AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.1 MB)
Collect
AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Early response of understory vegetation to the mass dieback of Norway spruce in the European lowland temperate forest

Faculty of Geography and Regional Studies, University of Warsaw, Poland
Institute of Geography and Spatial Organization, Polish Academy of Sciences, Poland
Institute of Forest Sciences, Warsaw University of Life Sciences, Poland
Show Author Information

Abstract

Spruce-dominated forests are commonly exposed to disturbances associated with mass occurrences of bark beetles. The dieback of trees triggers many physical and chemical processes in the ecosystem resulting in rapid changes in the vegetation of the lower forest layers. We aimed to determine the response of non-tree understory vegetation to the mass dieback of Norway spruce (Picea abies) in the first years after the disturbance caused by the European spruce bark beetle (Ips typographus) outbreak. Our study area was the Białowieża Biosphere Reserve covering the Polish part of the emblematic Białowieża Forest, in total 597 ​km2. The main data source comprised 3,900 phytosociological relevés (combined spring and summer campaigns) collected from 1,300 systematically distributed forest sites in 2016–2018 – the peak years of the bark beetle outbreak. We found that the understory responded immediately to mass spruce dieback, with the most pronounced changes observed in the year of the disturbance and the subsequent year. Shade-tolerant forest species declined in the initial years following the mass spruce dieback, while hemicryptophytes, therophytes, light-demanding species associated with non-forest semi-natural communities, as well as water-demanding forest species, expanded. Oxalis acetosella, the most common understory species in the Białowieża Forest, showed a distinct fluctuation pattern, with strong short-term expansion right after spruce dieback, followed by a gradual decline over the next 3–4 years to a cover level 5 percentage points lower than before the disturbance. Thus, our study revealed that mass spruce dieback selectively affects individual herb species, and their responses can be directional and non-directional (fluctuation). Furthermore, we demonstrated that the mass dieback of spruce temporarily increases plant species diversity (α-diversity).

References

 

Anderson, M.J., 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46. https://doi.org/10.1111/j.1442-9993.2001.01070.

 
Bauer, M.L., 2002. Walddynamik nach Borkenkäferbefall in den Hochlagen des Bayerischen Waldes. Ph. D Dissertation. Technische Universität München, München.
 

Bearup, L.A., Maxwell, R.M., Clow, D.W., McCray, J.E., 2014. Hydrological effects of forest transpiration loss in bark beetle-impacted watersheds. Nat. Clim. Change 4, 481–486. https://doi.org/10.1038/nclimate2198.

 

Becker, T., Schröter, H., 2000. Ausbreitung von rindenbrütenden Borkenkäfern nach Sturmschäden. AFZ/Der Wald 55, 280–282.

 

Benjamini, Y., Hochberg, Y., 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Roy. Stat. Soc.: B (Methodol.) 57, 289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x.

 

Beudert, B., Bässler, C., Thorn, S., Noss, R., Schröder, B., Dieffenbach-Fries, H., Foullois, N., Müller, J., 2015. Bark beetles increase biodiversity while maintaining drinking water quality. Conserv. Lett. 8, 272–281. https://doi.org/10.1111/conl.12153.

 

Blicharska, M., Angelstam, P., Giessen, L., Hilszczański, J., Hermanowicz, E., Holeksa, J., Jacobsen, J.B., Jaroszewicz, B., Konczal, A., Konieczny, A., Mikusiński, G., Mirek, Z., Mohren, F., Muys, B., Niedziałkowski, K., Sotirov, M., Stereńczak, K., Szwagrzyk, J., Winder, G.M., Witkowski, Z., Zapłata, R., Winkel, G., 2020. Between biodiversity conservation and sustainable forest management – a multidisciplinary assessment of the emblematic Białowieża Forest case. Biol. Conserv. 248, 108614. https://doi.org/10.1016/j.biocon.2020.108614.

 

Bobiec, A., 2012. Białowieża Primeval Forest as a remnant of culturally modified ancient forest. Eur. J. For. Res. 131, 1269–1285.

 

Boczoń, A., Kowalska, A., Ksepko, M., Sokołowski, K., 2018. Climate warming and drought in the Bialowieza Forest from 1950–2015 and their impact on the dieback of Norway spruce stands. Water 10, 1502. https://doi.org/10.3390/w10111502.

 
Braun-Blanquet, J., 1964. Pflanzensoziologie. Springer, Vienna. https://doi.org/10.1007/978-3-7091-8110-2.
 

Brzeziecki, B., Woods, K., Bolibok, L., Zajączkowski, J., Drozdowski, S., Bielak, K., Żybura, H., 2020. Over 80 years without major disturbance, late-successional Białowieża woodlands exhibit complex dynamism, with coherent compositional shifts towards true old-growth conditions. J. Ecol. 108, 1138–1154. https://doi.org/10.1111/1365-2745.13367.

 
Brzeziecki, B., Zajączkowski, J., Bolibok, L., 2023. Gatunki drzew i drzewostany. In: Matuszkiewicz, J.M., Tabor, J. (Eds.), Inwentaryzacja Wybranych Elementów Przyrodniczych I Kulturowych Puszczy Białowieskiej. Instytut Badawczy Lésnictwa, Sękocin Stary, pp. 157–391.
 

Coomes, D.A., Grubb, P.J., 2000. Impacts of root competition in forests and woodlands: atheoretical framework and review of experiments. Ecol. Monogr. 70, 171–207.https://doi.org/10.1890/0012-9615(2000)070[0171:IORCIF]2.0.CO;2.

 

Czerepko, J., Gawryś, R., Mańk, K., Janek, M., Tabor, J., Skalski, Ł., 2021. The influence of the forest management in the Białowieża forest on the species structure of the forest community. For. Ecol. Manag. 496, 119363. https://doi.org/10.1016/j.foreco.2021.119363.

 
Castri, F., 1990. On invading species and invaded ecosystems: the interplay of historical chance and biological necessity. In: di Castri, F., Hansen, A.J., Debussche, M. (Eds.), Biological Invasions in Europe and the Mediterranean Basin. Springer Netherlands, Dordrecht, pp. 3–16. https://doi.org/10.1007/978-94-009-1876-4_1.
 

Dafni, A., Cohen, D., Noy-Mier, I., 1981. Life-cycle variation in geophytes. Ann. Mo. Bot. Gard. 68, 652–660. https://doi.org/10.2307/2398893.

 

Edburg, S.L., Hicke, J.A., Brooks, P.D., Pendall, E.G., Ewers, B.E., Norton, U., Gochis, D., Gutmann, E.D., Meddens, A.J.H., 2012. Cascading impacts of bark beetle-caused tree mortality on coupled biogeophysical and biogeochemical processes. Front. Ecol. Environ. 10, 416–424. https://doi.org/10.1890/110173.

 
Ellenberg, H., Weber, H.E., Düll, R., Wirth, V., Werner, W., 1991. Zeigerwerte von Pflanzen in Mitteleuropa. Verlag Erich Goltze KG, Göttingen.
 
Faliński, J.B., 1986. Vegetation dynamics in temperate lowland primeval forests. Ecological Studies in Białowieża Forest. In: Springer, Dordrecht, pp. 1–357. https://doi.org/10.1007/978-94-009-4806-8.
 

Fischer, A., Fischer, H.S., Kopecký, M., Macek, M., Wild, J., 2015. Small changes in species composition despite stand-replacing bark beetle outbreak in Picea abies mountain forests. Can. J. For. Res. 45, 1164–1171. https://doi.org/10.1139/cjfr-2014-0474.

 

Flint, C.G., McFarlane, B., Müller, M., 2009. Human dimensions of forest disturbance by insects: an international synthesis. Environ. Manag. 43, 1174–1186. https://doi.org/10.1007/s00267-008-9193-4.

 

Grime, J.P., 1977. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am. Nat. 111, 1169–1194.

 
Grime, J.P., 1979. Plant Strategies and Vegetation Processes. John Wiley and Sons, Chichester-New York-Brisbane-Toronto.
 
Gandhi, K.J.K., Miller, C.N., Fornwalt, P.J., Frank, J.M., 2022. Bark beetle outbreaks alter biotic components of forested ecosystems. In: Gandhi, K.J.K., Hofstetter, R.W. (Eds.), Bark Beetle Management, Ecology, and Climate Change. Elsevier, Netherlands, pp. 227–259. https://doi.org/10.1016/B978-0-12-822145-7.00008-8.
 

Griffin, J.M., Turner, M.G., Simard, M., 2011. Nitrogen cycling following mountain pine beetle disturbance in lodgepole pine forests of Greater Yellowstone. For. Ecol. Manag. 261, 1077–1089. https://doi.org/10.1016/J.FORECO.2010.12.031.

 

Grodzki, W., Starzyk, J.R., Kosibowicz, M., 2014. Impact of selected stand characteristics on the occurrence of the bark beetle Ips typographus (L.) in the Beskid Żywiecki Mountains. For. Res. Pap. 75, 159–169. https://doi.org/10.2478/frp-2014-0015.

 

Hais, M., Kučcera, T., 2008. Surface temperature change of spruce forest as a result of bark beetle attack: remote sensing and GIS approach. Eur. J. For. Res. 127, 327–336. https://doi.org/10.1007/s10342-008-0208-8.

 

Hammer, D.A.T., Ryan, P.D., Hammer, Ø., Harper, D.A.T., 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 1–9.

 
Heurich, M., 2001. Waldentwicklung im montanen Fichtenwald nach großflächigem Buchdruckerbefall im Nationalpark Bayerischer Wald. In: Heurich, M., Jehl, H. (Eds.), Waldentwicklung im Bergwald nach Windwurf und Borkenkäferbefall. Nationalpark Bayerischer Wald, Deutschland, pp. 99–177.
 

Hlásny, T., König, L., Krokene, P., Lindner, M., Montagné-Huck, C., Müller, J., Qin, H., Raffa, K.F., Schelhaas, M.-J., Svoboda, M., Viiri, H., Seidl, R., 2021a. Bark beetle outbreaks in Europe: state of knowledge and ways forward for management. Curr. For. Rep. 7, 138–165. https://doi.org/10.1007/s40725-021-00142-x.

 

Hlásny, T., Krokene, P., Liebhold, A., Montagné-Huck, C., Müller, J., Qui, H., Raffa, K., Schelhaas, M.-J., Seidl, R., Svoboda, M., Viiri, H., 2019. Living with bark beetles impacts, outlook and management options. Scipolicy 8, 1–50. https://doi.org/10.36333/fs08.

 

Hlásny, T., Zimová, S., Merganičová, K., Štěpánek, P., Modlinger, R., Turčáni, M., 2021b. Devastating outbreak of bark beetles in the Czech Republic: drivers, impacts, and management implications. For. Ecol. Manag. 490, 119075. https://doi.org/10.1016/J.FORECO.2021.119075.

 

Holsten, E.H., Werner, R.A., Develice, R.L., 1995. Effects of a spruce beetle (Coleoptera: Scolytidae) outbreak and fire on Lutz spruce in Alaska. Environ. Entomol. 24, 1539–1547. https://doi.org/10.1093/ee/24.6.1539.

 

Jagodziński, A.M., Pietrusiak, K., Rawlik, M., Janyszek, S., 2013. Seasonal changes in the understorey biomass of an oak-hornbeam forest Galio sylvatici-Carpinetum betuli. For. Res. Pap. 74, 35–47. https://doi.org/10.2478/frp-2013-0005.

 

Jonášová, M., Prach, K., 2008. The influence of bark beetles outbreak vs. salvage logging on ground layer vegetation in Central European mountain spruce forests. Biol. Conserv. 141, 1525–1535. https://doi.org/10.1016/j.biocon.2008.03.013.

 
Kamińska, A., Lisiewicz, M., Kraszewski, B., Stereńczak, K., 2022. Comprehensive analysis of spruce dieback between 2015 and 2019 in Białowieża Forest. In: Stereńczak, K. (Ed.), The Current State of Białowieża Forest Based on the Results of the LIFE+ ForBioSensing Project. Instytut Badawczy Leśnictwa, Sękocin Stary, pp. 310–325.
 

Karpov, V.G., 1961. On the influence of tree root competition on the photosynthetic activity of the herb layer in spruce forest. Dokl. Akad. Nauk SSSR 140, 1205–1208.

 

Klutsch, J.G., Negrón, J.F., Costello, S.L., Rhoades, C.C., West, D.R., Popp, J., Caissie, R., 2009. Stand characteristics and downed woody debris accumulations associated with a mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreak in Colorado. For. Ecol. Manag. 258, 641–649. https://doi.org/10.1016/j.foreco.2009.04.034.

 

Kopáček, J., Cudlín, P., Fluksová, H., Kaňa, J., Picek, T., Šantrůčková, H., Vaněk, D., 2015. Dynamics and composition of litterfall in an unmanaged Norway spruce (Picea abies) forest after bark-beetle outbreak. Boreal Environ. Res. 20, 305–323.

 

Kortmann, M., Müller, J.C., Baier, R., Bässler, C., Buse, J., Cholewińska, O., Förschler, M.I., Georgiev, K.B., Hilszczański, J., Jaroszewicz, B., Jaworski, T., Kaufmann, S., Kuijper, D., Lorz, J., Lotz, A., Łubek, A., Mayer, M., Mayerhofer, S., Meyer, S., Morinière, J., Popa, F., Reith, H., Roth, N., Seibold, S., Seidl, R., Stengel, E., Wolski, G., Thorn, S., 2021. Ecology versus society: impacts of bark beetle infestations on biodiversity and restorativeness in protected areas of Central Europe. Biol. Conserv. 254, 108931. https://doi.org/10.1016/j.biocon.2020.108931.

 

Matuszkiewicz, J.M., Affek, A.N., Kowalska, A., 2021. Current and potential carbon stock in the forest communities of the Białowieża Biosphere Reserve. For. Ecol. Manag. 502, 119702. https://doi.org/10.1016/j.foreco.2021.119702.

 
Matuszkiewicz, J.M., Paluch, R., Szulc, A., Mielcarek, M., Lisiewicz, M., Kuberski, Ł., Stereńczak, K., 2022. Identification and mapping of forest communities of the Białowieża Forest using remote sensing data. In: Stereńczak, K. (Ed.), The Current State of Białowieża Forest Based on the Results of the LIFE+ ForBioSensing Project. Instytut Badawczy Leśnictwa, Sękocin Stary, pp. 310–325.
 
Matuszkiewicz, J.M., Brzeziecki, B., Czerepko, J., Hilszczański, J., Jaworski, T., Leski, T., Obidziński, A., Schwerk, A., Stereńczak, K., Tabor, J., Wilk, A., Zajączkowski, J., Zapłata, R., 2023. Synthesis of the results of the natural and cultural inventory of Białowieża Forest. In: Matuszkiewicz, J.M., Tabor, J. (Eds.), Inwentaryzacja Wybranych Elementów Przyrodniczych I Kulturowych Puszczy Białowieskiej. Instytut Badawczy Leśnictwa, Sękocin Stary, pp. 1241–1342.
 

McIntyre, S., Lavorel, S., Tremont, R.M., 1995. Plant life-history attributes: their relationship to disturbance response in herbaceous vegetation. J. Ecol. 83, 31–44. https://doi.org/10.2307/2261148.

 

McMillin, J.D., Allen, K.K., Long, D.F., Harris, J.L., Negrón, J.F., 2003. Effects of western balsam bark beetle on spruce-fir forests of north-central Wyoming. West. J. Appl. Finance 18, 259–266. https://doi.org/10.1093/wjaf/18.4.259.

 

Mikkelson, K.M., Bearup, L.A., Maxwell, R.M., Stednick, J.D., McCray, J.E., Sharp, J.O., 2013. Bark beetle infestation impacts on nutrient cycling, water quality and interdependent hydrological effects. Biogeochemistry 115, 1–21. https://doi.org/10.1007/s10533-013-9875-8.

 

Müller, J., Bußler, H., Goßner, M., Rettelbach, T., Duelli, P., 2008. The European spruce bark beetle Ips typographus in a national park: from pest to keystone species. Biodivers. Conserv. 17, 2979–3001. https://doi.org/10.1007/s10531-008-9409-1.

 

Netherer, S., Schopf, A., 2010. Potential effects of climate change on insect herbivores in European forests – general aspects and the pine processionary moth as specific example. For. Ecol. Manag. 259, 831–838. https://doi.org/10.1016/j.foreco.2009.07.034.

 

Orczewska, A., Czortek, P., Jaroszewicz, B., 2019. The impact of salvage logging on herb layer species composition and plant community recovery in Białowieża Forest. Biodivers. Conserv. 28, 3407–3428. https://doi.org/10.1007/s10531-019-01795-8.

 

Oulehle, F., Wright, R.F., Svoboda, M., Bače, R., Matějka, K., Kaňa, J., Hruška, J., Couture, R.M., Kopáček, J., 2019. Effects of bark beetle disturbance on soil nutrient retention and lake chemistry in glacial catchment. Ecosystems 22, 725–741. https://doi.org/10.1007/s10021-018-0298-1.

 

Packham, J.R., 1978. Oxalis acetosella L. J. Ecol. 66, 669–693. https://doi.org/10.2307/2259158.

 

Packham, J.R., Willis, A.J., 1977. The Effects of shading on Oxalis acetosella. J. Ecol. 65, 619–642. https://doi.org/10.2307/2259505.

 

Paine, T.D., Raffa, K.F., Harrington, T.C., 1997. Interactions among scolytid bark beetles, their associated fungi, and live host conifers. Annu. Rev. Entomol. 42, 179–206. https://doi.org/10.1146/annurev.ento.42.1.179.

 

Pec, G.J., Karst, J., Sywenky, A.N., Cigan, P.W., Erbilgin, N., Simard, S.W., Cahill, J.F., 2015. Rapid increases in forest understory diversity and productivity following a mountain pine beetle (Dendroctonus ponderosae) outbreak in pine forests. PLoS One 10, e0124691. https://doi.org/10.1371/journal.pone.0124691.

 

Pureswaran, D.S., Roques, A., Battisti, A., 2018. Forest insects and climate change. Curr. For. Rep. 4, 35–50. https://doi.org/10.1007/s40725-018-0075-6.

 
Raunkiaer, C., 1934. The Life Forms of Plants and Statistical Plant Geography. Oxford University Press, London.
 
Rejmánek, M., Richardson, D.M., Pyšek, P., 2013. Plant invasions and invasibility of plant communities. In: van der Maarel, E., Franklin, J. (Eds.), Vegetation Ecology. John Wiley & Sons, UK, pp. 387–424. https://doi.org/10.1002/9781118452592.ch13.
 

Runyon, J.B., Fettig, C.J., Trilling, J.A., Munson, A.S., Mortenson, L.A., Steed, B.E., Gibson, K.E., Jørgensen, C.L., McKelvey, S.R., McMillin, J.D., Audley, J.P., Negrón, J.F., 2020. Changes in understory vegetation including invasive weeds following mountain pine beetle outbreaks. Trees For. People 2, 100038. https://doi.org/10.1016/j.tfp.2020.100038.

 

Schelhaas, M.-J., Nabuurs, G.-J., Schuck, A., 2003. Natural disturbances in the European forests in the 19th and 20th centuries. Glob. Change Biol. 9, 1620–1633. https://doi.org/10.1046/j.1365-2486.2003.00684.x.

 

Seidl, R., Schelhaas, M.-J., Lexer, M.J., 2011. Unraveling the drivers of intensifying forest disturbance regimes in Europe. Glob. Change Biol. 17, 2842–2852. https://doi.org/10.1111/j.1365-2486.2011.02452.x.

 

Seidl, R., Thom, D., Kautz, M., Martin-Benito, D., Peltoniemi, M., Vacchiano, G., Wild, J., Ascoli, D., Petr, M., Honkaniemi, J., Lexer, M.J., Trotsiuk, V., Mairota, P., Svoboda, M., Fabrika, M., Nagel, T.A., Reyer, C.P.O., 2017. Forest disturbances under climate change. Nat. Clim. Change 7, 395–402. https://doi.org/10.1038/nclimate3303.

 

Senf, C., Pflugmacher, D., Yang, Z., Sebald, J., Knorn, J., Neumann, M., Hostert, P., Seidl, R., 2018. Canopy mortality has doubled in Europe's temperate forests over the last three decades. Nat. Commun. 9, 4978. https://doi.org/10.1038/s41467-018-07539-6.

 
Skuhravý, V., 2002. Lýkožrout Smrkový I. Typographus (L.) a Jeho Kalamity. Agrospoj, Praha.
 
Stereńczak, K., 2022. The Current State of Białowieża Forest Based on the Results of the LIFE+ ForBioSensing Project. Forest Research Institute, Sękocin Stary.
 

Stereńczak, K., Mielcarek, M., Modzelewska, A., Kraszewski, B., Fassnacht, F.E., Hilszczański, J., 2019. Intra-annual Ips typographus outbreak monitoring using a multi-temporal GIS analysis based on hyperspectral and ALS data in the Białowieża Forests. For. Ecol. Manag. 442, 105–116. https://doi.org/10.1016/j.foreco.2019.03.064.

 
Święcicki, Z., 2012. Instrukcja Urządzania Lasu, Część Ⅱ Instrukcja Wyróżniania I Kartowania W Lasach Państwowych Typów Siedliskowych Lasu Oraz Zbiorowisk Roślinnych. Centrum Informacyjne Lasów Państwowych, Warszawa.
 
Tabor, J., Skalski, Ł., Obszyński, M., Konieczny, A., 2023. Charakterystyka "Inwentaryzacji przyrodniczo-kulturowej Puszczy Białowieskiej" jako materiału dla opracowania. In: Matuszkiewicz, J.M., Tabor, J. (Eds.), Inwentaryzacja Wybranych Elementów Przyrodniczych I Kulturowych Puszczy Białowieskiej. Instytut Badawczy Leśsnictwa, Sękocin Stary, https://doi.org/10.48538/IBL-2022-0002, pp. 25–81.
 

Thom, D., Rammer, W., Seidl, R., 2017. Disturbances catalyze the adaptation of forest ecosystems to changing climate conditions. Glob. Change Biol. 23, 269–282. https://doi.org/10.1111/gcb.13506.

 

Tüxen, R., Ellenberg, H., 1937. Der systematische und der ökologische Gruppenwert. Ein Beitrag zur Begriffsbildung und Methodik der Pflanzensoziologie. Mitt. Florist.-Soziol. Arbgem. 3, 171–184.

 

Viljur, M.L., Abella, S.R., Adámek, M., Alencar, J.B.R., Barber, N.A., Beudert, B., Burkle, L.A., Cagnolo, L., Campos, B.R., Chao, A., Chergui, B., Choi, C.Y., Cleary, D.F.R., Davis, T.S., Dechnik-Vázquez, Y.A., Downing, W.M., Fuentes-Ramirez, A., Gandhi, K.J.K., Gehring, C., Georgiev, K.B., Gimbutas, M., Gongalsky, K.B., Gorbunova, A.Y., Greenberg, C.H., Hylander, K., Jules, E.S., Korobushkin, D.I., Köster, K., Kurth, V., Lanham, J.D., Lazarina, M., Leverkus, A.B., Lindenmayer, D., Marra, D.M., Martín-Pinto, P., Meave, J.A., Moretti, M., Nam, H.Y., Obrist, M.K., Petanidou, T., Pons, P., Potts, S.G., Rapoport, I.B., Rhoades, P.R., Richter, C., Saifutdinov, R.A., Sanders, N.J., Santos, X., Steel, Z., Tavella, J., Wendenburg, C., Wermelinger, B., Zaitsev, A.S., Thorn, S., 2022. The effect of natural disturbances on forest biodiversity: an ecological synthesis. Biol. Rev. 97, 1930–1947. https://doi.org/10.1111/brv.12876.

 
Walter, H., 1971. Ecology of Tropical and Subtropical Vegetation. Kew Bulletin. Oliver & Boyd, Edinburgh. https://doi.org/10.2307/4117095.
 

Watt, A.S., 1925. On the ecology of British beechwoods with special reference to their regeneration: Part Ⅱ, Sections Ⅱ and Ⅲ. The development and structure of beech communities on the Sussex Downs (continued). J. Ecol. 13, 27–73. https://doi.org/10.2307/2255601.

 

Watt, A.S., Fraser, G.K., 1933. Tree roots and the field layer. J. Ecol. 21, 404–414. https://doi.org/10.2307/2256589.

 

Wermelinger, B., Seifert, M., 1999. Temperature-dependent reproduction of the spruce bark beetle Ips typographus, and analysis of the potential population growth. Ecol. Entomol. 24, 103–110. https://doi.org/10.1046/j.1365-2311.1999.00175.x.

 

Whittaker, R.H., 1972. Evolution and measurement of species diversity. Taxon 21, 213–251. https://doi.org/10.2307/1218190.

 
Wilk, A., Zawadzki, M., 2023. Rys historyczny polskiej części Puszczy Białowieskiej. In: Matuszkiewicz, J.M., Tabor, J. (Eds.), Inwentaryzacja Wybranych Elementów Przyrodniczych I Kulturowych Puszczy Białowieskiej. Instytut Badawczy Leśnictwa, Sękocin Stary, pp. 1085–1134. https://doi.org/10.48538/IBL-2022-0002.
 

Winter, M.B., Ammer, C., Baier, R., Donato, D.C., Seibold, S., Müller, J., 2015. Multi-taxon alpha diversity following bark beetle disturbance: evaluating multi-decade persistence of a diverse early-seral phase. For. Ecol. Manag. 338, 32–45. https://doi.org/10.1016/j.foreco.2014.11.019.

 

Zaniewski, P.T., Otręba, A., 2017. Response of vegetation to the surface fire in the pine forest Peucedano-Pinetum W. Mat. (1962) 1973 in the Kampinoski National Park. Sylwan 161, 991–1001. https://doi.org/10.26202/sylwan.2017089.

 

Zaniewski, P.T., Potoczny, B., Matuszkiewicz, J.M., 2016. Modelling the stability of Cladonia-Scots pine forest (Cladonio-Pinetum Juraszek 1927) within bory tucholskie national park using the repeated chronosequence method. Sylwan 160, 397–406. https://doi.org/10.26202/sylwan.2015148.

 

Zaniewski, P.T., Zaniewska, E., Matuszkiewicz, J.M., 2019. Application of cluster analysis to distinguish the tendencies of vegetation changes on the example of the dynamics of communities affected by surface fire in the Peucedano-Pinetum community in the Kampinoski National Park. Sylwan 163, 924–935. https://doi.org/10.26202/sylwan.2019063.

 
Zarzycki, K., Trzcińska-Tacik, H., Różański, W., Szeląg, Z., Wołek, J., Korzeniak, U., 2002. Ecological Indicator Values of Vascular Plants of Poland. W. Szafer Institute of Botany Polish Academy of Sciences, Kraków.
Forest Ecosystems
Article number: 100177
Cite this article:
Matuszkiewicz JM, Affek AN, Zaniewski P, et al. Early response of understory vegetation to the mass dieback of Norway spruce in the European lowland temperate forest. Forest Ecosystems, 2024, 11(2): 100177. https://doi.org/10.1016/j.fecs.2024.100177

114

Views

0

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 23 November 2023
Revised: 11 February 2024
Accepted: 12 February 2024
Published: 15 February 2024
© 2024 The Authors.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Return