AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.4 MB)
Collect
AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Competitive effect, but not competitive response, varies along a climatic gradient depending on tree species identity

Teresa Valora,b( )Lluís Colla,bDavid I. Forresterc,dHans PretzscheMiren del Ríof,gKamil BielakhBogdan BrzezieckihFranz BinderiTorben HilmerseZuzana SitkovájRoberto TognettikAitor Amezteguia,b
Department of Agricultural and Forest Sciences and Engineering (DCEFA), University of Lleida, Av. Alcalde Rovira Roure 191, E25198 Lleida, Spain
Joint Research Unit CTFC – AGROTECNIO – CERCA, Ctra. Sant Llorenç Km. 2, 25280, Solsona, Spain
Swiss Federal Institute of Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
CSIRO Land and Water, GPO Box 1700, Canberra, ACT, 2601, Australia
Chair of Forest Growth and Yield Science, School of Life Sciences Weihenstephan, Technical University of Munich, Hans-Carl-Von-Carlowitz-Platz 2, 85354, Freising, Germany
Forest Research Center, INIA-CSIC, Ctra. A Coruña Km 7.5, 28040, Madrid, Spain
IuFOR, Sustainable Forest Management Research Institute, University of Valladolid & INIA, Spain
Department of Silviculture, Institute of Forest Sciences, Warsaw University of Life Sciences, Nowoursynowska 159/34, 02776, Warsaw, Poland
Bavarian State Institute of Forestry (LWF), Hans-Carl-von-Carlowitz-Platz 1, D-85354, Freising, Germany
National Forest Centre, Forest Research Institute, T.G. Masaryka 22, 960 01, Zvolen, Slovakia
Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano Piazza Università, 1 I-39100, Bolzano
Show Author Information

Abstract

Background

Understanding the role of species identity in interactions among individuals is crucial for assessing the productivity and stability of mixed forests over time. However, there is limited knowledge concerning the variation in competitive effect and response of different species along climatic gradients. In this study, we investigated the importance of climate, tree size, and competition on the growth of three tree species: spruce (Picea abies), fir (Abies alba), and beech (Fagus sylvatica), and examined their competitive response and effect along a climatic gradient.

Methods

We selected 39 plots distributed across the European mountains with records of the position and growth of 5,759 individuals. For each target species, models relating tree growth to tree size, climate and competition were proposed. Competition was modelled using a neighbourhood competition index that considered the effects of inter- and intraspecific competition on target trees. Competitive responses and effects were related to climate. Likelihood methods and information theory were used to select the best model.

Results

Our findings revealed that competition had a greater impact on target species growth than tree size or climate. Climate did influence the competitive effects of neighbouring species, but it did not affect the target species' response to competition. The strength of competitive effects varied along the gradient, contingent on the identity of the interacting species. When the target species exhibited an intermediate competitive effect relative to neighbouring species, both higher inter- than intraspecific competitive effects and competition reduction occurred along the gradient. Notably, species competitive effects were most pronounced when the target species' growth was at its peak and weakest when growing conditions were far from their maximum.

Conclusions

Climate modulates the effects of competition from neighbouring trees on the target tree and not the susceptibility of the target tree to competition. The modelling approach should be useful in future research to expand our knowledge of how competition modulates forest communities across environmental gradients.

References

 
Ameztegui, A., 2020. neighborhood: an R package to compute several functions within the neighborhood theory of forest dynamics. GitHub repository. https://github.com/ameztegui/neighborhood (accessed 1 November 2023).
 

Ammer, C., 2019. Diversity and forest productivity in a changing climate. New Phytol. 221, 50–66.

 

Barry, K.E., Mommer, L., van Ruijven, J., Wirth, C., Wright, A.J., Bai, Y., Connolly, J., De Deyn, G.B., de Kroon, H., Isbell, F., Milcu, A., Roscher, C., Scherer-Lorenzen, M., Schmid, B., Weigelt, A., 2019. The future of complementarity: disentangling causes from consequences. Trends Ecol. Evol. 34, 167–180. https://doi.org/10.1016/j.tree.2018.10.013.

 

Begović, K., Rydval, M., Mikac, S., Čupić, S., Svobodova, K., Mikoláš, M., Kozák, D., Kameniar, O., Frankovič, M., Pavlin, J., Langbehn, T., Svoboda, M., 2020. Climate-growth relationships of Norway Spruce and silver fir in primary forests of the Croatian Dinaric mountains. Agric. For. Meteorol. 288 (289), 108000. https://doi.org/10.1016/J.AGRFORMET.2020.108000.

 

Bosela, M., Štefančík, I., Petráš, R., Vacek, S., 2016. The effects of climate warming on the growth of European beech forests depend critically on thinning strategy and site productivity. Agric. For. Meteorol. 222, 21–31. https://doi.org/10.1016/j.agrformet.2016.03.005.

 

Bosela, M., Lukac, M., Castagneri, D., Sedmák, R., Biber, P., Carrer, M., Konôpka, B., Nola, P., Nagel, T.A., Popa, I., Roibu, C.C., Svoboda, M., Trotsiuk, V., Büntgen, U., 2018. Contrasting effects of environmental change on the radial growth of co-occurring beech and fir trees across Europe. Sci. Total Environ. 615, 1460–1469. https://doi.org/10.1016/J.SCITOTENV.2017.09.092.

 

Bottero, A., Forrester, D.I., Cailleret, M., Kohnle, U., Gessler, A., Michel, D., Bose, A.K., Bauhus, J., Bugmann, H., Cuntz, M., Gillerot, L., Hanewinkel, M., Lévesque, M., Ryder, J., Sainte-Marie, J., Schwarz, J., Yousefpour, R., Zamora-Pereira, J.C., Rigling, A., 2021. Growth resistance and resilience of mixed silver fir and Norway spruce forests in central Europe: Contrasting responses to mild and severe droughts. Glob. Chang. Biol. 27 (18), 4403–4419. https://doi.org/10.1111/GCB.15737.

 
Bravo-Oviedo, A., Pretzsch, H., del Río, M., 2018. Dynamics, Silviculture and Management of Mixed Forests. Springer, Cham, Switzerland.
 

Brunner, A., Forrester, D.I., 2020. Tree species mixture effects on stem growth vary with stand density – an analysis based on individual tree responses. For. Ecol. Manag. 473, 118334. https://doi.org/10.1016/J.FORECO.2020.118334.

 
Burnham, K.P., Anderson, D.R., 2002. Model Selection and Multimodel Inference: a Practical Information-Theoretic Approach. Springer, New York.
 

Canham, C.D., Lepage, P.T., Coates, K.D., 2004. A neighborhood analysis of canopy tree competition: effects of shading versus crowding. Can. J. For. Res. 34 (4). https://doi.org/10.1139/X03-232.

 

Canham, C.D., Papaik, M.J., María, M., Uriarte, M., Mcwilliams, W.H., Jenkins, J.C., Twery, M.J., 2006. Neighborhood analyses of canopy tree competition along environmental gradients in new england forests. Ecol. Appl. 16, 540–554. https://doi.org/10.1890/1051-0761(2006)016[0540:NAOCTC]2.0.CO;2.

 

Carnwath, G.C., Nelson, C.R., 2016. The effect of competition on responses to drought and interannual climate variability of a dominant conifer tree of western North America. J. Ecol. 104, 1421–1431. https://doi.org/10.1111/1365-2745.12604.

 

Castagneri, D., Nola, P., Motta, R., Carrer, M., 2014. Summer climate variability over the last 250 years differently affected tree species radial growth in a mesic FagusAbiesPicea old-growth forest. For. Ecol. Manag. 320, 21–29. https://doi.org/10.1016/j.foreco.2014.02.023.

 

Coates, K.D., Canham, C.D., LePage, P.T., 2009. Above- versus below-ground competitive effects and responses of a guild of temperate tree species. J. Ecol. 97, 118–130. https://doi.org/10.1111/J.1365-2745.2008.01458.X.

 

Coates, K.D., Lilles, E.B., Astrup, R., 2013. Competitive interactions across a soil fertility gradient in a multispecies forest. J. Ecol. 101, 806–818. https://doi.org/10.1111/1365-2745.12072.

 

Coll, L., Ameztegui, A., Collet, C., Löf, M., Mason, B., Pach, M., Verheyen, K., Abrudan, I., Barbati, A., Barreiro, S., 2018. Knowledge gaps about mixed forests: what do European forest managers want to know and what answers can science provide? For. Ecol. Manag. 407, 106–115.

 

Condés, S., del Río, M., Forrester, D.I., Avdagić, A., Bielak, K., Bončina, A., Bosela, M., Hilmers, T., Ibrahimspahić, A., Drozdowski, S., Jaworski, A., Nagel, T.A., Sitková, Z., Skrzyszewski, J., Tognetti, R., Tonon, G., Zlatanov, T., Pretzsch, H., 2022. Temperature effect on size distributions in spruce-fir-beech mixed stands across Europe. For. Ecol. Manag. 504, 119819. https://doi.org/10.1016/J.FORECO.2021.119819.

 

Daniels, R.F., 1976. Simple competition indices and their correlation with annual loblolly pine tree growth. For. Sci. 22, 454–456. https://doi.org/10.1093/FORESTSCIENCE/22.4.454.

 

Das, A., 2012. The effect of size and competition on tree growth rate in old-growth coniferous forests. Can. J. For. Res. 42, 1983–1995. https://doi.org/10.1139/x2012-142.

 

de Luis, M., Novak, K., Čufar, K., Raventós, J., 2009. Size mediated climate-growth relationships in Pinus halepensis and Pinus pinea. Trees Struct. Funct. 23, 1065–1073. https://doi.org/10.1007/s00468-009-0349-5.

 

de Streel, G., Collet, C., Barbeito, I., Bielak, K., Bravo-Oviedo, A., Brazaitis, G., Coll, L., Drössler, L., Forrester, D., Heym, M., Löf, M., Pach, M., Pretzsch, H., Ruiz-Peinado, R., Skrzyszewski, J., Stankevičiūtė, J., Svoboda, M., Verheyen, K., Zlatanov, T., Bonal, D., Ponette, Q., 2019. Contrasting patterns of tree species mixture effects on wood δ13C along an environmental gradient. Eur. J. For. Res. 139, 229–245. https://doi.org/10.1007/s10342-019-01224-z.

 

del Río, M., Schütze, G., Pretzsch, H., 2014. Temporal variation of competition and facilitation in mixed species forests in Central Europe. Plant Biol. 16 (1), 166–176. https://doi.org/10.1111/plb.12029.

 

Edwards, M., 1992. Likelihood. Johns Hopkins University Press, Baltimore.

 

Fichtner, A., Härdtle, W., Li, Y., Bruelheide, H., Kunz, M., von Oheimb, G., 2017. From competition to facilitation: how tree species respond to neighbourhood diversity. Ecol. Lett. 20, 892–900. https://doi.org/10.1111/ele.12786.

 

Forrester, D.I., Bauhus, J., 2016. A review of processes behind diversity—productivity relationships in forests. Curr. For. Rep. 2, 45–61. https://doi.org/10.1007/s40725-016-0031-2.

 

Forrester, D.I., Kohnle, U., Albrecht, A.T., Bauhus, J., 2013. Complementarity in mixed-species stands of Abies alba and Picea abies varies with climate, site quality and stand density. For. Ecol. Manag. 304, 233–242. https://doi.org/10.1016/j.foreco.2013.04.038.

 

Freckleton, R.P., Watkinson, A.R., 2001. Asymmetric competition between plant species. Funct. Ecol. 15, 615–623. https://doi.org/10.1046/J.0269-8463.2001.00558.X.

 

Gillerot, L., Forrester, D.I., Bottero, A., Rigling, A., Lévesque, M., 2021. Tree neighbourhood diversity has negligible effects on drought resilience of european beech, silver fir and Norway spruce. Ecosystems 24, 20–36. https://doi.org/10.1007/s10021-020-00501-y.

 

Goffe, W.L., Ferrier, G.D., Rogers, J., 1994. Global optimization of statistical functions with simulated annealing. J. Econom. 60, 65–99. https://doi.org/10.1016/0304-4076(94)90038-8.

 
Goldberg, D.E., 1990. Components of resource competition in plant communities. In: Grace, J.B., Tilman, D. (Eds.), Perspectives of Plant Competition. Academic Press, Cambridge, pp. 27–49.
 

Goldberg, D.E., 1996. Competitive ability: definitions, contingency and correlated traits. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 351, 1377–1385. https://doi.org/10.1098/RSTB.1996.0121.

 

Goldberg, D.E., Landa, K., 1991. Competitive effect and response: hierarchies and correlated traits in the early stages of competition. J. Ecol. 79, 1013. https://doi.org/10.2307/2261095.

 

Goldberg, D.E., Rajaniemi, T., Gurevitch, J., Stewart-Oaten, A., 1999. Empirical approaches to quantifying interaction intensity: competition and facilitation along productivity gradients. Ecology 80, 1118–1131.

 

Gómez-Aparicio, L., García-Valdés, R., Ruíz-Benito, P., Zavala, M.A., 2011. Disentangling the relative importance of climate, size and competition on tree growth in Iberian forests: implications for forest management under global change. Glob. Chang. Biol. 17, 2400–2414. https://doi.org/10.1111/J.1365-2486.2011.02421.X.

 

Grime, J.P., 1973. Competitive exclusion in herbaceous vegetation. Nature 242, 344–347.

 

Harris, I., Jones, P.D., Osborn, T.J., Lister, D.H., 2014. Updated high-resolution grids of monthly climatic observations - the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642. https://doi.org/10.1002/joc.3711.

 

Hilborn, R., Mangel, M., 1997. The Ecological Detective: Press, Confronting Models with Data. Princeton University Press, Princeton, New Jersey, USA.

 

Hilmers, T., Avdagi, A., Bartkowicz, L., Bielak, K., Binder, F., Bonina, A., Dobor, L., Forrester, D.I., Hobi, M.L., Ibrahimspahi, A., Jaworski, A., Klopi, M., Matovi, B., Nagel, T.A., Petr, R., Del Rio, M., Staji, B., Uhl, E., Zlatanov, T., Tognetti, R., Pretzsch, H., 2020. The productivity of mixed mountain forests comprised of Fagus sylvatica, Picea abies, and Abies alba across Europe. Forestry 92, 512–522. https://doi.org/10.1093/forestry/cpz035.

 

Houpert, L., Rohner, B., Forrester, D.I., Mina, M., Huber, M.O., 2018. Mixing effects in Norway spruce—european beech stands are modulated by site quality, stand age and moisture availability. Forests 9, 83. https://doi.org/10.3390/F9020083.

 

Huber, M.O., Sterba, H., Bernhard, L., 2014. Site conditions and definition of compositional proportion modify mixture effects in Picea abiesAbies alba stands. Can. J. For. Res. 44, 1281–1291. https://doi.org/10.1139/cjfr-2014-0188.

 

Keddy, P.A., Twolan-Strutt, L., Wisheu, I.C., 1994. Competitive effect and response rankings in 20 wetland plants: are they consistent across three environments? J. Ecol. 82, 635–643.

 

Kölling, C., 2007. Klimahüllen für 27 waldbaumarten. AFZ/Der Wald 23, 1242–1245.

 

Le Roux, P.C., McGeoch, M.A., 2010. Interaction intensity and importance along two stress gradients: adding shape to the stress-gradient hypothesis. Oecologia 162, 733–745.

 

Lebourgeois, F., Bréda, N., Ulrich, E., Granier, A., Bréda, N., Ulrich, E., 2005. Climate-tree-growth relationships of European beech (Fagus sylvatica L.) in the French permanent plot Network (RENECOFOR). Trees (Berl.) 19, 385–401. https://doi.org/10.1007/s00468-004-0397-9.

 

Lebourgeois, F., Gomez, N., Pinto, P., Mérian, P., 2013. Mixed stands reduce Abies alba tree-ring sensitivity to summer drought in the Vosges mountains, western Europe. For. Ecol. Manag. 303, 61–71. https://doi.org/10.1016/J.FORECO.2013.04.003.

 

Maestre, F.T., Callaway, R.M., Valladares, F., Lortie, C.J., 2009. Refining the stress-gradient hypothesis for competition and facilitation in plant communities. J. Ecol. 97, 199–205. https://doi.org/10.1111/j.1365-2745.2008.01476.x.

 

Mérian, P., Lebourgeois, F., 2011. Size-mediated climate–growth relationships in temperate forests: a multi-species analysis. For. Ecol. Manag. 261, 1382–1391. https://doi.org/10.1016/J.FORECO.2011.01.019.

 

Mina, M., Huber, M.O., Forrester, D.I., Thürig, E., Rohner, B., 2018a. Multiple factors modulate tree growth complementarity in Central European mixed forests. J. Ecol. 106, 1106–1119. https://doi.org/10.1111/1365-2745.12846.

 

Mina, M., Del Río, M, Huber, M.O., Thürig, E., Rohner, B., 2018b. The symmetry of competitive interactions in mixed Norway spruce, silver fir and European beech forests. J. Veg. Sci. 29, 775–787. https://doi.org/10.1111/jvs.12664.

 
Ministerio de Agricultura Alimentación y Medio Ambiente, 2019. Cuarto Inventario 695 Forestal Nacional (IFN4). España, Madrid.
 
Murphy, L., 2012. Likelihood: methods for maximum likelihood estimation. R package version 1.5. http://CRAN.R-project.org/packagelikelihood. Nov 01, 2023.
 

Paquette, A., Messier, C., 2011. The effect of biodiversity on tree productivity: from temperate to boreal forests. Glob. Ecol. Biogeogr. 20, 170–180. https://doi.org/10.1111/j.1466-8238.2010.00592.x.

 

Pretzsch, H., 2022. Facilitation and competition reduction in tree species mixtures in Central Europe: consequences for growth modeling and forest management. Ecol. Model. 464, 109812. https://doi.org/10.1016/j.ecolmodel.2021.109812.

 

Pretzsch, H., Schütze, G., 2008. Transgressive overyielding in mixed compared with pure stands of Norway spruce and European beech in Central Europe: evidence on stand level and explanation on individual tree level. Eur. J. For. Res. 128, 183–204. https://doi.org/10.1007/S10342-008-0215-9.

 

Pretzsch, H., Block, J., Dieler, J., Dong, P.H., Kohnle, U., Nagel, J., Spellmann, H., Zingg, A., 2010. Comparison between the productivity of pure and mixed stands of Norway spruce and European beech along an ecological gradient. Ann. For. Sci. 67, 712. https://doi.org/10.1051/forest/2010037.

 

Pretzsch, H., del Río, M., Ammer, C., Avdagic, A., Barbeito, I., Bielak, K., Brazaitis, G., Coll, L., Dirnberger, G., Drössler, L., 2015. Growth and yield of mixed versus pure stands of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) analysed along a productivity gradient through Europe. Eur. J. For. Res. 134, 927–947.

 

Thornthwaite, C.W., 1948. An approach toward a rational classification of climate. Geogr. Rev. 38, 55. https://doi.org/10.2307/210739.

 

Tognetti, R., Lombardi, F., Lasserre, B., Cherubini, P., Marchetti, M., 2014. Tree-ring stable isotopes reveal twentieth-century increases in water-use efficiency of Fagus sylvatica and Nothofagus spp. in Italian and Chilean Mountains. PLoS One 9, e113136. https://doi.org/10.1371/JOURNAL.PONE.0113136.

 

Toïgo, M., Vallet, P., Perot, T., Bontemps, J.-D., Piedallu, C., Courbaud, B., 2015. Overyielding in mixed forests decreases with site productivity. J. Ecol. 103, 502–512. https://doi.org/10.1111/1365-2745.12353.

 

Uhl, E., Hilmers, T., Pretzsch, H., 2021. From acid rain to low precipitation: the role reversal of Norway spruce, silver fir, and european beech in a selection mountain forest and its implications for forest management. Forests 12, 1–24. https://doi.org/10.3390/f12070894.

 

Uriarte, M., Canham, C.D., Thompson, J., Zimmerman, J.K., 2004. A neighborhood analysis of tree growth and survival in a hurricane-driven tropical forest. Ecol. Monogr. 74, 591–614. https://doi.org/10.1890/03-4031.

 

Vallet, P., Pérot, T., 2011. Silver fir stand productivity is enhanced when mixed with Norway spruce: evidence based on large-scale inventory data and a generic modelling approach. J. Veg. Sci. 22, 932–942. https://doi.org/10.1111/j.1654-1103.2011.01288.x.

 

Vandermeer, J.H., 1989. The ecology of intercropping. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511623523.

 

Vanoni, M., Bugmann, H., Nötzli, M., Bigler, C., 2016. Quantifying the effects of drought on abrupt growth decreases of major tree species in Switzerland. Ecol. Evol. 6, 3555–3570. https://doi.org/10.1002/ECE3.2146.

 

Versace, S., Gianelle, D., Garfì, V., Battipaglia, G., Lombardi, F., Marchetti, M., Tognetti, R., 2020. Interannual radial growth sensitivity to climatic variations and extreme events in mixed-species and pure forest stands of silver fir and European beech in the Italian Peninsula. Eur. J. For. Res. 139, 627–645.

 

Versace, S., Garfì, V., Dalponte, M., Febbraro Mirko, D., Frizzera, L., Gianelle, D., Tognetti, R., 2021. Species interactions in pure and mixed-species stands of silver fir and European beech in Mediterranean mountains. iForest-Biogeosci. For. 14 (1), 1–11.

 

Vicente-Serrano, S.M., Beguería, S., López-Moreno, J.I., 2010. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J. Clim. 23, 1696–1718. https://doi.org/10.1175/2009JCLI2909.1.

 

Vilà, M., Carrillo-Gavilán, A., Vayreda, J., Bugmann, H., Fridman, J., Grodzki, W., Haase, J., Kunstler, G., Schelhaas, M., Trasobares, A., 2013. Disentangling biodiversity and climatic determinants of wood production. PLoS One 8, e53530.

 

Vitali, V., Forrester, D.I., Bauhus, J., 2018. Know your neighbours: drought response of Norway spruce, silver fir and douglas fir in mixed forests depends on species identity and diversity of tree neighbourhoods. Ecosystems 21, 1215–1229. https://doi.org/10.1007/s10021-017-0214-0.

 

Wang, P., Stieglitz, T., Zhou, D.W., Cahill Jr, J.F., 2010. Are competitive effect and response two sides of the same coin, or fundamentally different? Funct. Ecol. 24, 196–207. https://doi.org/10.1111/J.1365-2435.2009.01612.X.

 

Zhang, Y., Chen, H.Y.H., Reich, P.B., 2012. Forest productivity increases with evenness, species richness and trait variation: a global meta-analysis. J. Ecol. 100, 742–749.

Forest Ecosystems
Article number: 100176
Cite this article:
Valor T, Coll L, Forrester DI, et al. Competitive effect, but not competitive response, varies along a climatic gradient depending on tree species identity. Forest Ecosystems, 2024, 11(2): 100176. https://doi.org/10.1016/j.fecs.2024.100176

136

Views

0

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 15 November 2023
Revised: 08 February 2024
Accepted: 09 February 2024
Published: 15 February 2024
© 2024 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return