https://www.gastonsanchez.com/PLS_Path_Modeling_with_R.pdf. (Accessed 4 October 2023).
 

Seddon, N., Chausson, A., Berry, P., Girardin, C.A., Smith, A., Turner, B., 2020. Understanding the value and limits of nature-based solutions to climate change and other global challenges. Philos. Trans. R. Soc. B 375, 20190120.

 

Slik, J.F., Paoli, G., McGuire, K., Amaral, I., Barroso, J., Bastian, M., Blanc, L., Bongers, F., Boundja, P., Clark, C., 2013. Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Glob. Ecol. Biogeogr. 22, 1261–1271.

 

Spracklen, D., Righelato, R., 2014. Tropical montane forests are a larger than expected global carbon store. Biogeosciences 11, 2741–2754.

 

Stephenson, N.L., Das, A., Condit, R., Russo, S., Baker, P., Beckman, N.G., Coomes, D., Lines, E., Morris, W., Rüger, N., 2014. Rate of tree carbon accumulation increases continuously with tree size. Nature 507, 90–93.

 

Sun, L., Wang, M., Fan, X., 2020. Spatial pattern and driving factors of biomass carbon density for natural and planted coniferous forests in mountainous terrain, eastern Loess Plateau of China. For. Ecosyst. 7, 9.

 

Sun, W., Liu, X., 2020. Review on carbon storage estimation of forest ecosystem and applications in China. For. Ecosyst. 7, 4.

 

Szwagrzyk, J., Gazda, A., 2007. Above-ground standing biomass and tree species diversity in natural stands of Central Europe. J. Environ. Manag. 18, 555–562.

 

Tilman, D., 1999. The ecological consequences of changes in biodiversity: a search for general principles. Ecology 80, 1455–1474.

 

Ullah, F., Gilani, H., Sanaei, A., Hussain, K., Ali, A., 2021. Stand structure determines aboveground biomass across temperate forest types and species mixture along a local-scale elevational gradient. For. Ecol. Manag. 486, 118984.

 

Wang, G., Guan, D., Xiao, L., Peart, M., 2019. Forest biomass-carbon variation affected by the climatic and topographic factors in Pearl River Delta, South China. J. Environ. Manag. 232, 781–788.

 

Wu, A., Tang, X., Li, A., Xiong, X., Liu, J., He, X., Zhang, Q., Dong, A., Chen, H., 2022. Tree diversity, structure and functional trait identity promote stand biomass along elevational gradients in subtropical forests of Southern China. J. Geophys. Res. Biogeosci. 127, e2022JG006950.

 

Xu, L., Shi, Y., Fang, H., Zhou, G., Xu, X., Zhou, Y., Tao, J., Ji, B., Xu, J., Li, C., 2018. Vegetation carbon stocks driven by canopy density and forest age in subtropical forest ecosystems. Sci. Total Environ. 631, 619–626.

 

Yu, Y., Yang, J., Zeng, S., Wu, D., Jacobs, D.F., Sloan, J.L., 2017. Soil pH, organic matter, and nutrient content change with the continuous cropping of Cunninghamia lanceolata plantations in South China. J. Soils Sediments 17, 2230–2238.

 

Yu, Z., You, W., Agathokleous, E., Zhou, G., Liu, S., 2021. Forest management required for consistent carbon sink in China's forest plantations. For. Ecosyst. 8, 54.

 

Yu, Z., Zhou, G., Liu, S., Sun, P., Agathokleous, E., 2020. Impacts of forest management intensity on carbon accumulation of China’s forest plantations. For. Ecol. Manag. 472, 118252.

 

Zhang, Y., Chen, H.Y., 2015. Individual size inequality links forest diversity and above-ground biomass. J. Ecol. 103, 1245–1252.

 

Zhang, Y., Chen, H.Y., Reich, P.B., 2012. Forest productivity increases with evenness, species richness and trait variation: a global meta-analysis. J. Ecol. 100, 742–749.

 

Zhao, M., Xiang, W., Peng, C., Tian, D., 2009. Simulating age-related changes in carbon storage and allocation in a Chinese fir plantation growing in southern China using the 3-PG model. For. Ecol. Manag. 257, 1520–1531.

 

Zhou, C., Wei, X., Zhou, G., Yan, J., Wang, X., Wang, C., Liu, H., Tang, X., Zhang, Q., 2008. Impacts of a large-scale reforestation program on carbon storage dynamics in Guangdong, China. For. Ecol. Manag. 255, 847–854.

 

Zhu, Y., Liu, S., Yan, W., Deng, D., Zhou, G., Zhao, M., Gao, F., Zhu, L., Wang, Z., Xie, M., 2022. Impact of ice-storms and subsequent salvage logging on the productivity of Cunninghamia lanceolata (Chinese Fir) forests. Forests 13, 296.

 

Zhou, G., Yin, G., Tang, X., Wen, D., Liu, C., Kuang, Y., Wang, W., 2018. Carbon Storage in Forest Ecosystems in China: Biomass Equations. Science Press, Beijing, China.

Forest Ecosystems
Article number: 100165
Cite this article:
Wang C, Liu S, Zhu Y, et al. Aboveground carbon sequestration of Cunninghamia lanceolata forests: Magnitude and drivers. Forest Ecosystems, 2024, 11(1): 100165. https://doi.org/10.1016/j.fecs.2024.100165

144

Views

1

Downloads

3

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 26 October 2023
Revised: 02 January 2024
Accepted: 02 January 2024
Published: 05 January 2024
© 2024 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return